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Abstract 

Resistance of bacteria to phages may be gained by alteration of surface 

proteins to which phages bind, a mechanism that is likely to be costly as these 

molecules typically have critical functions such as movement or nutrient uptake. To 

address this potential trade-off we combine a systematic study of natural bacteria and 

phage populations with an experimental evolution approach. We compare motility, 5	

growth rate, and susceptibility to local phages for 80 bacteria isolated from horse 

chestnut leaves and, contrary to expectation, find no negative association between 

resistance to phages and bacterial motility or growth rate. However, because 

correlational patterns (and their absence) are open to numerous interpretations, we 

test for any causal association between resistance to phages and bacterial motility 10	

using experimental evolution of a subset of bacteria in both the presence and 

absence of naturally associated phages. Again, we find no clear link between the 

acquisition of resistance and bacterial motility, suggesting that for these natural 

bacterial populations, phage-mediated selection is unlikely to shape bacterial motility; 

a key fitness trait for many bacteria in the phyllosphere. The agreement between the 15	

observed natural pattern and the experimental evolution results presented here 

demonstrates the power of this combined approach for testing evolutionary trade-

offs. 

 

 20	
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Introduction 
Resistance to parasites is typically believed to be associated with fitness costs, 

such as reduced growth rate or competitive ability. Such costs are thought to play a 25	

key role in maintaining polymorphism in host resistance, and hence parasite 

persistence within populations (Antonovics & Thrall 1994; Burdon & Thrall 2003; 

Boots & Bowers 2004; Morgan et al. 2005; Morgan et al. 2009), and may also impact 

on interactions with other species both within and across trophic levels (Clancy & 

Price 1986; Omacini et al. 2001; Lennon & Martiny 2008; Hall et al. 2009). For 30	

example, resistance of bacteria to bacteriophages has been associated with 

substantial fitness costs (Lenski 1988a; Bohannan et al. 1999), including an 

increased cost of deleterious mutations (Buckling et al. 2006), and decreased 

competitive ability (Brockhurst et al. 2005; Lennon et al. 2007; Quance & Travisano 

2009). Given the ubiquity of bacteria-phage interactions, and their key role in all 35	

ecosystems, these costs are likely to have important ecological consequences 

(Bohannan & Lenski 2000a; Fuhrman & Schwalbach 2003).  

Here, we investigate fitness costs associated with resistance to lytic phages in 

the bacterial pathogen, Pseudomonas syringae using two complementary 

approaches. First, we carry out a correlational study between resistance to phages 40	

and other bacterial fitness traits (growth rate and motility) in natural plant-associated 

isolates. This approach allows for the direct characterization of phenotypic diversity in 

natural bacterial and phage populations, but can be difficult to interpret because 

isolates will inevitably have numerous genetic differences between them in addition 

to resistance to phages. Next, we test for a causal link between resistance to phages 45	

and other fitness traits using a subset of these isolates by experimentally evolving 

bacteria in the presence and absence of phages. This experimental evolution 
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approach is known to be a powerful tool for studying evolutionary trade-offs among 

fitness traits (Ebert 1998; Kassen 2002; Buckling et al. 2009), but may be less helpful 

in elucidating the importance of these trade-offs in explaining natural diversity. 50	

Combining these two approaches allows for a more robust assessment for the role of 

trade-offs in maintaining phenotypic diversity in natural populations. 

Lytic phages have the potential to impose strong selection on host 

populations, as they are obligate killers. They replicate by injecting their viral DNA 

into a host bacterium, hijacking the host replication machinery to propagate, and then 55	

bursting the host cell in order to release their viral progeny (Lenski 1988b). Infection 

begins with the binding of molecules on the phage tail fiber to a bacterial cell surface 

receptor (Lindberg 1973) and resistance to phages can be gained by loss or change 

of these receptors, which is likely to impact on other bacterial functions (Whitchurch & 

Mattick 1994; Brockhurst et al. 2005). For example, phages commonly exploit 60	

bacterial surface motility appendages (flagella and pili); flagellatropic phages are 

known to reversibly bind to helical grooves on the bacterial flagellum and use the 

rotation of the flagellum to spiral towards the cell surface (Samuel et al. 1999), and 

similarly, pilus-specific phages will attach to pili and fuse their membrane with that of 

the bacterial cell during pili retraction (Romantschuk & Bamford 1985; Mattick 2002). 65	

A first step towards bacterial resistance may therefore be the loss or alteration of 

these structures. For example, phage-resistant mutants often show defective flagella 

that are unable to rotate (Icho & Iino 1978) and abnormal unpiliated or hyperpiliated 

bacteria may arise to prevent phage attachment (Bradley 1980; Mattick 2002; 

Brockhurst et al. 2005). 70	

Reduced motility function is likely to have important implications for bacterial 

fitness in both pathogenic and non-pathogenic bacteria (Drake & Montie 1988; 
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Korber et al. 1994; O'Toole & Kolter 1998). Immotile mutants of the opportunistic 

animal pathogen Pseudomonas aeruginosa show reduced infectivity on human hosts 

and impaired biofilm formation (Drake & Montie 1988; O'Toole & Kolter 1998). 75	

Similarly, epiphytic, non-motile strains of the plant pathogen Pseudomonas syringae 

were found to have reduced fitness and competitive ability compared to more motile 

strains, especially under conditions of environmental stress (Haefele & Lindow 1987). 

Indeed, motility is a key component of fitness for bacteria in the plant phyllosphere 

and is necessary for successful pathogenicity, as bacteria colonizing leaf surfaces 80	

are better able to invade the leaf interior through the stomata if they are motile 

(Panopoulos & Schroth 1974; Beattie & Lindow 1999; Melotto et al. 2006).  

Despite the predicted link between phage resistance and motility, and some 

correlative work suggesting a trade-off between the two (Joys 1965; Whitchurch & 

Mattick 1994), the association has never been systematically investigated. Here, we 85	

combine an examination of natural bacteria and phage isolates (from the leaves of 

horse chestnut trees) with experimental evolution to address this relationship. 

Contrary to our expectations, while natural populations of Pseudomonads show a 

positive relationship between bacterial motility and resistance to phages, subsequent 

experimental work suggests that this relationship is not clearly causal.  90	

Materials and methods 

Relationship between resistance and motility in natural populations 

To investigate the natural variation in resistance to phage and motility, we 

examined 80 natural isolates, from either the surface or the interior of horse chestnut 

leaves collected around Oxfordshire, United Kingdom, that were part of a larger 95	

sampling design from a previous experiment (Koskella et al. 2011). The study 

included a reciprocal cross-inoculation of culturable bacteria and communities of 
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phages isolated from each of 32 leaves. Bacteria were isolated from either the leaf 

surface, using buffer from leaf washes, or leaf interior, using homogenates from 

surface-sterilized leaves. Washes/homogenates were plated on 1.2% King’s medium 100	

B (KB) broth (10 g/litre glycerol, 20 g/L proteose peptone #3 (Becton Dickinson UK 

Ltd), 12 g/L agar, 1.5 g/L K2HPO4•3H20, 1.5 g/L MgSO4•7H20) and, after 48 hours of 

growth, colonies were picked at random based on proximity to a randomly chosen 

spot on the plate. Phages from the interior and surface of each leaf were separated 

from bacteria by chloroform treatment of the buffer solutions. This allowed us to 105	

generate an inoculum that was representative of the natural phage community as it 

did not require passaging through a bacterial host. Using a cross-inoculation design, 

7 µl of each phage inoculum was spotted in a grid formation onto a lawn, grown in 

soft KB agar (0.6% wt/vol), of each bacterial isolate. Phage plaque formation within 

the spot was compared with bacterial growth across the lawn, allowing us to define 110	

each bacterial isolate as either susceptible or resistant to the local, sympatric phage 

population (i.e., to quantify susceptibility to phages from the same leaf). We then 

randomly chose 40 bacterial isolates from each category (susceptible or resistant) to 

further characterize and measure motility and growth rate. Of the 80 isolates 

examined, only 6 pairs showed strong phenotypic and genotypic similarity, and each 115	

of these pairs was combined in our statistical analyses. 

Bacteria typically exhibit three types of motility: swimming, swarming, which 

are primarily flagella-dependent, and twitching, which is dependent on type IV pili 

(Mattick 2002; Harshey 2003). To examine these motility mechanisms, we measured 

dispersal capability of each of the bacterial isolates under different agar 120	

environments. For each motility assay, bacterial isolates were first grown overnight 

from freezer stocks in KB broth at 28 ˚C. A small amount of each culture was then 



6 
 

used to inoculate the center of 90 cm2 petri dishes containing 25 mL of KB medium 

with the appropriate concentration of agar, dried briefly before use. Twitching motility 

was assessed on KB medium solidified with 1.2% (wt/vol) agar and estimated using 125	

the bacterial movement between the interface of the petri dish and agar surface, 

while swarming and swimming motility assays were performed on KB medium 

containing 0.6% and 0.3% (wt/vol) agar, respectively (Rashid & Kornberg 2000), and 

estimated by area dispersed through the agar. The area of dispersal was measured 

after either 24 hours (for swimming) or 48 hours (for swarming and twitching) of 130	

incubation at 24 ˚C by demarcating the area covered, photographing the plate with a 

measurement standard, and analyzing the area digitally using ImageJ 1.41o 

(Abramoff et al. 2004). All area data were square root transformed and three replicate 

assays were run for each bacterial isolate.  

In vitro growth rate and density assays 135	

 We measured the growth rate and final bacterial density for each of the 80 

natural bacterial isolates. For growth rate assays, KB cultures were grown overnight 

at 28˚C and diluted by a factor of 1:100. Then, 10 µl of each dilution was added to a 

96-well microplate containing 90 µL of KB per well and optical density at 600 nm was 

measured every 45 minutes at an incubation temperature of 24 oC with 5 second 140	

shaking prior to read for 24 hours using a microplate spectrophotometer (BioTek 

Powerwave XS, Northstar Scientific Ltd., Bedfordshire, UK). The period of 

exponential growth occurred between 4 and 12 hours, during which time Vmax 

(measured as milli-optical density units per minute (mOD/ min)), the maximal rate of 

change in optical density during log growth, was calculated. For density assays, 145	

cultures incubated for 24 hours were diluted by a factor of 1:1 (in order to bring them 
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within a range of measurements for which the readings were most accurate) and 

measured for optical density at 600 nm. 

Characterization of isolates 

 The identity of each bacterial isolate, to the genus level, was determined by 150	

sequencing an 800 bp region of the 16S rRNA subunit using the forward primer 27F 

(Lane 1991) and reverse primer 907R (Muyzer et al. 1998). The reaction contained 1 

U Taq DNA polymerase (Invitrogen, Paisley, UK), 1X Taq Buffer, 3 mM MgCl2, 0.2 

μM dNTP’s, 0.2 pm of each primer, and 0.5 μL of a 1:10 dilution of an overnight KB 

culture. PCR amplification was performed at 95 °C for 4 minutes, 29 cycles of 95 °C 155	

for 45 seconds, 52 °C for 1 minute, and 72 °C for 2 minutes, with a final elongation at 

72 °C for 10 minutes. The product was then sequenced by Geneservice (Oxford, UK) 

using the reverse primer. These sequence data have been submitted to the GenBank 

database under accession Numbers HQ529384-HQ529465. Each bacterial isolate 

was assigned to the genus level, using the NCBI database, based on highest 160	

sequence similarity; all but five of the isolates had over a 97% similarity to a 

previously characterized isolate, with the other five being between 93 and 95% 

similar and all isolates had an e value of 0. Isolates were not assigned to the species 

level due to the highly conserved nature of the sequenced 16S rRNA region.  

Selection Experiment 165	

To specifically examine how the acquisition of phage resistance might alter 

motility function we performed an experimental evolution study using a random 

subset of the natural isolates. Because of both the observed positive correlation 

between motility and resistance to phages and the epidemiological significance of the 

species (Hirano & Upper 2000; Webber et al. 2008; Green et al. 2009), we chose to 170	
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focus exclusively on 10 bacterial isolates from the leaf interior that had >99% 

sequence similarity to known isolates of Pseudomonas syringae. Importantly, these 

isolates were all sampled from separate leaves to decrease the probability of pseudo-

replication. To experimentally examine the relationship between swarming motility 

and phages in the environment, we performed 10 serial transfers (approximately 10-175	

16 bacterial generations per transfer) of each bacterial isolate into fresh soft agar 

(0.6% wt/vol) that contained either high concentrations, low concentrations or no 

phages (Figure 1). To initiate the experiment, overnight cultures from a single 

bacterial colony were grown in KB broth, which was then pipetted directly onto the 

centre of a 144 cm2 square petri-dish (Fisherbrand, Leicestershire, UK) containing 40 180	

ml soft KB agar. Plates were left in a humid incubator at 24 oC for 24 hours, after 

which samples were taken for the next transfer under one of two selection regimes: 

positive (termed ‘dispersal’ treatment) or neutral (termed ‘random’ treatment) 

selection for dispersal (Figure 1). For the dispersal selection lines, we took six 

samples, equally spaced apart, from the outer edge of the colony range. For the 185	

random selection bacterial lines we took six samples from throughout the colony, as 

chosen by a random number grid. Each sample was taken by stabbing a sterile 1 ml 

pipette (Finnpippette, Northumberland, UK) through the agar to the bottom of the 

plate and then transferring the agar stab to 1 ml of M9 solution (1 mM thiamine 

hydrochloride, 0.4% glycerol, 0.2% casamino acids, 2 mM MgSO4, 0.1 mM CaCl2). 190	

The pipette tip was washed thoroughly in the solution and, after vortexing, 2.5 µl of 

the solution was used to inoculate fresh agar plates, as described above. This was 

repeated every 24 hours for ten transfers. Plates were poured with fresh media at 

each transfer so as not to confound age of agar plate with dispersal ability. 



9 
 

The phage inoculum was generated by isolating 16 individual phage types 195	

(i.e., independent plaques) from 16 different horse chestnut leaves used in the 

previous cross-inoculation (Koskella et al. 2011). Each phage isolate was passaged 

once through one of two previously characterized strains of P. syringae pv. aesculi 

(P.s. pv aesculi 6617 and 6623; Green et al. 2010), in order to amplify numbers of 

phage particles, and separated from the bacteria using chloroform. The 16 phage 200	

isolates were mixed to produce a stock inoculum, representing a subset of the 

naturally occurring phage community in the leaf environment, and stored at 4 °C. This 

design allowed us to hold the phage environment relatively constant while the 

bacteria evolved in response. To create a homogeneous selective environment, 

phage inoculum was vortexed into the soft agar prior to solidifying, when the agar 205	

reached about 40 °C. After ten transfers, each line was assayed for growth rate and 

motility in a phage-free common garden (i.e., all treatments were grown under the 

same laboratory environment), and under three agar concentrations. Bacterial 

densities (OD 600) of overnight cultures of each evolved and ancestral strain were 

also measured in both the presence and absence of phages. 210	

Statistical analyses comparing bacterial dispersal and susceptibility to phages 

Analyses and figures were produced on PASW Statistics 18 (SPSS; part of 

IBM UK ltd, Middlesex, UK). We first used a two-way analysis of variance to compare 

the area dispersed (square-root transformed) across bacterial isolates of different 

genera and susceptibility to phages. In addition, independent samples t-tests were 215	

run to compare susceptibility to phages and dispersal within the Pseudomonas and 

Erwinia isolates from both the leaf surface and leaf interior. For the experimental 

evolution results, we examined the initially susceptible and initially resistant isolates 

separately, due to the dramatic differences in means and variance between them, 
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and we included bacterial strain as a random factor in each model. At the end of the 220	

experiment, we examined the area dispersed within a common garden (in the 

absence of phages) at the end of the experiment using a separate two-way analysis 

of variance for (1) the 30 susceptible lines and (2) the 30 resistant lines and 

compared population growth parameters to dispersal using Pearson correlation 

coefficients. In all cases, the area dispersed was square root transformed. 225	

Results 

Relationship between resistance, growth and motility in natural populations 

Sequencing of the chosen bacterial isolates revealed that the surface of the leaf 

was primarily dominated by Erwinia-like species (>85%), while the leaf interior 

community was comprised of both Erwinia-like (50%) and Pseudomonas-like species 230	

(47%). We excluded bacterial isolates from other genera, including Rhanella and 

Pantoea, from subsequent analyses due to low replication. Overall, 44% 

(N/NTOT=24/54) of the Erwinia-like isolates and 61% (N/NTOT=14/23) of 

Pseudomonas-like isolates were susceptible to sympatric phages, i.e. those collected 

directly from the same leaf as the bacteria being tested. We chose to focus 235	

specifically on susceptibility to sympatric phages, using the leaf homogenate as an 

inoculum, because this measure more accurately reflects local selection pressures 

and did not require amplification through a bacterial host.  

 The relationship between swarming motility and resistance to sympatric 

phages significantly differed across bacterial genera (Figure 2a; interaction effect for 240	

genus x phage susceptibility: F1,38= 5.99, P = 0.020). Specifically, there was no 

difference in dispersal capability between resistant and susceptible strains of the 

Erwinia-like isolates from the leaf surface or interior (Figure 2a). However, for the 

Pseudomonas-like isolates from the leaf interior (surface isolates were excluded due 
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to low sample size) resistant isolates showed a higher swarming motility range than 245	

the susceptible isolates (Figure 2a; t17= 2.241, P= 0.039) but did not show a 

difference for swimming or twitching motilities (swimming: t17= 1.143, P= 0.271; 

twitching: t17= 1.219, P= 0.099).  

 There was no difference in growth rate, measured as Vmax (mOD/ min) 

between resistant and susceptible Erwinia-like isolates from the surface or the interior 250	

(P > 0.05), but for Pseudomonas-like isolates from the leaf interior, resistant isolates 

had a higher growth rate than susceptible isolates (Figure 2b; t17= 3.234, P= 0.005). 

Importantly, the dispersal area during swimming and swarming motility was 

significantly correlated with growth rate for both the Pseudomonas-like isolates 

(Pearson correlation, swimming: r= 0.517, P= 0.012; swarming: r= 0.669, P< 0.001) 255	

and the Erwinia-like isolates (swimming; r= 0.317, P= 0.019; swarming: r= 0.359, P= 

0.008). However, twitching dispersal was not correlated with growth rate for either 

Pseudomonas-like isolates (r= 0.310, P= 0.150) or Erwinia-like isolates (r= -0.100, P= 

0.473).  

Selection for bacterial resistance to phages and/or motility 260	

Of the ten Pseudomonad isolates chosen for experimental evolution, five were 

initially susceptible and five were initially resistant to the phage inoculum. Of the 

initially susceptible strains, all were susceptible to at least half of the 16 phage 

isolates used in the inoculum (mean susceptibility of 70.0% ±19.7 SD). Of the five 

initially resistant bacterial isolates, resistance was complete across all 16 phage 265	

isolates (susceptibility of 0%). At the start of the experiment the presence of phage 

had a significant negative effect on motility for the initially susceptible strains (F1,24= 

7.223, P= 0.013), but had no effect on the initially resistant strains (F1,24= 1.624, P= 
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0.215). After ten transfers of experimental evolution in the presence of phages (at 

both high and low concentration and across random and dispersal selection 270	

regimes), each of the five bacterial isolates that were initially susceptible to phages 

had evolved resistance to most or all of the 16 phage isolates used in the inoculum 

(Figure 3). For these isolates there was no longer an effect of phages in the 

environment on motility (F1,24= 0.400, P= 0.533). These strains did not evolve 

increased resistance in the absence of phages (GLM for mean proportion of infective 275	

phages, effect of Time: F1,18= 16.56, P= 0.002; Phage treatment: F2,18= 4.173, P= 

0.032; Time x Phage treatment interaction: F2,18= 4.173, P= 0.032). The bacterial 

isolates that were initially resistant remained resistant throughout the duration of the 

experiment. Although we did not directly allow for coevolution between bacteria and 

phages (Bohannan & Lenski 2000a; Buckling et al. 2009), some degree of 280	

coevolution may have occurred between phages that were passively collected along 

with bacteria at each transfer; creating an additional benefit to dispersing away from 

the inoculation site, as coevolved phages are likely to have increased infectivity to the 

evolving bacteria (Bohannan & Lenski 2000a; Brockhurst et al. 2005). However, all 

resistance assays were run using ancestral phages, as these represented the 285	

selection pressure throughout the experimental environment. 

To confirm our measures of phage resistance, we also measured growth rates 

of ancestral and evolved lines in the presence of phages. For those strains that were 

initially resistant, we found no difference in population density in either the presence 

or absence of phages (GLM with arcsinsqrt transformed density, interaction effect of 290	

Time x Phage presence: F1, 42= 0.206, P= 0.652). However, for those strains that 

were initially susceptible and evolved resistance to phages over the course of the 

experiment, the ancestral bacterial lines had a significantly lower density than 
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evolved bacterial lines in the presence of phages, but not in the absence of phages 

(Time x Phage presence: F1, 42= 5.977, P= 0.019), indicating that phages were 295	

initially reducing population size of susceptible bacteria but that population size was 

not affected by phages once resistance had evolved.  

We measured area dispersed and growth rate of all isolates at the start of the 

experiment in the absence of phages and found that the initially resistant bacterial 

isolates had a higher mean swarming dispersal (mean area dispersed 56.45 cm2 ± 300	

7.05 SD in 0.6% agar) than the susceptible isolates (3.14 cm2 ± 3.36 SD) and that 

initially resistant isolates had a higher growth rate (mean Vmax 3.49 ± 0.36 SD) than 

susceptible isolates (1.55 ± 0.79 SD). These results were consistent with the findings 

from the full sample of natural bacterial isolates.  

After the ten serial transfers of experimental evolution we again assayed 305	

motility in a phage-free environment to examine the effect of both phage and 

dispersal selection regime on the evolution of dispersal, without the confounding 

ecological effects of phages (Figure 4). The initially susceptible strains did not show a 

response to selection for increased dispersal (F1,20= 0.333, P= 0.571) and there was 

no evidence for a direct effect of phage treatment on dispersal (F2,20= 0.337, P= 310	

0.718) nor for any interaction between phage and selection (F2,20= 0.080, P= 0.923), 

suggesting a lack of a causal link between phage resistance and motility (Figure 4a). 

However, the initially resistant strains were able to respond to selection for increased 

dispersal (F1,20= 10.505, P= 0.004), regardless of phage treatment (main effect of 

Phage: F2,20= 1.995, P= 0.162, interaction between Phage and Selection: F2,20 = 315	

0.514, P= 0.606, Figure 4b). Finally, there were few correlated changes in swimming 

or twitching motility resulting from either the dispersal or phage selection regimes: the 

only significant effect, after controlling for multiple tests, was increased swimming 
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motility under positive selection for dispersal (compared with random) in the initially 

resistant lines (Figure 4b; main effect of selection: F1,20= 8.268, P= 0.009). 320	

We also investigated how the selection regimes affected growth rate of each 

population, with the specific focus on whether there were costs associated with the 

acquisition of resistance. We found no evidence that dispersal selection regime or 

phage-imposed selection affected population growth rate for either initially resistant 

or initially susceptible bacteria (P> 0.10 for all treatments). Importantly, although we 325	

found a correlation between growth rate and dispersal for the initially resistant strains 

(Pearson r= 0.390, P= 0.033) there was no correlation between growth rate and 

dispersal for the initially susceptible lines (r= 0.000, P= 0.999), demonstrating that 

dispersal estimates were not simply a function of population growth. This result was 

qualitatively the same when comparing population density and dispersal. 330	

 

Discussion 

We combined an examination of natural phenotypic variation with 

experimental evolution to investigate the potential link between resistance to phages 

and bacterial fitness (growth rate and motility). We found that, contrary to 335	

expectation, natural bacterial isolates that were resistant to local phages had neither 

reduced motility nor reduced growth rates relative to those that were susceptible. 

Generally, there was no relationship between bacterial motility or growth rate and 

resistance to phages from the local environment (as present in the leaf homogenate) 

for Erwinia-like isolates and a positive correlation for Pseudomonas-like isolates 340	

under favorable, laboratory conditions (Figure 2). This result is in line with previous 

work from marine Cyanobacteria showing that costs of resistance to phage are not 

ubiquitous and instead, are highly dependent on the virus and bacteria strain being 
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examined and on whether strains are in direct competition (Lennon et al. 2007). 

Importantly, we could not rule out the possibility that more motile and resistant strains 345	

represented different species or pathovars than less motile and susceptible strains. 

Therefore to investigate any causal links between resistance to phages and bacterial 

motility, we experimentally evolved 10 Pseudomonas-like bacterial lines in either the 

presence or absence of phages, and under either positive or random selection for 

dispersal.  350	

After ten serial transfers of experimental evolution we found that bacteria that 

were initially susceptible to phages had evolved resistance in the presence, but not 

the absence, of phages (Figure 3). Moreover, at the start of the experiment we saw 

decreased motility in the presence of phages for those strains that were susceptible 

to infection, but not for those that were initially resistant. This result adds to a growing 355	

body of evidence that parasites can have a direct impact on host demography 

(Fellous et al. 2010; Bradley et al. 2005; Cameron et al. 1993). In addition, we found 

that bacterial motility decreased over the course of the experiment for most bacterial 

isolates (regardless of phage treatment and even under selection for increased 

dispersal), suggesting a cost to motility such that flagella and/or pili function is 360	

reduced under favorable laboratory conditions. Importantly, the fact that the initially 

resistant bacteria showed reduced motility but no loss of resistance to phages in the 

control (no-phage) treatments, suggests that there is no negative correlation between 

resistance and either growth rate or motility in the laboratory. This overall reduction in 

motility is initially surprising given that half the lines were selected for increased 365	

dispersal and suggests that the imposed selection regime was relatively weak, as 

only the initially resistant, and not the initially susceptible, lines showed increased 

motility under selection for high dispersal (Figure 4). This result warrants further study 
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as we cannot provide a clear mechanistic explanation, and understanding whether 

phages directly hinder the response of susceptible bacteria to selection for increased 370	

motility is of key interest. In addition, under the no-phage, common garden conditions 

at the end of the experiment, we found no evidence that phage-imposed selection for 

resistance in the initially susceptible lines was associated with a change in either the 

motility trait under selection (swarming), or twitching and swimming motility (Figure 

4). Finally, there was no evidence of growth costs associated with the acquisition of 375	

resistance (although the strains were never put in direct competition). These data 

suggest no causal relationship, either positive or negative, between the acquisition of 

phage resistance and dispersal ability.  

A number of other studies, like ours, have found no clear cost in terms of 

population growth associated with resistance to phages (Lenski 1988a; Lythgoe & 380	

Chao 2003; Meyer et al. 2010). However, the lack of an observed pattern is 

somewhat surprising given the predicted association of many phages with flagella or 

pili number and function (Icho & Iino 1978; Bradley 1980; Mattick 2002). There are a 

number of possible explanations. First, phages that use motility organelles (i.e., pili 

and flagella) as attachment sites may be relatively uncommon in the natural leaf 385	

environment and hence do not impose very strong selection against bacterial motility. 

This interpretation may have been influenced by our phage isolation method; 

chloroform treatment is known to destroy primarily lipid-based phages (Leers 1969), 

and if a correlation exists between phage-targeted bacterial receptors and phage 

coat composition we could have missed an effect of phage-mediated selection. 390	

Second, observed dispersal behaviors may be influenced by traits other than motility 

organelles, such as cell size, chemotaxis or quorum sensing (Harshey 2003), which 

are not altered by the acquisition of phage resistance; a possibility that would indicate 
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bacterial motility can evolve independently of phage-mediated selection. Third, it is 

plausible that motility-associated costs may only be visible under stressful 395	

environmental conditions. For example, previous experimental work has shown that 

costs of resistance to phages in both Escherichia coli B (Bohannan & Lenski 2000b) 

and Pseudomonas fluorescens (Lopez-Pascua & Buckling 2008) are increased in 

nutrient-poor environments. Fourth, it is possible that any costs were rapidly 

compensated by second site mutations, as is commonly observed with antibiotic 400	

resistance (MacLean et al. 2010). However, such rapid compensation would suggest 

that costs of phage resistance are relatively unimportant in natural populations.  

Overall, our results do not support a causal link between the evolution of 

resistance to phages and bacterial motility in natural populations, although we did 

find a surprising positive association between phage resistance and bacterial motility 405	

for Pseudomonads in the phyllosphere. This of course does not rule out an important 

role of phage-imposed selection on the evolution of motility, as costs associated with 

resistance are likely to be contingent upon genetic background, local environment 

and the precise measures of fitness, but does suggest that the effect of phage-

imposed selection is unpredictable and is likely to depend on the natural phage 410	

community and bacterial environment. This is an important consideration for phage 

therapy of pathogenic bacteria, where virulence is often associated with motility traits 

and any association between phage resistance and bacterial motility could have 

important consequences over coevolutionary time (Josenhans & Suerbaum 2002). 

Understanding these potential costs will be key as phage therapy becomes a more 415	

common method for controlling pathogenic bacterial populations (Goodridge 2004; 

Levin & Bull 2004). More generally, these results add to a growing body of work 

across a range of taxa that points to the wide range of host fitness traits correlated 
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with pathogen resistance (Boots & Begon 1993; Ferdig et al. 1993; Fellowes et al. 

1998; Langand et al. 1998; Zhong et al. 2005; Buckling et al. 2006; Morgan et al. 420	

2009; Williams et al. 1999; Yourth et al. 2002; Lythgoe & Chao 2003; Sanders et al. 

2005). This method of combining natural observations with laboratory selection 

experiments shows promise in furthering our understanding of the importance of 

phages, and other selective pressures, as drivers of bacterial evolution and diversity 

in natural environments.  425	
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Figure 1. Ten natural isolates were experimentally evolved over ten transfers in one 

of three phage environments: high phage concentration (40 µl phage inoculum /40 ml 

0.6 % agar), low phage concentration (4 µl phage inoculum /40 ml 0.6 % agar) or no 595	

phage treatment (where no phage was added to 0.6 % agar). In addition, each line 

was evolved under one of two selection regimes: positive (termed ‘dispersal’ 

treatment) or neutral (termed ‘random’ treatment) selection for dispersal. In total, we 

had 60 selection lines evolved over approximately 140 generations of selection. 

 600	

Figure 2. Relationship between dispersal (a) and growth rate (b) for the 40 

Pseudomonas-like and Erwinia-like isolates collected from the leaf interior. 

Resistance (dark grey) or susceptibility (light grey) to local phage is compared to 

determine whether there exists a cost to resistance with regard to bacterial motility or 

growth. Dispersal was measured as area covered (cm2) over 48 hours on soft agar 605	

(0.6%). Values were square root transformed to correct for non-normality. Error bars 

represent ±1 SEM.  

 

Figure 3. Evolution of resistance for the five initially susceptible isolates over ten 

serial transfers in either the presence (dashed lines) or absence (solid line) of phage. 610	

Proportion of infective phage represents susceptibility to each of the 16 phage clones 

used in the experimental evolution inoculum. Error bars represent ±1 SEM. 

 

Figure 4. Results from common garden experiment run at the end of the selection 

experiment (i.e., transfer 10) for initially resistant (a) and initially susceptible (b) 615	

isolates.  Measured on 0.3 % agar (swimming; left panel), 0.6 % agar (swarming; 

middle panel); and 1.2 % agar (twitching; right panel). These experiments were run in 
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the absence of phage in the environment to examine differences between the lines 

that are not resulting from interactions with or ecological feedback from phage. 

“Treatment” therefore represents the phage environment of each line during the 620	

course of experimental evolution and not within the common garden experiment. 

Area dispersed is square root transformed and error bars represent ±1 SEM. 

 

	
625	
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