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Low carbon construction materials are needed to reduce carbon dioxide emissions in the built environment.

Laminated bamboo is an example of such a material. However, to be used in structural applications, fundamental

mechanical properties are needed to establish the design values used in architecture and engineering practice. Recent

studies on laminated bamboo have focused on the use of timber standards for small clear specimens, with little work

published on structural-scale testing. The work presented in this paper is the first study to utilise structural-scale test

methods for timber in a multi-laboratory test programme to investigate all mechanical properties of an outdoor

laminated bamboo product. The study provides a comparison of the full-scale structural performance with

conventional timber and a pathway for use in engineering design and practice. The work shows that laminated

bamboo is comparable to conventional timber and timber-based products in structural properties and forms a

foundation for the use of laminated bamboo in design and construction.

Notation
A cross-sectional area
a distance between load introduction point and

nearest support
b specimen width
Ec,0 local compressive modulus parallel to grain
Ec,0,mean mean local compressive modulus parallel to grain
Ec,90 local compressive modulus perpendicular to grain
Ec,90,mean mean local compressive modulus perpendicular

to grain
Em local bending modulus
Em,mean mean local bending modulus
Et,0 local tensile modulus parallel to grain
Et,0,mean mean local tensile modulus parallel to grain
Et,90 local tensile modulus perpendicular to grain
Et,90,mean mean local tensile modulus perpendicular to grain
fc,0,mean mean compressive stress parallel to grain
fc,90,mean mean compressive stress perpendicular to grain
fm,mean mean bending modulus of rupture
ft,0,mean mean tensile stress parallel to grain
ft,90,mean mean tensile stress perpendicular to grain
fv,0,mean mean shear stress parallel to grain
h specimen height

h0 measuring length for the local E-modulus
I second moment of inertia of the specimen

cross-section
k index for characteristic strength value
l specimen length
l1 measuring length for the E-modulus
umean mean moisture content
α Weibull scale parameter
β Weibull shape parameter
μ mean value
μ0 median value
ρmean mean density

1. Introduction
Globally, laminated bamboo is being increasingly investigated
for structural applications as a sustainable material for con-
struction. Although the material has been shown to be a low
carbon alternative (van der Lugt, 2008; van der Lugt and
Vogtländer, 2015; van der Lugt et al., 2006, 2009; Vogtlander
et al., 2010), its use is limited due to a lack of funda-
mental mechanical properties for design. Furthermore, to be
included in design standards, characteristic values based on
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experimental test methods are necessary, which requires exten-
sive testing. Structural applications of laminated bamboo have
been demonstrated in full-scale construction and vary from
short-span bridges to two-storey housing (Xiao, 2016). The
studies have shown that this material can be effectively used as
a construction material (Huang et al., 2013; Xiao, 2016; Xiao
et al., 2010). Although global research has explored the use of
laminated bamboo in structural applications, the reported
studies typically focus on small clear specimens to establish
mechanical properties (i.e. Correal et al., 2010; Sharma et al.,
2015; Yang et al., 2014). Comprehensive structural-scale
testing has yet to be fully explored.

In this study, the mechanical properties of an outdoor lami-
nated bamboo product were investigated utilising structural-
scale test methods for timber in order to gain a comparison of
the structural behaviour of the two materials and to provide a
pathway for the use of laminated bamboo in engineering
design and practice. To explore any variability in testing,
testing was conducted at two laboratories – Graz University of
Technology (TUG), with experience in wood testing, and
Cambridge University (CU), with experience in bamboo
testing. Tests were divided equally when possible or, if not,
conducted at a single laboratory based on the facilities
available.

2. Experimental methodology

2.1 Material
A commercially produced outdoor laminated bamboo
product, Moso Bamboo N-Finity (manufactured by Moso
International BV), was used in this work. The specimens were
manufactured in China and composed of caramelised bamboo
strips laminated with a phenol formaldehyde resin. To allow
for longer members to be manufactured, a hook joint was
incorporated into the material; however, this was not an engin-
eered connection (Figure 1(a)). Samples were manufactured
and cut to specified dimensions (Table 1) and shipped to the
respective laboratories. To maintain clarity and consistency,
industry terminology is used here to describe the orientation
of an individual strip of bamboo within a laminated board.
A single strip is obtained from the culm wall, as shown in
Figure 1(b). After processing, there are two commercial orien-
tations of the individual laminate in the final board product,
edgewise (Figure 1(c)) and flatwise (Figure 1(d)), which differ
in the axis of the radial direction of the original culm wall.
When laminated into beams, the edgewise and flatwise orien-
tations are markedly different when viewed in cross-section
(Figures 1(e) and 1(f)). Where appropriate, the mechanical
properties of the two orientations were investigated and the
obtained strength or modulus referenced the orientation (edge-
wise or flatwise). The tests were conducted parallel or perpen-
dicular to the fibre direction as indicated in the notation
subscript; for example for compressive stress ( fc) perpendicular

to grain (90) in the edgewise orientation (EW), the notation
used is fc,90,EW.

2.2 Experimental testing
The scope of testing included bending, tension and com-
pression tests parallel and perpendicular to grain, as well as
shear parallel to grain. The tests were conducted in accordance
with EN 408: Timber structures – Structural timber and glued
laminated timber – determination of some physical and mech-
anical properties (CEN, 2012). The standard was applied to
laminated bamboo using the structural timber guidelines. The
specimens were stored in humidity- and temperature-controlled
environments prior to testing, maintained at 20°C (±2°C) and
65% (±5%) relative humidity in both laboratories. In larger the
specimens, the variation in thickness was documented at points
along the length of the material and reported as the average.
Moisture content was determined by the oven-dry method fol-
lowing ON ISO 13061 (ISO, 2014). Density was measured
based on the full cross-section of the specimen according to
EN 384 (CEN, 2010) and on small specimens according to
ON ISO 13061 (ISO, 2014). Table 1 summarises the specimen
dimensions and quantities tested at each laboratory. The fol-
lowing brief sections summarise each test method. Preliminary
tests were conducted to validate and determine testing

(a)

(c) (d)

(e) (f)

(b)

Figure 1. Industry terminology for laminate orientation within a

single board: (a) hook joint; (b) radial culm; (c) edgewise board;

(d) flatwise board; (e) edgewise section; (f) flatwise section
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parameters. In accordance with EN 408 (CEN, 2012), all tests
were conducted in displacement control to achieve failure load
(Fmax) within 300± 120 s.

2.2.1 Bending
Four-point bending tests were carried out at both laboratories.
The test method allowed some variability in testing speed, with
the average loading rate approximately 10 mm/min. The local
E-modulus was determined from the displacement taken on
both sides of the specimen at midspan and midheight of the
specimen, as shown in Figure 2(a). As per EN 408 (CEN,
2012) the local E-modulus was calculated from

1: Em ¼ al21 F2�F1ð Þ
16I w2�w1ð Þ

in which a is the distance between the load introduction point
and the nearest support, l1 is the measuring length for the local
E-modulus, I is the second moment of inertia of the specimen
cross-section, F2−F1 is the increase of the load in the range
where the regression has a correlation coefficient of 0·99 or
better and w2−w1 is the corresponding rise in displacement.

2.2.2 Tension perpendicular to grain
Tension perpendicular to grain testing was carried out at both
laboratories. The test setup and specimen details are shown in
Figure 2(b). The specimens were bonded to Sitka spruce ends
using a polyurethane adhesive (Purbond HB S309) and
clamped for a minimum of 24 h before testing. The specimens
were capped with a steel plate using wood screws and con-
nected to the frame using a threaded rod fixed to a ball joint
to cancel any moment (Figure 2(b)). The shape of the timber
differed between the two laboratories due to the type of attach-
ment to the test frames, but both were in accordance with EN

408 (CEN, 2012). The test method allowed some variability
in testing speed, with the average loading rate approximately
0·4–0·6 mm/min. Displacement was measured on both sides of
the specimen with high-accuracy extensometers over the speci-
fied gauge length to obtain the local E-modulus. As per EN
408 (CEN, 2012), the local E-modulus was calculated using

2: Et;90 ¼ F40�F10ð Þh0
w40�w10ð Þbl

in which F40−F10 is the increase in load between 0·1Fmax,est and
0·4Fmax,est and w40−w10 is the corresponding rise in displace-
ment, h0 is the measuring length for the local E-modulus, b is
the width of the specimen and l is the length of the specimen.

2.2.3 Compression perpendicular to grain
Compression perpendicular to grain testing was also carried
out at both laboratories. The test method allowed some varia-
bility in testing speed, with the average loading rate approxi-
mately 0·4–0·6 mm/min. To obtain the local E-modulus,
displacement was measured with high-accuracy extensometers
on both sides of the specimen over the specified gauge length
(Figure 2(c)). As per EN 408 (CEN, 2012), the local
E-modulus was calculated using

3: Ec;90 ¼ F40�F10ð Þh0
w40�w10ð Þbl

where the terms are as defined earlier.

2.2.4 Tension parallel to grain
Tension parallel to grain tests were carried out on both
a single-ply board (Figure 3(a)) and a laminated section
(Figure 3(b)).

Test Orientation Dimensions: mm Number of samples

TUG CU

Bending Edgewise 2440� 140�90 20 20
Flatwise 20 20

Compression parallel — 540� 90� 140 — 40
Compression perpendicular Edgewise 70�45�90 20 20

Flatwise 20 20
Tension parallel Single-ply 2440� 140�18 40 —

Dogbone 1520�90�30 — 40
Tension perpendicular Edgewise 70� 45� 180 20 20

Flatwise 20 20
Shear parallel Edgewise 300�32�55 — 40

Flatwise — 40

Table 1. Summary of specimen dimensions and sample sizes

3

Structures and Buildings Mechanical characterisation of structural
laminated bamboo
Sharma, Bauer, Schickhofer and Ramage

Downloaded by [ UNIVERSITY OF BATH] on [16/11/16]. Copyright © ICE Publishing, all rights reserved.



Single-ply laminated bamboo was tested at TUG utilising
a tension testing machine (GEZU 850) in load control
(Figure 3(a)). The end cross-sections of the test specimens
were gripped by clamping plates. The local E-modulus was
measured with two displacement transducers on the side faces
over the specified gauge length. As per EN 408 (CEN, 2012),

the E-modulus was calculated using

4: Et;0 ¼ l1 F2�F1ð Þ
A w2�w1ð Þ

(a)

(b)

(c)

h

l

b
h0

a a a

l1

l
b

B

A–A

Schmid VGS 8/160
24 24

245424

150

150

Spruce C24
Laminated bamboo
specimen config 2

1408

15 32

40 55°

10° 2°

29 40 70 402945
102 150

160

45°

43

43

32 32

B–B

B

A A

h

Figure 2. Experimental test methods: (a) four-point bending;

(b) tension perpendicular to grain (dimensions in mm);

(c) compression perpendicular to grain
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in which l1 is the measuring length for the E-modulus, A is the
cross-sectional area, F2−F1 is the increase in load in the range
where the regression has a correlation coefficient of 0·99 or
better and w2−w1 is the corresponding rise in displacement.

The laminated section was tested at CU in an Amsler test frame
with mechanical wedge grips that increased the gripping force
with increasing load. Preliminary tests indicated that the full

cross-section resulted in a grip-induced failure. Modification of
the rectangular section into a dogbone specimen, as shown in
Figure 3(b), allowed for failure to occur in the specimen. The
test method allowed some variability in testing speed, with the
average loading rate approximately 4·5 mm/min. Displacement
was measured on the wide face of the specimen with high-accu-
racy extensometers over the specified gauge length to obtain the
local E-modulus, which was calculated using Equation 4.

(a)

(c)

(d)

(b)

F

F

F

F

F

w

l1 = 5w

l1
l

l

h

h

b

b

Measurement length for local E-modulus

Free span length l

L

t
F

F

F

Figure 3. Experimental test methods: (a) tension parallel to grain,

single-ply board; (b) tension parallel to grain, laminated section;

(c) compression parallel to grain; (d) shear parallel to grain
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2.2.5 Compression parallel to grain
Compression parallel to grain testing was carried at CU. The
test method allowed some variability in testing speed, with the
average loading rate approximately 0·6–0·8 mm/min. The local
E-modulus was obtained through displacement measurements
on both sides of the specimen. Specially designed compress-
ometers were used on either side of the specimen to measure
the displacement over the specified gauge length and displace-
ment was measured using high-accuracy laser extensometers
(Figure 3(c)). As per EN 408 (CEN, 2012), the E-modulus was
calculated using

5: Ec;0 ¼ l1 F2�F1ð Þ
A w2�w1ð Þ

where the terms are as in Equation 4.

2.2.6 Shear
Shear parallel to grain tests were carried out at CU. The test
method allowed some variability in testing speed, with the
average loading rate approximately 0·7–0·9 mm/min. The test
setup and specimen details are shown in Figure 3(d). The
specimens were bonded to 10 mm thick sandblasted steel
plates (Figure 3(d)). A high shear strength two-part epoxy
(Araldite 2015) consisting of a resin and a hardener that cured
at room temperature was used bond the specimens to the plate.
The specimens were manually clamped and left to cure for
24 h before testing. After each test, the specimens were docu-
mented and the plates were cleaned and reused, roughening
the steel plate surface for each test.

3. Results
The following sections present the results of the testing pro-
gramme, which are also summarised in Table 2. A comparison
of the results with other published experimental studies using
EN 408 (CEN, 2012) test methods is presented in Table 3.
The table shows the characteristic values, when provided, from
experimental studies on Norway spruce (Jenkel et al., 2015;
Steiger and Arnold, 2009), glue laminated spruce (De Lorenzis
et al., 2005) and thermally modified beech wood (Widmann
et al., 2012). The experimental results are shown in Figures 4
and 5. Characteristic, or nominal, values were determined as
the fifth percentile as per EN 384 (CEN, 2010) and are shown
in the figures and summarised in Table 2.

3.1 Bending
In both edgewise and flatwise orientations, failure at the longi-
tudinal joint (see Figure 1(a)) was observed on the tension face
at midspan. The bending strength and local E-modulus results
from the respective test series were comparable. The results are
shown in Figures 4(a) and 4(b). Comparison of the laminate
orientation indicates a slight increase in the bending strength
(14%) and local E-modulus (6–13%) in the edgewise orien-
tation (Figures 4(a) and 4(b)).

There is some correlation between the specimen density and
bending local E-modulus, a relationship that is often observed
in timber studies. In the laminated bamboo, the correlation
is strongest between density and the bending modulus. The
results from TUG in both the edgewise (R2 = 0·51) and flatwise
(R2 = 0·56) orientations suggest a similar relationship, which
is common in timber. However, the results from the two
laboratories differ greatly, with the results from CU showing
no correlation (edgewise R2 = 0·01 and flatwise R2 = 0·03);
therefore, this observation is not definitive. Both laboratory
results indicated that the correlation between the local bend-
ing modulus and modulus of rupture is low in the edgewise
orientation (R2 = 0·31–0·35) and non-existent in the flatwise
orientation (R2 = 0·01–0·10). In comparison with timber,
the correlation is typically strong (i.e. R2 = 0·74), which Olsson
et al. (2012) attribute to the relationship between strength and
stiffness at the location of failure. The low correlation in the
laminated bamboo suggests that ultimate failure may not be
governed by the local bending stiffness at midspan.

3.2 Tension perpendicular to grain
In tension perpendicular to grain, the results varied between
the laboratories (Figures 4(c) and 4(d)). As shown in the
figures, the CU results showed a higher coefficient of variation
(CoV) in tensile strength (CoV=0·32) and local E-modulus
(CoV=0·24). The flatwise orientation has a slightly better
strength and modulus (�10%) in comparison to the edgewise
orientation.

3.3 Compression perpendicular to grain
In compression perpendicular to grain, the typical failure was
splitting of the individual laminates. The results from CU
showed a higher strength and CoV compared with the TUG
results (Figure 4(e)). The opposite trend was observed in the
local E-modulus, with the CU measurements nearly 7% lower
than the mean value determined at TUG (Figure 4(f)). The
two laboratories utilised different measurement sensors, but
with the same accuracy, so it is unclear whether the variation
is material- or test-based. The results also show a slight
increase in strength in the edgewise orientation and a small
decrease in the local E-modulus.

3.4 Tension parallel to grain
The tension parallel to grain tests utilised two types of speci-
mens (full-scale and a small sample) and thus the results were
not combined into a single dataset. A 30% increase in mean
tensile strength and an 8% increase in mean local modulus was
observed in the dogbone specimen compared with the single-
ply specimen (Figures 5(a) and 5(b)). The wider distribution of
the joints in the laminated section may be the source of the
increase in strength, but further investigation is needed to
determine in-service performance. The failure mode of the
material was similar between the single-ply and laminated
section, with failure dominated by brittle failure in the longi-
tudinal direction.
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Strength: N/mm2 Orientation EW/FW

Edgewise (EW) Flatwise (FW)

Bending
fm,mean (TUG) 61·7 (0·05) 56·6 (0·07) 1·09
fm,mean (CU) 66·7 (0·06) 58·6 (0·06) 1·14
fm,k (TUG) 56·4 49·3 1·14
fm,k (CU) 59·3 52·2 1·14
Em,mean (TUG) 9093 (0·05) 8612 (0·03) 1·06
Em,mean (CU) 10 412 (0·07) 9178 (0·08) 1·13

Tension parallel
ft,0,mean (TUG) 39·1a (0·11) —

ft,0,mean (CU) 50·0a (0·12) —

ft,0,k (TUG) 31·8a —

ft,0,k (CU) 39·9a —

Et,0,mean (TUG) 8062a (0·05) —

Et,0,mean (CU) 8713a (0·10) —

Tension perpendicular
ft,90,mean (TUG) 3·8 (0·22) 4·2 (0·24) 0·90
ft,90,mean (CU) 3·4 (0·32) 4·3 (0·18) 0·80
ft,90,k (TUG) 2·3 2·5 0·92
ft,90,k (CU) 1·6 2·9 0·55
Et,90,mean (TUG) 1279 (0·07) 1443 (0·07) 0·89
Et,90,mean (CU) 1295 (0·24) 1346 (0·13) 0·96

Compression parallel
fc,0,mean (CU) 39·5 (0·07) —

fc,0,k (CU) 34·4 —

Ec,0,mean (CU) 8166 (0·08) —

Compression perpendicular
fc,90,mean (TUG) 12·1 (0·10) 10·4 (0·07) 1·16
fc,90,mean (CU) 12·0 (0·08) 12·1 (0·11) 0·99
fc,90,k (TUG) 9·9 9·1 1·09
fc,90,k (CU) 9·7 10·2 0·95
Ec,90,mean (TUG) 1219 (0·10) 1295 (0·07) 0·94
Ec,90,mean (CU) 1197 (0·08) 1206 (0·11) 0·99

Shear parallel
fv,0,mean (CU) 7·4 (0·18) 7·6 (0·08) 0·97
fv,0,k (CU) 4·6 6·5 0·71

Density
ρmean (TUG) 666 (0·05)
ρk (TUG) 641

Moisture content
umean (TUG) 8·6% (0·10)

aTension parallel to grain test method differed, see Section 2.2.4 for more information

Table 2. Summary of experimental test results and characteristic

values for laminated bamboo. The values obtained from Graz

University of Technology (TUG) and from Cambridge University

(CU) are indicated and the CoV is shown in parentheses
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3.5 Compression parallel to grain
In compression parallel to grain, the tests were conducted at
CU and the results were repeatable for both the compressive
stress (CoV=0·07) and E-modulus (CoV=0·08), as shown in
Figures 5(c) and 5(d). The ultimate failure of the material was
buckling, representing the strength of the sample dimension
and aspect ratio, rather than the ultimate strength. The buck-
ling behaviour differed from the expected shear failure in
timber, yet is consistent with other compression studies on
laminated bamboo (Huang et al., 2013; Li et al., 2013).
Research has been conducted on the influence of the aspect
ratio on the compressive strength (i.e. Li et al., 2015), but
additional work is needed to determine the appropriate test
parameters to obtain the ultimate strength of the material.

3.6 Shear parallel to grain
The two orientations showed comparable shear strengths, but
the variability between the orientations differed significantly
(Figure 5(e)). The edgewise orientation had approximately
twice the CoV (CoV=0·18) than the flatwise orientation
(CoV=0·08). In accordance with EN 408 (CEN, 2012), speci-
mens with greater than 20% failure in the plate–specimen inter-
face were excluded from the analysis, which was approximately
half of the samples.

For comparison, all of the results are shown in Figure 5(e).
The strength difference between the two orientations was

negligible. The results suggest that a larger sample size is
needed to fully characterise the shear strength of the material.
The correlation between the density and shear stress parallel to
grain was found to be moderate, with the edgewise orientation
indicating a stronger correlation (R2 = 0·42) than the flatwise
(R2 = 0·18). The sample size of the tests was small due to the
exclusion of results due to failure in the interface. Further
testing is therefore needed to evaluate the relationship, if any,
between the properties.

3.7 Density
As noted in Table 2, the mean density of all samples was
666 kg/m3 (CoV=0·05). Figure 5(f) shows the variation in
density for all specimens, with each type of test categorised by
orientation: edgewise, flatwise and no orientation for parallel
to grain compression and tension. The bending specimens
showed significant variation in density within and between
laboratories, for both orientations, which may contribute to
the observed differences in strength. Figure 5(f) also shows
comparable density between the edgewise compression and
tension perpendicular to grain samples, suggesting that the
specimens were manufactured from the same batch. In con-
trast, the flatwise orientation specimens have greater variation
within and between laboratories in all tests. The density did
not correlate strongly with the strength properties, with the
exception of the local bending modulus and shear strength.
Further investigation of the fibre volume fraction, density and

Density Compression Tension Shear Flexure

ρmean:
kg/m3

fc,0,k:
MPa

Ec,0,mean:
MPa

ft,0,k:
MPa

Et,0,mean:
MPa

f v,k:
MPa

fm,k:
MPa

E0,mean:
GPa

Laminated bambooa 666 34·4 8166 32 8062 5 49 8612
C24 – EN 338b 420 21 370 14 370 4 24 11 000
GL 24 h – EN 14080:2013-06c 420 24 300 19·5 300 3·5 24 11 500
Norway spruced,e — 44h 18 254h 122h 15 793h 6 48i 13 361i

Glue laminated sprucef 450 32 8600 — 8472 — 50 —

Thermally modified beechg 580 48·7h — 14 — — 31 12 800

aPresent study
bCEN (2009)
cCEN (2013)
dSteiger and Arnold (2009)
eJenkel et al. (2015)
fDe Lorenzis et al. (2005)
gWidmann et al. (2012)
hTest not conducted in accordance with EN 408 (CEN, 2012)
iExperimental mean

Table 3. Comparison of characteristic strength, stiffness

properties (mean values) and density (mean values) for laminated

bamboo, strength classes for structural timber and glulam and

experimental testing parallel to grain in accordance with EN 408

(CEN, 2012)
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strength would elucidate relationships, if any, between the
properties.

4. Statistical analysis
In addition to the determination of the mechanical properties,
this study provided an opportunity to explore uncertainties in
experimental testing through a comparison of the individual

laboratory results. Due to the large variation between the
laboratories, the test results (bending, and perpendicular to
grain tension and compression) were analysed using a two
sample t-test using SPSS (IBM Corp., 2013; Quirk, 2015).
The hypothesis was that the mean population means are
equal (H0: μ1 = μ2) and the alternate that they are unequal
(HA: μ1≠ μ2). The single-source datasets (compression, tension

TUG
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and shear parallel to grain) were analysed to test the median
value (μ0) as a hypothetical mean (H0: μ0 = μ) using a t-test,
with α=0·05. The results of the analysis are presented and dis-
cussed below.

4.1 Bending
The analysis accepted the null hypothesis and indicated that
the flatwise orientation bending stress was not significant
(p-value = 0·09). The null hypothesis was rejected for the
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flatwise orientation local E-modulus, which was borderline sig-
nificant (0·01≤ p≤ 0·05) and highly significant (p≤ 0·005) for
the edgewise orientation in both the bending stress and local
E-modulus. The analysis thus indicates that the variation
between the two datasets is significant and they cannot be
pooled.

4.2 Tension perpendicular to grain
The statistical analysis was not significant (p>0·05) for
all results with the exception of the flatwise tensile local
E-modulus, which was borderline significant (0·01≤ p≤ 0·05).
The results indicate that the data can be pooled into a single
source. Comparison of the two orientations showed less vari-
ation in the flatwise tensile stress perpendicular to grain
(p=0·67) than the edgewise orientation (p=0·15).

4.3 Compression perpendicular to grain
For the perpendicular to grain compression stress and the local
E-modulus, the analysis was not significant (p>0·05) in the
edgewise orientation. The flatwise orientation was highly sig-
nificant for the perpendicular to grain compressive stress and
local E-modulus (p≤ 0·005). The results indicate that the edge-
wise orientation results can be pooled and the flatwise cannot.

4.4 Compression parallel to grain
For the compression parallel to grain, the median stress
(μ0 = 39 MPa) was selected as the test statistic to compare the
hypothesis (μ0 = μ). The t-test analysis indicated that it is
indicative of the population mean (p>0·05). For the compres-
sive local E-modulus parallel to grain, the median was hypoth-
esised as (μ0 = 8250 MPa) and the t-test indicated that it is
representative of the population mean (p>0·05).

4.5 Tension parallel to grain
Two different test methods were used to determine the tension
parallel to grain strength and local E-modulus, thus the data-
sets were not combined. In the single-ply tests, the median
stress (μ0 = 39 MPa) and median modulus (μ0 = 7997 MPa)
were selected as the test statistics to compare the hypothesis
(μ0 = μ). The analysis indicated that both values are representa-
tive of the population mean (p>0·05). For the laminated
section, the median stress (μ0 = 49 MPa) and median modulus
(μ0 = 8532 MPa) were selected as the test statistics to compare
the hypothesis (μ0 = μ). The analysis indicated that both values
were representative of the population mean (p>0·05).

4.6 Shear parallel to grain
For shear parallel to grain, two orientations were tested. The
analysis was applied to the specimens that passed the <20%
failure in the interface, as per the standard. In the edgewise
orientation, the median stress (μ0 = 7·1 MPa) was selected as
the test statistic to compare the hypothesis (μ0 = μ) and was
indicative of the population mean (p>0·05). For the flatwise
orientation, the median stress (μ0 = 7·6 MPa) was determined
to be representative of the population mean (p>0·05).

4.7 Statistical comparison of parallel testing
The results indicate that there was significant variation
between the two laboratories, which can be attributed to
material variation, as well as variations in machinery and test
methods. Although the material was obtained from the same
batch, the rejection of the null hypothesis (H0: μ1 = μ2) indi-
cates that the experimental results were not from the same
population and therefore cannot be pooled. The null hypoth-
esis is not probable even if samples are treated by the same
operator; however, test parameters such as variable loading
rate and measurement devices may have had an influence on
the results.

The study suggests that existing timber test methods provide a
foundation from which to develop engineered bamboo stan-
dards, but additional investigation is required to determine the
appropriate test parameters. Furthermore, while the sample
size was determined in accordance with EN 408 (CEN, 2012),
the variation suggests that a larger number of samples is
required to obtain an accurate estimate of the material
strength. To explore the reliability of the mechanical properties
in comparison with the characteristic values, the sample distri-
butions were further investigated.

5. Weibull two-parameter cumulative
distribution functions

Bamboo is an anisotropic material with significant variation in
both the raw and processed material. Reliability-based failure
methods have been explored for composite materials to predict
and model performance (Barbero et al., 2000), as well as for
graded timber (Faber et al., 2004). A reliability-based approach
for engineered bamboo would provide a way in which to
account for uncertainty and variation in materials, as well as
testing methods. To investigate the use of reliability-based
failure prediction, a cumulative distribution function of a two-
parameter Weibull distribution is shown in Equation 6
(Weibull, 1951).

6: F qð Þ ¼ 1� exp � q
α

� �β
� �

Here, F is the probability of failure, q is the property under
investigation, β is a shape parameter and α is the scale par-
ameter for the distribution. The results from the laboratory
testing were used to determine q using a median rank estimator
and the parameters α and β were determined using linear
regression. Reliability is given as

7: RðqÞ ¼ exp � q
α

� �β
� �

The reliability plots for the mechanical properties are shown in
Figures 6 and 7. The results from the two laboratories are
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differentiated by markers, with the TUG results indicated with
triangles and the CU results represented by circles. The dashed
lines indicate the edgewise orientation and the flatwise orien-
tations are represented with solid lines. In the tension and com-
pression parallel to grain tests there is no orientation and a
solid line is used. The characteristic stress is indicated by with

grey shaded area. The scale (α) and shape (β) parameters for
each dataset are also indicated in the figures.

As expected, the characteristic values represent a conservative
estimate of predicted strength. The reliability curves provide a
preliminary investigation of where there are areas of acceptable
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stress and where the reliability drastically changes. In particu-
lar, the shear strength parallel to grain illustrates a drastic
change in the failure stress (Figure 7(e)). The accuracy of this
estimate would be improved by additional testing to increase
the sample size.

Specimen density is shown in Figure 7(f), with the character-
istic density (641 kg/m3) highlighted by the vertical line. In
comparison with the other properties, the characteristic
density has a slightly lower reliability (�0·8). This reflects the
inherent material and manufacturing variability, which requires
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additional investigation. Furthermore, the reliability curve pro-
vides a basis to explore grading of engineered bamboo, build-
ing upon reliability-based grading methods for timber (Faber
et al., 2004; Kohler et al., 2007; Steiger and Arnold, 2009). As
discussed in the previous section, the correlation of density
and strength was moderate for the bending modulus and shear
strength. The other properties do not have a clear relationship
that can be developed for the grading of engineered bamboo.

Reliability-based failure prediction is a potential method to
form the foundation for characterisation of mechanical proper-
ties and can be expanded to building component performance.
In comparison with traditional empirically based design
methods, which rely on significant experimental testing,
reliability methods, combined with some experimental testing,
would allow for the determination of lower bound confidence
intervals. Furthermore, multiple random material property
values can be generated for use in numerical modelling. This
approach would allow for greater exploration of the material,
particularly in innovative structures and structural components
and systems.

6. Timber test standards for
laminated bamboo

The mechanical properties of laminated bamboo can be
obtained through the application of timber standards. This
study allowed for direct comparison with timber and timber-
based products using structural-scale testing standards.
Standards such as EN 408 (CEN, 2012) have been developed
specifically for the behaviour of timber and further work is
needed to evaluate testing parameters to determine the influ-
ences, if any, on the structural properties obtained from
testing. Factors such as loading rate, gauge length for modulus
of elasticity and specimen dimensions need to be established
with consideration of the inherent properties of laminated
bamboo. This study demonstrated that timber standards and
design codes are a pathway to characterisation of the material
and form the foundation for moving the field forward towards
adoption in design and engineering practice.

7. Summary
The study presented in this paper is the first to characterise the
structural properties of engineered bamboo based on full-scale
structural timber testing standards. The study was conducted
through parallel testing at Graz University of Technology
(TUG) and Cambridge University (CU). Multi-laboratory
testing allows for assessment of uncertainty, as well as the vari-
ation of testing parameters. The results show that laminated
bamboo has properties that are comparable to timber and
glue-laminated timber products. The study is considered to
provide a lower-bound estimate of strength, as the location of
failure was often at a non-engineered joint used to manufacture
longer lengths. Additional research is needed on the develop-
ment of a ‘finger joint’ to create longer lengths and spans in
laminated bamboo. The flexibility of the material is unique

and differs greatly from timber, suggesting that there is greater
potential for the material in innovative structural design.

Comparison of the results from the two laboratories revealed
that, while the tests produced similar results, the variation
within and between laboratories differed significantly. The study
indicates that future work is needed to determine the source of
variation in testing, as well as the validity of the timber testing
standard in regard to engineered bamboo. The use of reliability
analysis to obtain characteristic values for design was presented
to explore the potential for future standardisation of the
material. Overall, the study validated the need for globalised
standard test methods for characterisation and the advantage of
multi-laboratory testing in assessing uncertainty. The work has
shown that a combined approach to characterisation and stan-
dardisation is needed to move engineered bamboo towards
being an accepted material for design and engineering practice.
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