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Abstract 

Serious brain disorders, such as the Alzheimer's Disease (AD), are associated with a marked 

drop in the levels of important neurotransmitters, such as acetylcholine (ACh). Real time 

monitoring of such biomarkers can therefore play a critical role in enhancing AD therapies by 

allowing timely diagnosis, verifications of treatment effectiveness, and developments of new 

medicines. In this study, we present the first acetylcholine/oxygen hybrid enzymatic fuel cell for 

the self-powered on site detection of ACh in plasma, which is based on the combination of an 

enzymatic anode with a Pt cathode. Firstly, an effective acetylcholinesterase immobilized 

electrode was developed and its electrochemical performance evaluated. Highly porous gold was 

used as the electrode material, and the enzyme was immobilized via a one step rapid and simple 

procedure that does not require the use of harsh chemicals or any electrode/enzyme pre-

treatments. The resulting enzymatic electrode was subsequently used as the anode of a miniature 

flow-through membrane-less fuel cell and showed excellent response to varying concentrations 

of ACh. The peak power generated by the fuel cell was 4 nW at a voltage of 260 mV and with a 

current density of 9 μA cm-2. The limit of detection of the fuel cell sensor was 10 μM, with an 

average response time as short as 3 minutes. These exciting results open new horizons for point-

of-care Alzheimer diagnosis and provide an attractive potential alternative to established 

methods that require laborious and time-consuming sample treatments and expensive 

instruments. 
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1. INTRODUCTION 

Dementia describes a set of symptoms that include memory loss and difficulties with thinking, 

problem-solving and language. Worldwide, over 35 million people are currently diagnosed with 

dementia. This number that is estimated to double every 20 years in aging populations, thus 

reaching a value of 65.7 million in 2030, and of 115.4 million in 2050 (Prince et al. 2015). The 

most common cause of senile dementia is the Alzheimer’s disease (AD), with currently over 17 

million cases worldwide (Mayeux and Schupf 2011). AD is characterized by the progressive loss 

of cognitive function and personality changes. Early detection of AD, as well as the capability to 

distinguish it from other forms of dementia, is key to plan timely caring actions and help families 

intervene before the disease becomes too serious. Yet, so far, there are no definitive diagnostic 

tests that allow accurate and effective early detection of this condition. The diagnosis of AD 

occurs typically via extensive clinical examinations based on specific clinical diagnostic criteria 

that have been established in 1984 by the National Institute of Neurological and Communicative 

Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and Related Disorders Association 

(ADRDA), known as the NINCDS-ADRDA Alzheimer’s criteria (McKhann et al. 1984). 

The identification of relevant biomolecules that could act as AD biomarkers, and therefore allow 

rapid and effective diagnosis of this disease, is of particular relevance. Recent studies have 

suggested that systemic signs caused by concentration changes of specific biomolecules, which 

include mostly the Amyloid-β and Tau proteins present in cerebrospinal fluid (CSF) and plasma, 

can be associated with the progression of AD (Kanai et al. 1998). A particularly promising route 

to diagnose AD is, however, represented by the possibility to monitor the levels of 

neurotransmitters, such as acetylcholine (ACh), in cerebrospinal fluid. ACh is one of the first 

identified neurotransmitters and is found in the peripheral and central nerve system of the brain 

(Cannon et al. 2004; Hou et al. 2012). The role of ACh is to transmit messages from motor 
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nerves to muscles, especially to the heart, bladder and stomach, and ACh is involved in several 

functions, including cognition, memory and movement (Hasselmo and Sarter 2010; Van der Zee 

and Luiten 1999). The dysfunction in ACh regulation in the brain causes neuropsychiatric 

disorders such as Alzheimer’s disease, Parkinson’s disease, progressive dementia, Myasthenia 

Gravis and schizophrenia (Davis and Berger 1979; Tandon 1999). Considering the importance of 

this biomolecule, there is high interest in developing methods for its in vivo quantification 

(Garris and A 2010). Real-time monitoring of extra-cellular concentration changes of ACh 

would in fact allow understanding the function of the nervous system and the association to AD, 

examining the degeneration of cholinergic neural systems in AD, and evaluating pharmaceuticals 

that affect cholinergic activity at the single cell level (Mitchell 2004; Nguyen et al. 2010). 

Nonetheless, current methods to determine ACh levels in body fluids, such as ELISA (Hinman et 

al. 1986; Kawanami et al. 1984) and microdialysis sampling combined to offline analysis by 

liquid chromatography with mass spectroscopy detection (Nirogi et al. 2010; Song et al. 2012; 

Uutela et al. 2005), are laborious, expensive, slow and not suitable for in situ monitoring. 

Electrochemical sensors are capable of fast in situ detection sensors and, therefore, offer a 

powerful avenue for real time diagnostics that overcomes the drawback of traditional analytical 

methods (Wilson and Gifford 2005). In particular, the detection of ACh and its metabolite 

choline (Ch) has been successfully demonstrated with enzyme-based amperometric sensors. 

Depending on the specific target, the sensors use either acetylcholine esterase (AChE) or choline 

oxidase (ChOx), as well as both enzymes together (Garguilo and Michael 1995; Hou et al. 2012; 

Mitchell 2004; Wise et al. 2002). AChE-based sensors have been also suggested for the detection 

of toxic organophosphorous pesticides that, by inhibiting the activity of this enzyme, lead to 

toxic levels of acethylcholine in the cells, with severe threat to human health (Cai et al. 2014; 

Kaur and Srivastava 2015).  
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In this work, we propose the first hybrid enzymatic fuel cell (EFC)-based sensor for the real time 

and in situ detection of ACh. EFCs are a particular type of fuel cells that use enzymes to catalyse 

the direct generation of electricity from physiological fluids under body temperature and 

pressure (Barton et al. 2004) (du Toit and Di Lorenzo 2015). As such, EFC provide an attractive 

possibility for implantable and wearable diagnostic devices (Leech et al. 2012) (du Toit et al. 

2016). Preliminary proof-of-concept studies in this direction are highly encouraging. EFCs have 

been successfully implanted in living organisms, thus showing electricity generation from 

physiological fluids, such as blood and plasma (Castorena-Gonzalez et al. 2013; Halámková et 

al. 2012; MacVittie et al. 2013). Some successful examples of wearable EFCs have also been 

reported, such as the tattoo EFC that generates electricity from lactate in sweat (Jia et al. 2013) 

and the contact lens that uses the glucose in tears as fuel (Reid et al. 2015). Considering that 

within a specific range the power generated is proportional to the amount of substrate (the 

analyte) in the input solution, the most intuitive use of EFCs is as self-powered amperometric 

sensors for that substrate. By varying the nature of the enzyme(s) employed, several biomarkers 

of interest could be detected. The majority of the EFCs reported so far, uses the enzymes glucose 

oxidase and glucose dehydrogenase and focus on the detection of glucose (Ivanov et al. 2010). 

An EFC embedded into microfluidic follow-channels paper was reported for the detection of the 

carcinoembryonic antigen (Li et al. 2015). Successful examples of EFC applications as sensor 

for the detection of lactate (Katz et al. 2001), cyanide (Deng et al. 2010), mercury ion (Wen et al. 

2011) and cholesterol (Sekretaryova et al. 2014) have also been reported. 

The innovative enzymatic fuel cell reported in the present work utilizes at the anode the 

enzyme acetylcholinesterase (AChE), which is immobilized onto a nanostructured electrode 

made of a highly porous gold (hPG) coated onto a Pt surface. The use of nanostructured 

electrode materials is key to improve the enzyme loading and enhance the electrochemical 
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performance of EFCs (Ivanov et al. 2010). hPG in particular has proven to be an excellent 

candidate for EFCs, given its large specific surface area, biocompatibility and non-toxicity (du 

Toit and Di Lorenzo 2014b). In this study, we used a rapid and simple one-step electrochemical 

process to immobilise AChE onto hPG that does not require complex or laborious electrode 

and/or enzyme pre-treatments. The first part of this study focus on investigating the 

electrochemical performance of the resulting electrode. Subsequently, the enzymatic electrode is 

tested as the anode of a flow-through membrane-less fuel cell and the current and power output 

is recorded for a series of ACh concentrations, thus proving its use as online sensor. 

 

2. EXPERIMENTAL SECTION 

2.1 Materials 

All the chemicals were of analytical reagent grade and were used without further purification. 

Acetylcholinesterase from Electrophorus electricus, 500 U, was purchased from Sigma-Aldrich. 

The Saturated Calomel Electrode (SCE), used as the reference electrode, was purchased from 

IJCambria Ltd. Platinum wire (diameter: 0.5 mm) was purchased from Cookson Precious Metals 

Ltd. Polydimethylsiloxane (PDMS, Dow Corning Sylgard 184) was purchased from Ellsworth 

Adhesives. 

All aqueous solutions used were prepared using reverse osmosis purified water. The phosphate 

buffered saline (PBS) solution was prepared on a weekly basis and consisted of 137 mM NaCl, 

2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4. The pH of the resulting solution was adjusted to 

a value of 7.4 with the drop-wise addition of HCl or NaOH. Glycine buffer was prepared by 
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mixing 0.01 M of Glycine with 0.1 M of NaCl and by adjusting the pH to 7.4 by drop-wise 

addition of NaOH and HCl. 

All potentiostatically-controlled electrochemical processes were performed using the Autolab 

PGSTAT128 N (Metrohm, UK) potentiostat. The moulds for the PDMS structures were 3D 

printed in polylactic acid using a Makerbot Replicator. 

2.2 Preparation of the electrodes 

The electrodes were prepared by electrodepositing a film of highly porous gold (hPG) onto Pt 

wires via a hydrogen bubbling template, as previously described (du Toit and Di Lorenzo 

2014a). Briefly, the platinum wires were immersed in an electrolyte consisting of 0.1 M HAuCl4 

and 1 M NH4Cl and gold was deposited by gradually stepping down the working potential as 

follows: -0.7 V (vs. SCE) for 5 s; -1.5 V (vs. SCE) for 5 s; -2.5 V (vs. SCE) for 5 s and-4.0 V 

(vs. SCE) for 10 s. This process was performed in a three electrode set-up, with platinum as the 

counter electrode and SCE as the reference electrode. This set-up was also used for the 

immobilization of AChE onto the hPG/Pt electrode. The electrodes were immerged in a PBS 

buffer (pH 7.4) containing 6.25 U mL-1 of enzyme, and a potential of 0.6 V vs SCE was applied 

for one hour, according to the immobilization protocol previously established by our group (du 

Toit et al. 2016).  

 

The electrochemical response of both AChE/hPG/Pt and hPG/Pt electrodes to ACh, within the 

range of 2- 2400 g mL-1, was evaluated by both chronoamperometry (CA) and Square Wave 

Voltammetry (SWV) in the conventional three-electrode set-up (SCE as the reference electrode, 

Pt as the counter electrode). During the test, ACh was drop-wise added to the buffer solution 
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until the target concentration. The solution was then stirred for 30 seconds before the 

measurement. The response to ACh was evaluated in terms of current variation, Δi=ic-i0, where, 

ic is the observed current at the set concentration and i0 is the baseline current in the absence of 

substrate. 

The sensitivity towards ACh was obtained from the slope, b (µA mM-1), of the calibration 

curve and was referred to the total surface area, A (cm2), of the electrode as: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑏

𝐴
 

The electrodes performance was also tested by cyclic voltammetry at a scan rate of 50 mV s-1 

in the presence and absence of ACh. The tests were performed both in the presence and absence 

of oxygen. In the latter case, nitrogen was purged in the electrolyte for 15 min before the test. 

For the case of the enzymatic electrode, the affinity towards ACh was estimated in terms of the 

apparent Michaelis-Menten constant (Km app). This was calculated by using the electrochemical 

version of the Lineweaver-Burk equation of enzyme kinetics, as previously described (du Toit 

and Di Lorenzo 2014b):  

 
1

𝑖
=

1

𝑖𝑚𝑎𝑥
+

KM
app

𝑖𝑚𝑎𝑥 𝑐
 

 

Where i is the steady-state current observed after the addition of glucose; imax is the maximum 

current under the saturated concentration of glucose; c is the ACh concentration. 

2.3 Fuel cell fabrication and operation  

The single-chamber membrane-less hybrid EFC used in this work was fabricated in PDMS from 

a 3D printed mould, as previously described (du Toit et al. 2016). The device consisted of a 
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single chamber of 6 mm x 1 mm x 17 mm, hosting a AChE/hPG/Pt wire (the anode) and a Pt 

wire (as a combined counter/reference electrode), placed parallel to each other following the 

direction of flow. Each electrode was 10 mm long, with a total surface area exposed to the 

channel of 0.16 cm2. 

The inlet and outlet streams of the device were connected to a programmable multichannel 

peristaltic pump (Gilson, Miniplus 3), equipped with 2-stopped pump tubing. The device was 

continuously fed with an aerated PBS solution containing ACh (range: 2- 2400 g mL-1) at a rate 

of 0.4 ml min-1. During the operation, the electrodes were connected to an external circuit with 

an external fixed resistance (Rext) of 80 kΩ and to a PicoLog ADC-24 multichannel data logger 

to monitor the cell voltage (V). The current output (I) was calculated using Ohm’s law (I=V/ 

Rext) and the power was calculated as P= VI. Figure 1 shows the principle of operation of the 

AChE fuel cell. 

Polarisation tests were performed by Linear Sweep Voltammetry (LSV) using a scan rate of 1.0 

mV s-1, from the open circuit potential (OCP) to lower voltage regions.  

 

Figure 1. Design and working principle of the AChE fuel cell. The fuel cell consists of a membrane-less single 

channel that operates in flow-though mode. The cell hosts an anode (Pt wire coated with a film of highly porous 

gold, hPG) and a cathode, (Pt wire) connected to a external circuit with a fixed external load (Rext). AChE is 

immobilised onto the anode surface and catalyses the first step of oxidation of ACh, while hPG catalyses the 
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second. The electrons generated flow through the external circuit, thus producing a current output that is 

correlated to the amount of ACh oxidized. The reaction is completed at the cathode where the electrons combine 

with the protons and the oxygen to generate water. 

 

3. RESULTS AND DISCUSSION 

3.1 Electrochemical characterization of the AChE/hPG/Pt electrode 

The first part of this study concerned the development of an effective bioelectrode for ACh 

detection. To maximize the enzyme loading and facilitate direct electron transfer, highly porous 

gold structures were selected as the electrode material. Nanostructured electrode materials, such 

as hPG, have recently aroused tremendous interest, due to their large specific surface area 

leading to enhanced electron-transfer kinetics and their great biocompatibility (Kang and Lee 

2016). The immobilization of AChE onto hPG was achieved by electrochemical adsorption, 

through the rapid, efficient and low-cost methodology previously established by our group (du 

Toit and Di Lorenzo 2014b). At the physiological pH of 7.4 used in this study AChE has a 

negative charge (isoelectric point between 5.6 and 6.0). A potential of 0.6 V (vs SCE) was 

therefore chosen for its electrostatic immobilization to allow the building-up of a net positive 

charge onto the hPG electrode surface that would attract the oppositely charged enzyme. The 

electrochemical performance of the resulting AChE/hPG/Pt electrode was tested by SWV and 

CV in a conventional three-electrode set up, with SCE as the reference electrode and platinum 

wire as the auxiliary electrode (Figure 2). The electrochemical response of AChE/hPG/Pt was 

investigated in the absence (a) and presence (b) of 17 mM of acetylcholine, and compared with 

the case of the non-enzymatic hPG/Pt electrode (c). Initially the electrodes were tested in PBS 
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buffer. As shown in Figure 2A and 2C, the AChE/hPG/Pt electrode responded to the addition of 

ACh in solution with an up-shift in the SWV and CV curves in correspondence to 0.3 V. 

AChE hydrolyses ACh to choline and acetic acid, according to the following reaction (Step 1): 

ACh + H2O
AChE
→   CH3COOH + Ch 

Usually, the detection of ACh is achieved by the combined use of the enzyme AChE with 

choline oxidase, ChO, to allow the oxidation of Ch into H2O2, which is then electrochemically 

monitored (Kanik et al. 2013; Mitchell 2004). In the specific case of this study, the functional 

group(s) of Ch are instead directly electro-oxidised by hPG to generate oxidized intermediate(s), 

according to the following suggested reaction (Step 2):  

Ch + O2
hPG
→  oxidised intermediate(s) + H+ + e− 

The peak observed in both the SWV and CV curves is therefore related to Ch oxidation at the 

working electrode and is a consequence of AChE activity. The electro-oxidation of choline on 

nanostructured electrode structures has been already reported for the case of a nickel oxide 

nanostructured electrode (Sattarahmady et al. 2014). In particular, it was suggested that the 

process involves the oxidation of functional group(s) of Ch in either a single or multiple step. A 

similar process was suggested for thiocholine by Chauhan et al. with an iron 

nanoparticles/multiwalled carbon nanotubes modified gold electrode (Chauhan and Pundir 

2011). 

The hPG/Pt electrode also showed good reactivity towards ACh, with an oxidation peak at 0.27 

V (vs. SCE) (Figure 2A), which might be related to the oxidation of phosphate (du Toit and Di 

Lorenzo 2014a). To investigate this further, and study the interference of phosphate in the 
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electrochemical measurements, these tests were repeated in glycine buffer (Figure 2B and 2C). 

In the case of the AChE/hPG/Pt electrode, the oxidation peak at 0.30 V was confirmed. The 

response to ACh was, however, approximately two times higher than in buffer, with a ΔI≈ 0.04 

mA. Moreover, the intensity of the peak produced by hPG/Pt in glycine, was of only 0.01 mA. 

This value is 20% lower than the case of PBS, thus confirming the interference of phosphate. 

The two peaks observed in the SWV curves, probably related to oxidation reactions occurring 

onto the hPG surface, might have been masked in the case of PBS by the much larger peak 

related to phosphate oxidation. 

 

 

Figure 2 Electrochemical Square Wave Voltammetry (SWV) and Cyclic Voltammetry (CV) responses to ACh 

of the enzymatic and non-enzymatic hPG/Pt electrodes in PBS buffer (A, C) and glycine buffer (B, D). a) 

AChE/hPG/Pt electrode in the presence of 17 mM of ACh; b) AChE/hPG/Pt electrode in the absence of ACh; c) 

control, hPG/Pt electrode in buffer. The scan rate was of 50 mV s-1. 
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The response of both the enzymatic and non-enzymatic electrode to increasing ACh 

concentrations was subsequently tested by SWV and CA (at 0.3 V vs SCE). The results are 

reported in Figure 3. Both electrodes showed a very good response to ACh, and generated an 

output current signal proportional to its concentration. Considering its high reactivity, the 

response of hPG/Pt to ACh was not surprising (du Toit and Di Lorenzo 2014a). Although the 

electrocatalytic oxidation of ACh on nanostructured electrodes has already been shown 

(Sattarahmady et al. 2013), this is the first time that it is proven also for the case of porous gold. 

The type of buffer used had an influence on the response. Generally, in glycine the current 

generated by AChE/hPG/Pt was higher than hPG/Pt (Figure 3B and 3E), since there was no 

interference with phosphate in the reading. On the other hand, hPG/Pt generated a higher (Figure 

3C) or very similar (Figure 3F) current than the enzymatic electrode in PBS.  
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Figure 3 Chronoamperometry and SWV response of both the AChE/hPG/Pt and hPG/Pt electrodes for different 

concentrations of ACh, in either glycine or PBS buffer at pH 7.4 and in the presence of oxygen. refers to 

AChE/hPG/Pt;  refers to hPG/Pt. Chronoamperometry at 0.3 V: A) an example of chronoamperometry readings in 

glycine; B) current change versus ACh concentration in the case of glycine buffer; C) current change versus ACh 

concentration at 0.3 V in the case of phosphate buffer. Square Wave Voltammetry: D) an example of SWV readings 

in glycine, AChE/hPG/Pt electrode only; E) change in the current peak at 0.3 V versus ACh concentration in the 

case of glycine buffer; F) change in the current peak at 0.3 V versus ACh concentration in the case of PBS. Error 

bars refer to three replicates.  

 

Although the response to ACh and the shape of the calibration curves obtained with the two 

types of electrodes are very similar, the process occurring in each case is very different. In the 

case of AChE/hPG/Pt, choline is enzymatically generated (Step 1, Figure 1) and then oxidized 

by hPG (Step 2, Figure 1). In the other case, ACh is directly oxidized by hPG. To confirm this 

hypothesis, CV tests in the presence and absence of oxygen were performed (Figure 4). As 

shown, in the absence of oxygen AChE/hPG/Pt performs better, with a shift of approximately 

0.06 mA. This is because Step 1 is favoured by the absence of oxygen. On the other hand, when 

hPG/Pt was operated in the absence of oxygen no response to ACh was observed, with a flat CV.  

 

Figure 4- Cyclic voltammograms of both AChE/hPG/Pt (A) and hPG/Pt (B) electrodes in a PBS solution 

containing 0.6 mM of ACh in the presence (a) and absence (b) of oxygen. Scan rate: 50 mV s-1 
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Considering the instability, cost and short lifetime of enzymes, a non-enzymatic sensor would 

be preferred. Nonetheless, enzymes are highly selective towards the target analyte. hPG is 

reactive to a number of compounds found in physiological fluids, such as sugars (du Toit and Di 

Lorenzo 2014a), and consequently a non-enzymatic hPG sensor would suffer from very poor 

selectivity. Practical applications of the hPG/Pt electrode would, therefore, necessarily imply the 

combined use of a functional membrane that filters out interfering compounds. This might prove 

difficult when these impurities have a molecular weight very close to ACh, such as glucose. We 

therefore focused on the enzymatic electrode only. 

Table 1 summarizes the performance of AChE/hPG/Pt in both glycine and PBS resulting from 

the CA tests and Figure S1 A and B in the supplementary data show the relative calibration 

curves obtained. As reported, in the case of glycine buffer, the sensitivity was almost two times 

higher than the case of PBS, with a value of 3.04 μA mM-1 cm-2, which corresponds to a slope of 

the calibration curve of approximately 0.5 μA mM-1. This sensitivity is comparable to the values 

observed for other AChE electrodes found in previous works: 0.49 μA mM-1 (Sen et al. 2004), 

and 0.42 μA mM-1 (Doretti et al. 2000) and it is much higher than the sensitivity of a Cu-

nanoparticle modified electrode with a sensitivity of only 0.23 μA mM-1 cm-2 (Heli et al. 2009). 

On the other hand, a much higher sensitivity has been recently reported with a non enzymatic 

metal oxide nanostructure (Sattarahmady et al. 2013). 

In the case of the non-enzymatic hPG/Pt electrode, the sensitivity is slightly higher, 4.6 μA mM-1 

cm-2, and also the linearity range is improved (Table 1S in the supplementary data). 
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From the reciprocal of the current - reciprocal of ACh concentration plot (Figure S3 and S4), it 

resulted a value of the apparent affinity, Km
app, equal to 0.3 mM, which is in agreement with 

previous findings on AChE immobilised onto porous gold structures (Shulga et al. 2007). This is 

a value much lower than previously reported (Doretti et al. 2000; Sen et al. 2004), thus 

demonstrating the high affinity of AChE/hPG/Pt towards ACh.  

 

Table 1. Analytical performance of the AChE/hPG/Pt electrode in both PBS and glycine buffer at pH 7.4. 

 PBS Glycine 

Linearity range 

(mM) 
0.24-1.9 0.12-1.4 

Sensitivity 

(μA mM-1 cm-2) 
2.01 ± 0.7 3.40 ± 1.3 

Km
app 

(mM) 
0.30 ± 0.03 0.39 ± 0.2 

R2 (n=3) 0.98 0.98 

R2: correlation coefficient 

 

3.2 Self-Powered detection of Acetylcholine in continuous flow mode 

The AChE/hPG/Pt electrode was subsequently used as the anode of a flow-through 

membrane-less miniature fuel cell, with Pt as the cathode. The electrodes were connected 

through an external load and the system was continuously fed with PBS containing ACh at a 

flow rate of 0.35 ml min-1. No external mediators were added to the feeding solution. Power and 

polarisation curves, performed for increasing concentrations of ACh are shown in Figure 5. The 

polarisation curves exhibit a small activation region, a wide ohmic polarisation region and a 

short and steep mass transfer limitation region. This trend is in agreement with typical 
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polarisation curves obtained with biological fuel cells, where the ohmic losses play a dominant 

role (Logan et al. 2006). The polarisation curves up-shift with increasing concentrations of ACh 

and exhibit a corresponding open circuit potential within the range of 320 to 430 mV (Figure 

5B). It is expected that AChE/hPG/Pt is the limiting electrode in the fuel cell. Considering the 

effect that oxygen has on the performance of this electrode, as shown in Figure 4A, the very low 

current densities obtained could also be due to the saturating concentration of oxygen in the 

feeding solution used in this study (0.2 mM). It should be noted, however, that physiological 

fluids, such as plasma, present much lower oxygen concentrations and could therefore be 

associated with improved performance of the fuel cell (Falk et al. 2012). 

The power curves also show a good correlation between power output and ACh concentration 

(Figure 5A). The maximum power was of 4 nW at a voltage of 260 mV and for a current density 

of 9 μA cm-2 (ACh concentration: 10 mM). Since this is the first ACh/oxygen fuel cell reported, 

it is difficult to make a direct comparison on performance with other biological fuel cell devices 

reported in the literature, which are characterised by different device designs and catalyst used. 

Nonetheless, the performance of the ACh/O2 hybrid fuel cell in terms of power output, is very 

similar to other biological fuel cells reported (Falk et al. 2013; Falk et al. 2012). 

Although the power output is very low, the fuel cell showed an excellent response to varying 

acetylcholine concentrations, thus demonstrating its remarkable potential for use as a self-

powered ACh sensor. 

In Figure 5C a calibration curve is reported, obtained by connecting the two electrodes to an 

external resistor of 80 kΩ and varying the concentration of ACh in the feeding solution every 15 

min. The response time, calculated as the time to reach 95% of the final, was in the range of 2.8- 
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3.7 min, being lower for higher ACh concentrations. This is a much faster response than other 

AChE-based sensors previously reported (Doretti et al. 2000; Schuvailo et al.). 

The sensitivity of the sensor is of 0.1 μA mM-1 cm-2, with a lower detection limit of 10 μM. 

This detection limit is in the range of ACh concentrations in healthy individuals, but still too 

high for patients affected by AD, characterised by ACh values of 1 – 6 μM (Chauhan and Pundir 

2011). Still, these preliminary results are highly encouraging, and future research will 

necessarily have to focus on improving the fuel cell design and on maximising the electrode 

surface-area-to-volume ratio to enhance both the sensitivity and the limits of detection.  

 

 

Figure 5. Power curves (A) and polarization curves (B) obtained with PBS solutions of ACh with a 

concentration varying from 0.01 to 10 mM in PBS. Current density refers to the geometric surface area of the anode 

(0.16 cm2). (C) Current output generated by the flow-through AChE fuel cell at different ACh concentrations, for an 

external resistance of 80 kΩ. Error bars refer to at least two replicates. 

 

The fuel cell sensor showed high reproducibility, as demonstrated by the very small variation 

among several replicates reported in Figure 5C. Although the lifetime of the device was not 

tested, the hybrid fuel cell here proposed is expected to be stable for at least two days of 

continuous operation, according to our previous findings with a glucose/oxygen EFC having a 
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similar set-up (du Toit and Di Lorenzo 2015). In addition, compared to this previous study where 

the laccase electrode was supposed to be the major limiting factor for the system stability, the 

use of a Pt cathode in the hybrid fuel cell might contribute to a substantial enhancement in the 

system lifetime (Ivanov et al. 2010). Finally, preliminary studies have demonstrated that the 

immobilization of AChE onto porous structures help to increase its overall stability (Shulga et al. 

2007; Sotiropoulou et al. 2005). 

 

CONCLUDING REMARKS 

The development of rapid and low cost sensing devices for in situ monitoring of acetylcholine in 

plasma is key to enhance the therapy of the Alzheimer’s disease. In patients affected by this 

serious neuro-degeneration, the levels of the neurotransmitter acetylcholine can drop by up to 

90%. The consequence is a progressive and significant loss of cognitive and behavioural 

function. Effective in vivo monitoring of ACh can help with: timely diagnosis; monitoring 

treatment effectiveness; and developments of new medicines.  

Current methodologies for ACh detection are mainly based on microdialysis coupled with offline 

analysis, and are expensive, slow and not suitable for in situ monitoring.  

EFCs can provide an attractive alternative. In this study, we report the first acetylcholine/oxygen 

fuel cell and show an excellent response to ACh concentrations, in terms of both current and 

power output. No sample treatment is required and the response time is as fast as 3 min. As such, 

this research represents an important step towards self-powered low cost devices for the real time 

monitoring of ACh. 
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