

Citation for published version:
Corberan, A, Erdoan, G, Laporte, G, Plana, I & Sanchis, JM 2018, 'The Chinese Postman Problem with load-
dependent costs', Transportation Science, vol. 52, no. 2, pp. 370-385. https://doi.org/10.1287/trsc.2017.0774

DOI:
10.1287/trsc.2017.0774

Publication date:
2018

Document Version
Early version, also known as pre-print

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161916768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1287/trsc.2017.0774
https://researchportal.bath.ac.uk/en/publications/the-chinese-postman-problem-with-loaddependent-costs(332b87a0-3ada-41f3-b41a-d5e1c0541165).html

The Chinese Postman Problem with

load-dependent costs

Ángel Corberán1, Güneş Erdoğan2,

Gilbert Laporte3, Isaac Plana4, José M. Sanchis5

1 Departamento de Estad́ıstica e Investigación Operativa, Universitat de València (Spain)
2 School of Management, University of Bath (United Kingdom)

3 Canada Research Chair in Distribution Management, HEC Montréal (Canada)
4 Departamento de Matemáticas para la Economı́a y la Empresa, Universitat de València (Spain)

5 Departamento de Matemática Aplicada, Universidad Politécnica de Valencia (Spain)

October 13, 2016

Abstract

We introduce an interesting variant of the well-known Chinese Postman Problem
(CPP). While in the CPP the cost of traversing an edge is a constant (equal to its
length), in the variant we present here the cost of traversing an edge depends on its
length and on the weight of the vehicle at the moment it is traversed. This problem is
inspired by the perspective of minimizing pollution in transportation, since the amount
of pollution emitted by a vehicle not only depends on the travel distance, but also on its
load, among other factors. We define the problem, study its computational complexity,
provide two different formulations and propose two metaheuristics for its solution.
Extensive computational experiments reveal the extraordinary difficulty of this problem.

Keywords: Chinese Postman Problem, arc routing problems, pollution-routing.

1 Introduction

In recent years we have witnessed a growing interest in the study of vehicle routing problems
that incorporate CO2 emissions in their objective function. Early contributions include those
of McKinnon [25] and of Sbihi and Eglese [31]. The more recent models are rooted in the
work of Fagerholt et al. [15], Norstad et al. [26] and Hvattum et al. [18] who solved speed
optimization problems in the context of ship routing in order to reduce fuel consumption,
and in the paper of Bektaş and Laporte [5] on the “Pollution-Routing Problem”, who studied
the same issue, this time in the context of vehicle routing. These studies have been followed
by several related modeling and algorithmic contributions, namely those of Demir et al.
[11, 12, 13], Koç et al. [20, 21, 22], Kramer et al. [23] and Dabia et al. [10]. For reviews, see
Demir et al. [14] and Bektaş et al. [4].

The most common fuel consumption model used in this context is based on the work
of Barth et al. [3] and Barth and Boriboonsomsin [2], and to some extent Ross [30]. This

1

model, which is rather involved, comprises three modules, namely engine power, engine speed,
and fuel rate. The three main explanatory variables of fuel consumption are the distance
traveled, the vehicle weight (including the curb weight and the load carried), and speed.
Several less important factors such as road gradient, acceleration and deceleration, the use
of air conditioning, driving style, etc. also come into play, but these are rather difficult to
measure. When speed is constant, fuel consumption can be approximated by A× distance×
vehicle weight, where A is a constant. This is the model that was used by Kara et al. [19].

Until now, this line of research has been developed exclusively in the context of node
routing. In this paper, we present, as far as we know, the first arc routing problem ([9]) in
which the cost of traversing an edge depends not only on its length, but also on the weight
of the vehicle (curb weight plus load) at the moment it is traversed. In particular, the cost
of traversing an edge is computed as its length multiplied by the weight of the vehicle. This
cost approximates the amount of pollution emitted by a vehicle traveling at constant speed.
In Section 2 we define the problem, discuss its characteristics, prove that it is NP-hard,
and show that it is polynomially solvable in some special cases. In Section 3 we provide two
mathematical programming formulations, one based on a pure arc routing representation, and
a second one based on a transformation of the problem into a node routing problem. Some
computational results testing both formulations are given. In Section 4 two metaheuristics
are proposed for the approximate solution of the problem and some computational results on
a large set of instances are provided. Conclusions follow in Section 5.

2 The problem

The Chinese Postman Problem with load-dependent costs (CPP-LC) is a very interesting
variant of the well-known Chinese Postman Problem ([24]) that can be defined as follows.
Let G = (V,E) be an undirected connected graph, where V = {1, . . . , n} is the vertex set
and E = {e1, . . . , em} is the edge set. Vertex 1 represents the depot. Each edge e ∈ E has a
length de≥0 and a demand of qe≥0 units of commodity (e.g. kilograms of salt) to be spread
on edge e. A vehicle with curb weight W and loaded with Q =

∑
e∈E qe units of commodity

starts at the depot, traverses all the edges of the graph servicing the demands and comes
back to the depot. The first time an edge e = (i, j) is traversed, it is served, that is, an
amount qe of commodity is downloaded from the vehicle. After being served, an edge e can
be traversed in deadheading mode any number of times. Each time the vehicle traverses an
edge e (either serving it or deadheading it) it incurs a cost proportional to the edge length
de multiplied by the current weight of the vehicle:

de ×
(
W + “load of the vehicle while traversing e”

)
.

While de and W are constants, the load is a variable that depends on the amount of com-
modity downloaded on the edges served before e, and also on edge e itself (while serving it).
Let Qe be the vehicle load at node i just before traversing edge e = (i, j). Then, the cost
of traversing e in deadhead is de(W + Qe), while the cost of traversing e while serving it is
de(W + Qe − qe

2), because the load of the vehicle upon reaching node j is Qe − qe, and we
assume that the average load of the vehicle while serving the edge e is Qe − qe

2 .

A CPP-LC tour is any closed walk, starting and ending at the depot, that traverses all the
edges at least once. The cost of a given CPP-LC tour is the sum of the costs associated with

2

the edges it traverses. The CPP-LC consists of finding a CPP-LC tour of minimum cost.

It is interesting to point out that the CPP-LC could be defined by allowing the possibility
of deadheading an edge before its service, but this is clearly suboptimal. Also note that the
CPP-LC could be defined as a loading problem, where an empty vehicle leaves the depot and
loads qe units of commodity the first time each edge e is traversed. This version is equivalent
to the downloading version, and it can be seen that the optimal tour for one version is exactly
the reverse of the optimal tour for the other.

To illustrate the features of this problem, consider the CPP-LC instance depicted in
Figure 1, where the curb weight of the vehicle is W = 0. The two numbers next to an

m

m

m

m

3

1

4

21,1000

10,1

1,100 1,10 W = 0

Figure 1: CPP-LC instance

edge e correspond to de and qe. Consider the (Eulerian) CPP-LC tour defined by the walk
(1, 2), (2, 4), (4, 3), (3, 1) (here (i, j) means that the corresponding edge is traversed and
served from i to j). The total distance traveled is 1 + 1 + 10 + 1 = 13, while its cost is 1772,
obtained by adding the cost of all the edge traversals:

(1, 2) (vehicle load: 1111) cost: 1×
(
0 + 1111− 1000

2

)
= 611

(2, 4) (vehicle load: 111) cost: 10× (0 + 111− 10
2

)
= 106

(4, 3) (vehicle load: 101) cost: 1×
(
0 + 101− 1

2

)
= 1005

(3, 1) (vehicle load: 100) cost: 1×
(
0 + 100− 100

2

)
= 50

Total cost: 1772.

It is easy to see that the ‘reverse’ CPP-LC tour (1, 3), (3, 4), (4, 2), (2, 1) has a total length
of 13, but its cost is 12671. In any case, neither of the above two tours is optimal. The
optimal CPP-LC tour for this instance is (1, 2), [2, 1], (1, 3), [3, 1], [1, 2], (2, 4), (4, 3), [3, 1],
where “[2, 1]” means that the corresponding edge is deadheaded. Although the total length
of this tour is larger (17 versus 13), it has a lower cost of 816:

3

(1, 2) (vehicle load: 1111) cost: 1×
(
0 + 1111− 1000

2

)
= 611

[2, 1] (vehicle load: 111) cost: 1×
(
0 + 111

)
= 111

(1, 3) (vehicle load: 111) cost: 1×
(
0 + 111− 100

2

)
= 61

[3, 1] (vehicle load: 11) cost: 1×
(
0 + 11

)
= 11

[1, 2] (vehicle load: 11) cost: 1×
(
0 + 11

)
= 11

(2, 4) (vehicle load: 11) cost: 1×
(
0 + 11− 10

2

)
= 6

(4, 3) (vehicle load: 1) cost: 10×
(
0 + 1− 1

2

)
= 5

[3, 1] (vehicle load: 0) cost: 1×
(
0 + 0

)
= 0

Total cost: 816.

We now discuss the impact of the curb weight W . Consider the same instance as in Figure
1, except for the curb weight W , which is now a positive number. In this case, the cost of the
previous CPP-LC tour (1, 2), [2, 1], (1, 3), [3, 1], [1, 2], (2, 4), (4, 3), [3, 1] increases by W times
the total distance traveled, up to 816 + 17W . On the other hand, the cost of the Eulerian
CPP-LC tour (1, 2), (2, 4), (4, 3), (3, 1) increases by W times the total distance traveled, up
to 1772+13W . Note that when the value for W is sufficiently large (W > 239), this Eulerian
tour becomes optimal, and it can be seen that, in general, CPP-LC instances with very large
values for the curb weight W (compared with the demand values) have the same optimal
tour as the classical CPP. Therefore, both problems are equivalent on such instances.

Note that there are some significant differences between the CPP-LC and the classical
CPP, namely:

1. The CPP-LC tours cannot be expressed simply as an (augmented) Eulerian graph but
as a sequence of vertices and edges.

2. The minimum-cost augmented graph may be very different from the optimal CPP-LC
tour.

3. The optimal CPP-LC tour on a Eulerian graph does not necessarily have to be a
Eulerian tour of the graph.

4. An edge can be traversed more than twice (deadheaded more than once) in an optimal
CPP-LC tour.

The above differences with respect to the classical CPP are shared by the Cumulative
Chinese Postman Problem ([27], [28]). Given an undirected connected graph, the Cumulative
Chinese Postman Problem consists of finding a path starting at the depot that services all
the edges exactly once such that the total latency is minimized. An edge is served when it is
visited for the first time, and its latency is the sum of the latencies of the edges previously
traversed by the path, plus the cost of this edge. However, there seems to be no other relevant
similarities between the Cumulative CPP and the CPP-LC.

4

2.1 The CPP-LC is NP-hard

In order to prove that the CPP-LC is an NP-hard problem, we need to recall the definition of
the Minimum Latency Problem (MLP). Given a graph with n vertices 1, . . . , n and a distance
between any pair of vertices, the MLP consists of finding a tour T starting at 1 and visiting all
vertices, in such a way the sum of the arrival times dT (1, i) (also called latencies) is minimum,
where the arrival time is defined as the traveled distance from 1 to i in tour T . The MLP
exists in both its closed [7] and its open [1] versions. Sitters [32] proved that the MLP on
trees (the problem where the metric is given by an edge-weighted tree) is strongly NP-hard.
Although the proof is for the closed version, it can be seen that the open version of the MLP
is also NP-hard (a closed MLP instance can be transformed into an open one by just adding
an artificial vertex joined to the depot with an edge having a sufficiently large travel time).

Theorem 1 The CPP-LC defined on a weighted tree is NP-hard.

Proof: Consider an open MLP instance on a tree. Although the proof can be done for a
general tree, for the sake of simplicity we will do it on the tree shown in Figure 2(a), where
a, b, c, d, e and f represent the costs ce associated with the edges. Let us call C =

∑
e∈E ce =

a+ b+ c+ d+ e+ f . We build the CPP-LC instance in Figure 2(b) on the same tree, with
de = ce and qe = 1 for all the edges, and W = 0. It suffices to prove that, for each MLP
feasible solution there exists a CPP-LC feasible solution with the same cost (except for a
constant) and vice versa.

m
m

m

m
m m m

1

2 3

4

5 6 7

�
�
�
�

@
@

@
@

�
�
�
�

@
@

@
@

a

b c

d e

f

m
m

m

m
m m m

1

2 3

4

5 6 7

�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

a,1

b,1 c,1

d,1 e,1

f,1

W = 0

Figure 2: An MLP instance and its corresponding CPP-LC instance

Consider, for example, the MLP solution T = (1, 2, 4, 5, 6, 7, 3). This solution has a
latency cost computed as follows:

dT (1, 2): b
dT (1, 4): b + (b+ a)
dT (1, 5): b + (b+ a) + d
dT (1, 6): b + (b+ a) + d + (d+ e)
dT (1, 7): b + (b+ a) + d + (d+ e) + f
dT (1, 3): b + (b+ a) + d + (d+ e) + f + (f + e+ a+ c),

that is, 6b+ 5(a+ b) + 4d+ 3(d+ e) + 2f + (f + e+ a+ c). From this solution, we build the
following CPP-LC feasible tour:

5

(1, 2), [2, 1], (1, 4), (4, 5), [5, 4], (4, 6), (6, 7), [7, 6], [6, 4], [4, 1], (1, 3), [3, 1]

which, given that the initial load is Q = 6 and W = 0, has a cost equal to

b(6− 1
2) + ba(5− 1

2) + d(4− 1
2) + 3d+ e(3− 1

2) + f(2− 1
2) + (f + e+ a+ c(1− 1

2)) + 0 =

= 6b+ 5(a+ b) + 4d+ 3(d+ e) + 2f + (f + e+ a+ c)− C
2 .

Hence, both solutions have the same cost except for the constant −C
2 . Conversely, consider,

for example, the CPP-LC tour

(1, 3), [3, 1], (1, 4), (4, 6), [6, 4], (4, 5), [5, 4], [4, 6], (6, 7), [7, 6], [6, 4], [4, 1], (1, 2), [2, 1]

which has a cost equal to

c(6− 1
2)+5c+a(5− 1

2)+e(4− 1
2)+3e+d(3− 1

2)+2d+2e+f(2− 1
2)+(f+e+a+b(1− 1

2))+0 =

= 6c+ 5(a+ c) + 4e+ 3(e+ d) + 2(fd+ e+ f) + (f + e+ a+ b)− C
2 ,

that is exactly the cost of the MLP solution (1, 3, 4, 6, 5, 7, 2) except for the constant −C
2 . �

Hence the CPP-LC is NP-hard, although, as will be seen in Section 2.2, it can be solved
in polynomial time in some special cases.

2.2 Some polynomially solvable cases

We will now show that the CPP-LC is solvable in polynomial time if it is defined on a star
graph. Furthermore, we will consider the special case of the CPP-LC when all the demands
are proportional to the distances.

Theorem 2 The CPP-LC on a star graph is solvable in polynomial time.

Proof: Let G be a star graph with m edges incident with the depot. We will prove that the
optimal solution can be obtained by serving the edges ei in non-increasing order of qei/dei .
Consider a CPP-LC tour serving the edges in order e1, . . . , em (renumbering if necessary), so
that the tour will traverse each edge twice consecutively. This CPP-LC tour has a cost equal
to

m∑
j=1

(
dej
(
W +Q−

j−1∑
i=1

qei −
qej
2

)
+ dej

(
W +Q−

j−1∑
i=1

qei − qej
))

=

=
m∑
j=1

dej
(
2W + 2Q− 2

j−1∑
i=1

qei −
3

2
qej
)

= 2
m∑
j=1

dej (W +Q)−
m∑
j=1

dej
qej
2
− 2

m∑
j=1

dej

j∑
i=1

qei .

Note that the first two terms of this expression do not depend on the order in which the
edges are served. Now consider an instance of the problem of scheduling jobs with release
dates on a single machine with m jobs, release dates ri = 0, processing times pi = qei , and
weights wi = dei . The objective function of this problem is

m∑
j=1

wj

j∑
i=1

pi =
m∑
j=1

dej

j∑
i=1

qei

6

and is minimized when the jobs are sequenced in non-decreasing order of pi/wi (see [6]).
Hence, an optimal CPP-LC tour is obtained when the edges are sequenced in non-increasing
order of qei/dei . �

In what follows, we will focus on a special case of the CPP-LC, which we call the Propor-
tional CPP-LC (PCPP-LC), where demands qe are proportional to the lengths de, that is,
qe=β de, ∀ e∈E, for some β>0. This corresponds to some practical situations in which the
amount of commodity downloaded (for example, salt or water) is proportional to the length
of the street.

Proposition 1 Let G = (V,E) be a PCPP-LC instance. If G is a Eulerian graph, all the
Eulerian PCPP-LC tours have the same cost.

Proof: For the sake of simplicity we suppose that β = 1. Consider a Eulerian tour that
traverses the edges (renumbering, if necessary) in the following order: e1, e2, e3, e4, · · · , em.
This PCPP-LC tour has a cost equal to

m∑
j=1

qej
(
W +Q−

j−1∑
i=1

qei −
qej
2

)
= W

∑
j

qej +
(∑

j

qej
)2 −∑

j

q2
ej

2
−
∑
r 6=s

qerqes =

= QW +
∑
j

q2
ej + 2

∑
r 6=s

qerqes −
∑
j

q2
ej

2
−
∑
r 6=s

qerqes = QW +
1

2

(∑
j

q2
ej

2
+ 2
∑
r 6=s

qerqes

)
=

= QW +
1

2

(∑
j

qej
)2

= QW +
1

2
Q2.

Since the total cost does not depend on the ordering of the edges, all the Eulerian PCPP-LC
tours have the same cost QW + 1

2Q
2. �

The cost of a CPP-LC tour can be seen as the sum of its serving cost (the sum of the
costs of the edges traversed when they are served) and its deadheading cost (the sum of the
costs of the edges traversed in deadhead).

Proposition 2 Let G = (V,E) be a PCPP-LC instance. The serving cost of any PCPP-LC
tour is QW + 1

2Q
2.

Proof: For the sake of simplicity, suppose that the tour contains only one deadheaded edge
(edge e, for example) and that, as in Proposition 1, it traverses the edges (renumbering, if
necessary) in the following order: e1, e2, e3, e , e4, · · · , em. This PCPP-LC tour has a cost
equal to

qe1
(
W +Q− qe1

2

)
+ qe2

(
W +Q− qe1 −

qe2
2

)
+ qe3

(
W +Q− qe1 − qe2 −

qe3
2

)
+

+ qe
(
W +Q− qe1 − qe2 − qe3

)
+ qe4

(
W +Q− qe1 − qe2 − qe3 −

qe4
2

)
+ · · · +

+ qem
(
W +Q− qe2 − qe3 −· · ·− qem−1 −

qem
2

)
= QW + 1

2Q
2 + qe

(
W +Q− qe1 − qe2 − qe3

)
,

7

which is QW + 1
2Q

2, plus the cost of deadheading edge e. This argument can be extended to
any number of edges traversed in deadheading, and hence the result. �

Solving the PCPP-LC is therefore equivalent to minimizing the deadheading cost, because
the serving cost of all the tours is a constant. Hence, the PCPP-LC seems to be easier than
the general CPP-LC. In fact, we will see that the PCPP-LC for Eulerian graphs and for
weighted trees is solvable in polynomial time.

For Eulerian graphs, all the Eulerian PCPP-LC tours have a deadheading cost equal to
zero and we then have the following theorem.

Theorem 3 If G = (V,E) is a PCPP-LC instance and G is a Eulerian graph then any
Eulerian PCPP-LC tour is optimal. Hence, the PCPP-LC for Eulerian graphs is solvable in
polynomial time.

For weighted trees, the following proposition proves that all the PCPP-LC tours dead-
heading each edge exactly once have the minimum deadheading cost.

Proposition 3 Let G = (V,E) be a PCPP-LC instance. If G is a tree, all the PCPP-LC
tours traversing each edge exactly twice (once servicing it and another time in deadheading)
are optimal.

Proof: Again, assume that β = 1. From Proposition 2, all the PCPP-LC tours on G have
the same serving cost and we can focus on minimizing their deadheading cost.

The deadheading cost of traversing an edge a ∈ E is the product of its length da = qa
by the load in the vehicle, which is the sum of the demands qb of the edges b that have not
been served yet. Hence, the total deadheading cost of a PCPP-LC tour can be expressed as
the sum of products qaqb for some pairs of edges a, b ∈ E. Each term qaqb corresponds to
deadheading a while b has not been served yet or vice versa.

Let a, b ∈ E be a pair of edges. We will say that a and b are compatible if the (unique)
path from the depot to edge b contains edge a, or vice versa. This is the case, for example,
of pairs a and d, a and f or e and g in the tree depicted in Figure 3. When neither a is on
the path from the depot to b, nor b is on the path from the depot to a, we say that edges a
and b are incompatible, as for pairs d and f or a and b in Figure 3.

We will first prove that all the PCPP-LC tours traversing each edge exactly twice (one
servicing it and another in deadheading) have the same deadheading cost. Let T be any of
these tours. Since this tour deadheads each edge exactly once, each term qaqb may appear
up to twice in the deadheading cost of T : once when deadheading a, and possibly once more
when deadheading b.

Consider first a pair a, b ∈ E of compatible edges. Assume, without loss of generality,
that the path from the depot to edge b contains edge a. Then, T serves a before b but it
deadheads b before a. Therefore, when b is deadheaded, a has already been served, and vice
versa, and the term qaqb does not appear in the deadheading cost of T .

Consider now a pair a, b ∈ E of incompatible edges. Note that either T traverses a twice
before traversing b (twice) or vice versa. Assume, without loss of generality, that T serves

8

and deadheads a before b. When T deadheads a, edge b has not yet been served, and when it
deadheads b, edge a has been already served. Therefore, the term qaqb appears exactly once
in the deadheading cost of T for each pair a, b ∈ E of incompatible edges. Therefore, the
total deadheading cost of T is ∑

a,b incompatible

qaqb, (1)

which is the same value for all the PCPP-LC tours traversing each edge exactly twice.

m
m

m

m
m m m

m

1

2 3

4

5 6 7

8

�
�
�
�

@
@

@
@

�
�
�
�

@
@
@
@ @@

a

b c

d e

f

g

Figure 3: A PCPP-LC instance on a weighted tree

Finally, let T be a PCPP-LC tour on G traversing some edges more than twice. Consider
a pair a, b ∈ E of incompatible edges. Given that G is a tree, either T traverses a at least
twice before traversing b (at least twice), or vice versa. Assume, without loss of generality,
that T serves and deadheads for the first time a before traversing b. Then, when T deadheads
a for the first time, edge b has not been served yet, and the term qaqb appears at least once
in the deadheading cost of T . Since this is true for each pair a, b ∈ E of incompatible edges,
the total deadheading cost of T is at least equal to the constant in (1). Therefore, all the
PCPP-LC tours traversing each edge exactly twice are optimal. �

As a consequence of Propositions 2 and 3, we obtain the following result:

Theorem 4 The PCPP-LC defined on a weighted tree is solvable in polynomial time.

3 Two mathematical programming formulations

In this section we present two formulations for the CPP-LC. The first one is an arc routing
formulation which tries to exploit the problem characteristics. The second (node routing)
formulation is based on a transformation of the original graph into a graph in which the edges
are separated, and their endnodes are replicated.

9

3.1 An arc-routing formulation

Given that the cost of traversing the edges depends on the order in which they are traversed,
we consider K = |E| periods, denoted by k = 1, . . . ,K, and we assume that exactly an edge
is served in each period. Let us define the following 4|E|2 + |E| variables:

(Route variables) Four binary variables for each edge (i, j) and for each period k =
1, . . . ,K:

• ykij = 1 if edge e = (i, j) is served (and traversed) from i to j in period k, 0
otherwise,

• xkij = 1 if edge e = (i, j) is traversed (deadheaded) from i to j without serving
it after the edge served in period k and before the edge served in period k + 1, 0
otherwise.

(Load variables) A continuous variable fk > 0 representing the load in the vehicle at the
beginning of period k, k = 2, . . . ,K. We can assume that f1 = Q and fK+1 = 0.

1
y112
−−−−→

f1
2

x1
21

−−→
f2

1
y213
−−−−→

f2
3

x2
31

−−→
f3

1
x2
12

−−→
f3

2
y324
−−−−→

f3
4

y443
−−−−→

f4
3

x4
31

−−→
f5

1

Figure 4: Variables of the optimal tour of the instance in Figure 1

Figure 4 shows the variables associated with the optimal tour for the CPP-LC instance
shown in Figure 1 (the edges traversed in service are represented in solid lines while the edges
traversed in deadheading are plotted in dashed lines).

Some lower and upper bounds for variables fk can be computed. For example, for an
instance with six edges with demands qe = 1, 2, 3, 4, 5, and 6, we have the following bounds:

f1 = 21, 21− 6 ≤ f2 ≤ 21− 1, 21− 6− 5 ≤ f3 ≤ 21− 1− 2, etc.

In fact, if all demands are equal to 1 for example, the fk values are determined: f1 = 6, f2 =
5, f3 = 4, f4 = 3, f5 = 2, f6 = 1, f7 = 0. Let us call such bounds Lk ≤ fk ≤ Uk for each
k = 2, . . . ,K.

The CPP-LC can then be formulated as follows:

10

Minimize
K∑
k=1

∑
e=(i,j)∈E

de

((
W + fk −

qe
2

)
(ykij + ykji) +

(
W + fk+1

)
(xkij + xkji)

)
subject to

K∑
k=1

(ykij + ykji) = 1, ∀e∈E (2)∑
(i,j)∈E

(ykij + ykji) = 1, ∀k = 1, . . . ,K (3)

fk+1 = fk −
∑

e=(i,j)∈E

qe (ykij + ykji), ∀ k = 1, . . . ,K−1 (4)

f1 = Q, fK+1 = 0, (5)

y1(δ−(i)) + x1(δ−(i)) = y2(δ+(i)) + x1(δ+(i)), ∀i ∈ V \ {1} (6)

yk(δ−(i)) + xk(δ−(i)) = yk+1(δ+(i)) + xk(δ+(i)), ∀i ∈ V, ∀ k = 2, . . . ,K − 1 (7)

yK(δ−(i)) + xK(δ−(i)) = xK(δ+(i)), ∀i ∈ V \ {1} (8)

yK(δ−(1)) + xK(δ−(1)) = y1(δ+(1)) = 1, (9)

xkij ≤
k−1∑
l=1

(ylij + ylji) + ykji, ∀(i, j)∈E, ∀ k = 1, . . . ,K (10)

xkij + xkji ≤ 1, ∀(i, j)∈E, ∀ k = 1, . . . ,K (11)

xkij , x
k
ji, y

k
ij , y

k
ji ∈ {0, 1}, ∀(i, j)∈E, ∀ k = 2, . . . ,K (12)

Lk ≤ fk ≤ Uk, ∀ k = 2, . . . ,K. (13)

The objective function is the sum of the costs of the edges served, de
(
W+fk− qe

2

)
(ykij+y

k
ji),

and the deadheaded edges, de
(
W + fk+1

)
(xkij + xkji). Inequalities (2) and (3) guarantee

that each edge is served in one period and that only one edge is served in each period.
Constraints (4) ensure that when an edge e is served, the vehicle load is decreased in qe
units. Symmetry conditions on the vertices are imposed by equations (6) to (9). Variables
x and y are related through constraints (10), which state that an edge can be deadheaded
only if it has been served in a previous period, or in the same period but traversed in the
opposite direction. Constraints (11) state that an edge can be deadheaded only once in a
given period. Constraints (10) and (11) are not needed to find the optimal CPP-LC tour.
Their removal would allow feasible solutions in which some edges could be deadheaded before
being served, although, as it has been said, these solutions would be suboptimal. Nevertheless
these constraints have proved to be useful from a computational point of view.

The objective function is non-linear because of the terms fk (ykij +ykji) and fk+1 (xkij +xkji),
which are the product of a binary and a continuous variables. By defining the following
variables:

• tke = fk(ykij + ykji), ∀e = (i, j)∈E, ∀ k = 1, . . . ,K,

11

• zke = fk+1(xkij + xkji), ∀e = (i, j)∈E, ∀ k = 1, . . . ,K − 1,

and by adding the constraints

tke ≥ Lk (ykij + ykji),

tke ≤ Uk (ykij + ykji),

tke ≤ fk + Lk (ykij + ykji − 1),

tke ≥ fk + Uk (ykij + ykji − 1),

∀e = (i, j)∈E, ∀ k = 1, . . . ,K (14)

and

zke ≥ Lk+1(xkij + xkji),

zke ≤ Uk+1(xkij + xkji),

zke ≤ fk+1 + Lk+1(xkij + xkji − 1),

zke ≥ fk+1 + Uk+1(xkij + xkji − 1),

∀e = (i, j)∈E, ∀ k = 1, . . . ,K−1, (15)

to the previous formulation, the objective function can be linearized as

Minimize

K∑
k=1

∑
e=(i,j)∈E

de

((
W − qe

2

)
(ykij +ykji)+W (xkij +xkji)

)
+

K∑
k=1

∑
e∈E

det
k
e +

K−1∑
k=1

∑
e∈E

dez
k
e .

Some variables can be fixed to 0. For instance, all the y1 variables of the edges that are
not incident with the depot can be fixed to 0. Moreover, if we compute the cost s1i of the
shortest path from the depot to a vertex i, using costs equal to 1 for all the edges in G, we
can fix ykij = 0 for all k < s1i and xkij = 0 for all k < s1,i−1.

Note also that
∑
e∈E

tke =
∑
e∈E

fk(ykij+ykji) = fk
∑
e∈E

(ykij+ykji) = fk, and therefore the equations

∑
e∈E

tke = fk, ∀ k = 1, . . . ,K (16)

can be used to strengthen the formulation.

We have conducted computational experiments with this formulation. The results ob-
tained are shown in Section 3.3.

3.2 A node-routing formulation

Because the preliminary computational results obtained with the arc-routing formulation
were not entirely satisfactory, we decided to try a different approach. The main drawbacks
of the arc-routing formulation are the large number of variables and the non-linearity of the
objective function, whose linearization implies an important increase both in the number
of variables and constraints. In this section, we propose another formulation based on a
transformation of the original graph G. Broadly speaking, it consists of separating all the
edges of G and replicating their endnodes.

12

Figure 5 illustrates the transformation, where the left graph is the original graph G =
(V,E) and the right one represents the transformed graph Ḡ = (V̄ , Ē). For the sake of
simplicity, we have labeled the five edges of G in Figure 5 from 1 to 5. Associated with each
edge in E are two vertices in V̄ . For example, given the edge number 3, (1, 4) ∈ E, the
vertices 13 and 43 in V̄ are linked with a ‘required’ edge plotted in bold line. Vertex 0 ∈ V̄
represents an artificial vertex which is the starting and ending point of the route. Graph Ḡ
is a complete graph, that is, in addition to the ‘required’ edges (corresponding to the edges
in G), set Ē contains all the edges between pairs of vertices in V̄ not corresponding to the
same edge in G. Some of these edges are depicted in Figure 5 by dashed lines.

Figure 5: The graph transformation

It can be seen that each CPP-LC tour in G defines a tour in Ḡ. Particularly,
an optimal CPP-LC tour in G corresponds to a Hamiltonian tour in Ḡ. For ex-
ample, given the CPP-LC tour (1, 2), (2, 4), (4, 1), [1, 4], (4, 3), (3, 1), we have the tour
(0, 11, 21, 24, 44, 43, 13, 45, 35, 32, 12, 0), which is a Hamiltonian tour in Ḡ, starting and end-
ing at node 0, traversing each required edge exactly once and alternating required and
non-required edges. Conversely, each Hamiltonian tour in Ḡ with these properties de-
fines a “CPP-LC tour” in G. For example, (0, 13, 43, 45, 35, 21, 11, 12, 32, 44, 24, 0) defines
(1, 4), (4, 3), [3, 4], [4, 2], (2, 1), (1, 3), [3, 4], (4, 2), [2, 1].

Note that the previous tour on G is not really a CPP-LC tour because edge (2, 4) is
deadheaded (traversal [4, 2]) before being served (traversal (4, 2)). As already mentioned, the
problem allowing these kind of solutions is equivalent to the CPP-LC. Hence, the CPP-LC
can be solved as finding the “Hamiltonian alternating tour” in Ḡ with minimum cost when
we define the appropriate edge costs in Ḡ.

In general, a complete graph Ḡ = (V̄ , Ē) is built from the original graph G = (V,E) and
the corresponding values for de, qe. The set V̄ contains two vertices for each edge e = (i, j) ∈ G
and a vertex 0 representing the starting and ending point of the tour. The set Ē contains the
required edges (those corresponding to edges in G), denoted by R, and the non-required edges
(corresponding to deadheading paths in G). Given i ∈ V̄ , let i∗ ∈ V be the corresponding
vertex in G (with 0∗ = 1). Given i, v ∈ V̄ , siv denotes the cost of a shortest path from i∗ to
v∗ in G. We define two costs c̄ij , c̄ji associated with the two traversals of each edge (i, j) ∈ Ḡ
as follows:

1) For the edges (i, j) ∈ R ((i∗, j∗) ∈ E):

13

• c̄ij = c̄ji = 0.

2) For the edges (i, v) ∈ Ē \ R such that vertices i, v ∈ V̄ correspond to two different edges
(i∗, j∗), (v∗, w∗) ∈ E:

• c̄iv = siv + dv∗w∗ ,

• c̄vi = siv + di∗j∗ .

3) For the edges incident with vertex 0:

• c̄0i = s1i + di∗j∗ ,

• c̄i0 = si1.

We define the following variables:

(Route variables) For each edge e= (i, j) ∈ Ē, let xij = 1 if e= (i, j) is traversed from i
to j, 0 otherwise.

(Load variables) For each edge e = (i, j) ∈ Ē \ R, let fij ≥ 0 be a continuous variable
representing the load in the vehicle when traversing e from i to j. We can assume that
f0i = Q and fi0 = 0.

Now consider a Hamiltonian tour in Ḡ starting and ending at node 0 and traversing
exactly once each required edge in Ē. This tour traverses the edges in Ḡ alternating
non-required and required edges. Its cost is the sum of the costs of pairs of consecutive
non-required and required edges (i, j) ∈ Ē \ R, (j, w) ∈ R. The distance traveled and
the load of the vehicle when traversing (i, j) is sij and fij , respectively, while they are
dj∗w∗ and fij − 1

2 qj∗w∗ when traversing (j, w). The cost of traversing these two edges is:
sij
(
W + fij

)
+ dj∗w∗

(
W + fij − 1

2 qj∗w∗
)
.

Therefore, the cost of the tour corresponding to the curb weight W expressed with the xij
variables is∑

(i,j)∈Ē\R

W sij xij +
∑

(i,j)∈R

W di∗j∗ xij ,

and the one corresponding to the load in the vehicle expressed with the fij variables is∑
(i,j)∈Ē\R

(
sijfij + dj∗w∗

(
fij − 1

2 qj∗w∗
))

=
∑

(i,j)∈Ē\R

c̄ijfij −
∑

(i,j)∈Ē\R

1
2 dj∗w∗ qj∗w∗ =

=
∑

(i,j)∈Ē\R

c̄ijfij −
1

2

∑
e∈E

de qe.

The CPP-LC can then be formulated as follows:

14

Minimize
∑

(i,j)∈Ē\R

W sij xij +
∑

(i,j)∈R

W di∗j∗ xij +
∑

(i,j)∈Ē\R

c̄ijfij −
1

2

∑
e∈E

de qe

subject to
xij + xji = 1, ∀ (i, j) ∈ R (17)∑

j∈V̄

xij = 1, ∀i∈ V̄ (18)

∑
i∈V̄

xij = 1, ∀j∈ V̄ (19)

∑
i∈V̄

fiv = qvw xvw +
∑
j∈V̄

fwj , ∀(v, w) ∈ R (20)

∑
i∈V̄

fiw = qvw xwv +
∑
j∈V̄

fvj , ∀(v, w) ∈ R (21)

∑
i∈V̄

f0i = Q,
∑
i∈V̄

fi0 = 0, (22)

qvw xiv ≤ fiv ≤
(
Q− qij

)
xiv, ∀ (i, v)∈ Ē \R, with (i∗, j∗), (v∗, w∗)∈E (23)

xij ∈ {0, 1}, ∀(i, j)∈ Ē (24)

0 ≤ fij ≤ Q, ∀(i, j)∈ Ē \R. (25)

Constraints (17) ensure each required edge to be traversed exactly once in one of the two
possible directions. Equations (18) and (19) guarantee that the tour visits all the vertices.
When the vehicle serves a required edge (v, w), the load in the vehicle decreases in its demand
qvw (constraints (20) and (21)). Finally, inequalities (23) link the route and load variables.

3.3 Computational results for the two formulations

In order to test the two formulations we have generated the following sets of CPP-LC in-
stances:

• 18 Eulerian instances, whose name starts with E, obtained from three Eulerian graphs,
with |V | = 7, 10, 20 and |E| = 12, 18, 32, respectively. For each graph, three different
values of W have been considered, W = 0, Q2 , 5Q, where Q =

∑
qe. For each one of

these nine combinations, we have generated two instances, one with qe = de (for the
PCPP-LC) and another with randomly generated demands qe.

• 18 instances obtained as above from three RPP instances proposed by Christofides et
al. [8], P1, P2 and P4, with |V | = 11, 14, 17 and |E| = 13, 32, 35, respectively.

• 24 instances obtained from 12 RPP instances proposed by Hertz et al. [17]: r1 to r8
(with |V | ∈ [6, 14] and |E| ∈ [11, 48]), d10, d11, g10 and g11 (with |V | ∈ [18, 27] and
|E| ∈ [22, 33]). For each graph, a proportional and a non-proportional instances were
generated, all of them with W = Q

2 .

15

All experiments were performed on a single thread of an Intel Core i7 at 3.4GHz with
32GB RAM. We used CPLEX 12.6 Solver with Concert Technology 2.9 with its default
settings to solve the proposed two formulations. A time limit of one hour per instance was
imposed.

Tables 1 to 3 present the results obtained with the arc routing formulation for both the
proportional and non-proportional instances on the three sets. The first column is the name
of the instance, while the second specifies whether the instance was solved to optimality
(opt) or not (non-opt). The third column shows the percent gap between the upper and
lower bound obtained with the branch-and-cut algorithm of CPLEX and the fourth column
provides the computing time in seconds. The last three columns present the same metrics
for the proportional instances.

Non-proportional qe Proportional qe

Instance Gap (%) Seconds Gap (%) Seconds

E7W0 opt - 0.7 opt - 94.0
E7WQ/2 opt - 0.7 opt - 9.0
E7W5Q opt - 0.3 opt - 6.8

E10W0 opt - 21.6 non-opt 5.9 3600
E10WQ/2 opt - 9.3 opt - 1639
E10W5Q opt - 6.8 opt - 730

E20W0 non-opt 4.9 3600 non-opt 6.5 3600
E20WQ/2 opt - 246.4 non-opt 3.3 3600
E20W5Q opt - 79.1 non-opt 1.1 3600

Table 1: Computational results on the Euclidean instances

Non-proportional qe Proportional qe

Instance Gap (%) Seconds Gap (%) Seconds

P1W0 opt - 6.8 opt - 29.9
P1WQ/2 opt - 2.5 opt - 5.9
P1W5Q opt - 0.5 opt - 1.0

P2W0 non-opt 23.8 3600 non-opt 25.8 3600
P2WQ/2 non-opt 11.1 3600 non-opt 13.2 3600
P2W5Q non-opt 1.4 3600 non-opt 2.3 3600

P4W0 non-opt 24.0 3600 non-opt 32.4 3600
P4WQ/2 non-opt 19.6 3600 non-opt 14.9 3600
P4W5Q non-opt 7.3 3600 non-opt 6.5 3600

Table 2: Computational results on the Christofides et al. instances

As can be seen, the CPP-LC is a very hard problem to solve. Even for very small instances
the branch-and-cut module of CPLEX was not able to find an optimal solution within one
hour of computing time. It is interesting to point out that the instances with demands
proportional (equal) to the lengths were harder to solve than those with non-proportional
demands. This is particularly surprising in the case of the Eulerian instances, given that,
as we proved in Section 2.2, these are polynomially solvable. For example, instance E10W0,

16

Non-proportional qe Proportional qe

Instance Gap Seconds Gap Seconds

hertzr1 opt - 0.3 opt - 56.4
hertzr2 opt - 5.5 opt - 161.6
hertzr3 opt - 25.2 non-opt 3.0 3600
hertzr4 non-opt 14.1 3600 non-opt 22.5 3600
hertzr5 opt - 294.3 non-opt 3.7 3600
hertzr6 opt - 2247.0 non-opt 14.0 3600
hertzr7 non-opt 21.0 3600 non-opt 17.6 3600
hertzr8 non-opt 4.9 3600 non-opt 10.8 3600
hertzd10 non-opt 84.2 3600 non-opt 31.2 3600
hertzd11 non-opt 32.2 3600 non-opt 36.1 3600
hertzg10 non-opt 4.6 3600 non-opt 6.3 3600
hertzg11 non-opt 17.4 3600 non-opt 23.7 3600

Table 3: Computational results on the Hertz et al. instances

associated with a Eulerian graph with 10 vertices and 18 edges and with demands equal to
the lengths, ended with a gap of 5.9% after one hour. As expected, the larger the value of
the curb weight W , the easier the instance. Recall that, as pointed out in Section 2, CPP-LC
instances with very large values of W (compared with the demand values) have the same
optimal tour as the classical CPP.

F2 F1

Instance Seconds Seconds

E7W0 (NP) non-opt 3600 opt 0.7
E7W0 (P) non-opt 3600 opt 94.0

E7WQ/2 (NP) opt 86.6 opt 0.7
E7WQ/2 (P) opt 509.4 opt 9.0

E7W5Q (NP) opt 2.5 opt 0.3
E7W5Q (P) opt 5.5 opt 6.8

Table 4: Computational results on the E7 instances

Since the results obtained with the arc routing formulation are far from being good, we
implemented the node routing formulation and we have tested it on the same instances.
Tables 4 to 6 show the results obtained on the smaller instances (in the remaining instances,
the node routing formulation did not provide any optimal solution), where F1 corresponds
to the arc routing formulation and F2 to the node routing one. Although formulation F2
seemed more promising because its original objective function is linear, the results obtained
are even worse. In seven of the instances for which F1 obtains the optimal solution, F2 fails to
do so. Moreover, in the 10 instances in which both formulations reach the optimal solutions,
the running time is noticeably larger with F2. Note that F1 has around 6|E|2 variables and
10|E|2 constraints while F2 has approximately 16|E|2 variables and 4|E|2 constraints. As
with the arc routing formulation, instances with proportional demands are harder than the
non-proportional ones. Again, the difficulty of the instances decreases when the value for W

17

increases.

F2 F1

Instance Seconds Seconds

E10W0 (NP) non-opt 3600 opt 21.6
E10W0 (P) non-opt 3600 non-opt 3600

E10WQ/2 (NP) non-opt 3600 opt 9.3
E10WQ/2 (P) non-opt 3600 opt 1639.0

E10W5Q (NP) opt 828.6 opt 6.8
E10W5Q (P) non-opt 3600 opt 730.0

Table 5: Computational results on the E10 instances

F2 F1

Instance Seconds Seconds

P1W0 (NP) opt 3512.6 opt 6.8
P1W0 (P) non-opt 3600 opt 29.0

P1WQ/2 (NP) opt 55.7 opt 2.5
P1WQ/2 (P) opt 123.1 opt 5.9

P1W5Q (NP) opt 4.7 opt 0.5
P1W5Q (P) opt 3.9 opt 1.0

Table 6: Computational results on the P01 instances

4 Two metaheuristics

Given that the sizes of the instances that can be optimally solved using the previous for-
mulations is very small, we propose in this section two metaheuristics capable of producing
good solutions on larger size instances. In particular, we have designed an Iterated Local
Search (ILS) and a Variable Neighborhood Search (VNS). These metaheuristics exploit the
fact that, given a sequence of edges without an specified direction of traversal, the cost of the
best CPP-LC tour traversing the edges in that order can be computed in linear time.

4.1 A linear-time dynamic programming formulation to evaluate the cost
of a CPP-LC tour

The minimal amount of information required to evaluate a CPP-LC tour is the sequence in
which the edges should be traversed, and in which direction each edge should be traversed.
A CPP-LC tour is then a vector of triplets ((i1, j1, d1), (i2, j2, d2), . . . , (im, jm, dm)), where
the first two components of every triplet denote the edge being traversed, and the third
component denotes the direction of traversal of an edge, with d = 1 implying from i to j,
and d = 2 from j to i.

18

Following the example in Section 2, the tour (1, 2), [2, 1], (1, 3), [3, 1], [1, 2], (2, 4), (4, 3), [3, 1]
could be represented as ((1, 2, 1), (1, 3, 1), (2, 4, 1), (3, 4, 2)), where the deadheads are implied
by the mismatching endnodes of traversals.

With this representation, if the deadheading distances are precomputed, the cost of a
given tour can be computed in O(m) time. If we represent a solution only by the sequence of
the edges to be traversed, there are 2m associated CPP-LC tours depending on the direction
in which each edge is traversed. We now show that it is still possible to compute the cost of
the best of these tours in O(m) time.

Theorem 5 Given the sequence of edges to be traversed in a CPP-LC tour, the optimal
direction of traversal for each edge and the resulting objective value can be computed in O(m)
time.

Proof: We assume that the distances between all vertices of the graph are precomputed,
which can be done in O(n3) time using the Floyd-Warshall algorithm [16] for all-pairs shortest
paths. We also precompute the remaining amount of demand on board just before travers-
ing the kth edge in the sequence and we denote it as Qk. This computation can also be
implemented to run in O(m) time using a suffix sum. Let fk(d) denote the minimum cost
of completing the partial tour that starts from the kth edge in the sequence, when the last
traversal has been in direction d. The dynamic programming recursion is then

f1(1) =
(
W +Q− q1

2

)
di1,j1 + min

{
(W +Q)d1,i1 + f2(1)
(W +Q)d1,j1 + f2(2)

(26)

fk(1) =
(
W +Qk −

qk
2

)
dik,jk + min

{
(W +Qk)djk−1,ik + fk+1(1)
(W +Qk)djk−1,jk + fk+1(2)

, k = 2, . . . ,m−1 (27)

fk(2) =
(
W +Qk −

qk
2

)
dik,jk + min

{
(W +Qk)dik−1,ik + fk+1(1)
(W +Qk)dik−1,jk + fk+1(2)

, k = 2, . . . ,m−1 (28)

fm(1) =
(
W +

qm
2

)
dim,jm + min

{
(W + qm)djm−1,im +Wdjm,1

(W + qm)djm−1,jm +Wdim,1
(29)

fm(2) =
(
W +

qm
2

)
dim,jm + min

{
(W + qm)dim−1,im +Wdjm,1

(W + qm)dim−1,jm +Wdim,1.
(30)

The first term on the right-hand side of every equation is the traversal cost of the corre-
sponding edge. The first term within each ‘min’ operator for k = 1, . . . ,m− 1 represents the
deadheading cost, which may be zero if the endpoint of the last traversal and the starting
point of the current traversal coincide. For k = 1, the deadheading distance for the first term
is computed from the depot. The last term, for k = 1, . . . ,m− 1, corresponds to the cost of
the later stages. In the case of k = m, the last term is the cost of returning to the depot with
the curb weight.

There are 2m stages, the complexity of each one being O(1), the overall time complexity
is therefore O(m). Clearly, the space complexity is also O(m). �

The importance of this result can be better appreciated by considering that the total
number of possible tours is 2m and the complexity of each iteration of a local search algorithm

19

for the traversal directions is also O(m). As a result, we can use the simplified solution
representation consisting of just the sequence of edges to be traversed and compute the
traversal directions as required.

Now that the solution representation is simplified to a sequence, we can use the well-known
Traveling Salesman Problem operators 1-OPT, 2-OPT, and 2-EXCHANGE.

4.2 Pseudo-codes of the metaheuristics

Based on the theorem regarding the use of dynamic programming to compute the optimum
cost of a given sequence in O(m) time, we have opted to represent the solutions of CPP-LC
as sequences of edges. For the algorithms below, we denote sequences of edges as σ, and the
DP result for a given sequence σ as z(σ).

Sort the edges in decreasing order of demand multiplied by distance;
Initialize σ∗ as an empty sequence;
for i = 1 to m do

zmin =∞;
for j = 1 to i do

Create σ′ by inserting the ith edge in the list in the jth position of σ∗;
if z(σ′) < zmin then

zmin = z(σ′);
σ′′ = σ′;

end

end
σ∗ = σ′′;

end
return σ∗

Algorithm 1: Greedy Constructive heuristic

Call Greedy Constructive to obtain σ∗;
σ′ = σ∗;
for k = 1 to kmax do

Perturb σ′ by performing m
5 random exchanges of edges within the sequence;

Apply local search on σ′ by selecting the best move among the operators 1-OPT,
2-OPT, and 2-EXCHANGE;
if z(σ′) < z(σ∗) then

σ∗ = σ′;
else

σ′ = σ∗;
end

end
return σ∗

Algorithm 2: Iterated Local Search metaheuristic

20

Call Greedy Constructive to obtain σ∗;
σ′ = σ∗;
for k = 1 to kmax do

Perturb σ′ by performing m
5 random exchanges of edges within the sequence;

Apply local search on candidate sequence by selecting the first improving operator
among 2-EXCHANGE, 1-OPT, 2-OPT;
if z(σ′) < z(σ∗) then

σ∗ = σ′;
else

σ′ = σ∗;
end

end
return σ∗

Algorithm 3: Variable Neighbourhood Search metaheuristic

Both ILS and VNS are based on the principle of perturbing the best known solution
for diversification and applying local search for intensification. The main difference is the
way in which the local search operators are handled. In ILS, all operators are considered
simultaneously, and the best move is selected. In VNS, the operators are tried in a given
order (in some implementations, on a random order), and the first operator that returns
an improvement is applied. In our implementation of the VNS, we have used the order
2-EXCHANGE, 1-OPT, 2-OPT, i.e. in increasing order of computational cost.

4.3 Computational results for the metaheuristics

We have implemented the metaheuristics in C++, and performed the computational exper-
iments on an Intel Xeon E5-2650 v2 processor with a clock speed of 2.60 GHz and 64GB of
RAM, running on Scientific Linux release 6.5 (Carbon).

In order to check the quality of the bounds provided by the metaheuristics, we have first
tested the ILS and VNS on the instances described in Section 3.3. For all the 28 instances for
which the exact algorithm obtains the optimal solution, the heuristic procedures do also find
it. The results for the 34 unsolved instances are summarized in Table 7. The first column
shows the name of the instance set, and the number of unsolved instances is given in the
second column. Columns 3 and 4 show the average lower and upper bounds obtained with
the branch-and-cut algorithm, while columns 5 and 6 report the average of the best bound
obtained with the two heuristics and the percent gap of the average upper bound with respect
to the average lower bound. Finally, the last column shows the average running time of the
heuristic algorithms in seconds.

In all the instances, the upper bound obtained with the heuristic algorithms is at least
better than the upper bound found by the exact method after one hour of computing time.
The gaps obtained are also very good (except for instances in sets Hr and Hd) considering
the lower bounds may be still far from the optimal value. Note that the solutions provided by
the heuristic algorithms are optimal in all the cases for which the optimal solution is known.

To test the behavior of the proposed metaheuristics on larger instances, we have generated
two new sets of instances as follows. Instance generation is based on the number of vertices,

21

Set # non-opt B&C LB B&C UB Heur UB Gap (%) Seconds

E10 1/6 80236.3 85284.5 85284.5 5.92 0.4
E20 4/6 1198075.8 1237876.4 1226363.9 2.31 4.3
P02 6/6 452900.4 476726.7 470545.4 3.75 6.1
P04 6/6 61964.6 68380.3 66912.3 7.38 8.2
Hr 9/16 1732941.0 2094019.8 1931421.1 10.28 10.0
Hd 4/4 209610.6 608530.9 244967.1 14.43 46.7
Hg 4/4 2466.6 2882.0 2623.3 5.97 4.2

Table 7: Comparison of the exact and heuristic algorithms

n, and three parameters: the sparsity parameter α, the correlation parameter κ, and the curb
weight ratio parameter ρ. Instances were generated by first generating n random points in the
plane with both coordinates in the interval [0, 100]. The distances between the vertices were
computed using the Euclidean distances and rounding them up. Next, the minimum spanning
tree was determined using Prim’s algorithm [29], and the edges in the tree were added to the
edge list to ensure connectivity. In addition, bα(n(n− 1)/2− (n− 1))c shortest unused edges
were added to the edge list, where higher values of α result in a higher number of edges. The
demand of each selected edge (i, j) was determined as qij = dκdij + (1− κ)U [0, 1]dije, which
results in demand values with a higher correlation to dij as κ increases. Finally, the curb
weight of the vehicle was determined as W = ρ

∑
(i,j)∈E qij .

For a comprehensive testing of the algorithm performance, we have generated 10 instances
for n ∈ {10, 20} and each setting of (α, κ, ρ) ∈ {0.2, 0.5, 0.8}3, resulting in 540 instances. A
preliminary analysis of the results has shown that as the sparsity parameter increases above
0.5, the resulting routes contains very few deadheadings, so the resulting instances are not
very challenging. The effects of the other two parameters are observed to be negligible. As a
result, we have also created a second set of more difficult instances by generating 10 instances
for n ∈ {10, 20, 30} and each setting of (α, κ, ρ) ∈ {0.2, 0.33, 0.5}3 for a total of 810 instances.

The aggregate computational results for the first and second instance sets are presented
in Tables 8 and 9, respectively. In these tables, the columns labeled |V | and |E| represent
the number of vertices and edges of the 90 instances in the corresponding row. The columns
labeled ‘EC deviation’, ‘ILS deviation’ and ‘VNS deviation’ show the percent average gap
obtained with the greedy constructive, the ILS and the VNS with respect to the best known
solution. The average computing times in seconds are provided in columns ‘ILS seconds’ and
‘VNS seconds’.

|V | |E| EC deviation ILS deviation ILS seconds VNS deviation VNS seconds

10 16 111.65% 0.01% 0.19 0.00% 0.10
10 27 76.43% 0.00% 2.04 0.01% 1.15
10 37 60.80% 0.00% 9.34 0.01% 5.95
20 53 152.43% 0.01% 42.30 0.04% 27.98
20 104 90.71% 0.01% 858.29 0.03% 674.35
20 155 68.31% 0.01% 5202.90 0.01% 4450.49

Table 8: Computational results with k = 300

22

|V | |E| EC deviation ILS deviation ILS seconds VNS deviation VNS seconds

10 16 110.96% 0.04% 0.04 0.01% 0.02
10 20 98.93% 0.04% 0.13 0.01% 0.06
10 27 73.90% 0.04% 0.46 0.01% 0.24
20 53 156.70% 0.12% 6.89 0.05% 3.93
20 75 120.43% 0.05% 40.23 0.05% 26.68
20 104 92.76% 0.03% 185.85 0.03% 135.67
30 110 171.87% 0.08% 187.37 0.08% 131.11
30 162 127.82% 0.04% 1200.48 0.03% 957.01
30 232 98.05% 0.02% 6714.52 0.02% 5752.62

Table 9: Computational results with k = 75

For the first set of instances, we have used kmax = 300, an iteration limit that would
keep the CPU time requirement at reasonable levels for large values of m = |E|. Both
metaheuristics are comparable, with ILS outperforming VNS for larger instances, and VNS
requiring a shorter CPU time. The performance of the greedy heuristic improves as m
increases. For the second instance set, we had to use kmax = 75 to be consistent among the
instances and still have a reasonable CPU time for the largest instances. In this case, VNS
slightly outperforms ILS due to its faster convergence rate. The observations about the CPU
time requirement of the metaheuristics and the performance of the greedy algorithm remain
unchanged.

We have run the branch-and-cut algorithm on the 270 smallest instances of the first set,
those with |V | = 10 and |E| ∈ {16, 27, 37}. The exact method was capable of solving to
optimality all the 90 instances, except one with |E| = 16, within an average computing time
of 226 seconds. For these 89 instances, VNS also provided the optimal solution with an
average computing time of 0.1 second, while ILS took 0.2 second on average and found 87
optima. On the other two instances the deviation gaps from the optimal values were 0.12%
and 0.88%. Table 10 shows the average lower and upper bounds obtained with the branch-
and-cut algorithm and the heuristic procedures on the 180 remaining instances. The feasible
solutions provided by ILS and VNS are considerably better than the upper bounds obtained
by the exact method after one hour of computing time, and show a gap of approximately 5%
with respect to the lower bound. These results confirm that both heuristic procedures are
capable of providing solution of good quality within very short computing times.

B & C ILS VNS

inst LB UB UB Seconds UB Seconds

|E| = 27 90 763864.9 809948.8 803533.8 1.9 803557.7 1.1
|E| = 37 90 1986997.2 2195655.6 2102465.5 8.9 2102584.0 5.7

Table 10: Comparison of the exact and heuristic algorithms

23

5 Conclusions

We have presented a new and interesting arc routing problem in which the cost of traversing
the edges depends not only on their length, but also on the load of the vehicle when traversing
them. This new problem, called the Chinese Postman Problem with Load-Dependent Costs,
has been proved to be NP-hard, although it is solvable in polynomial time in some special
cases, namely on star trees, and when the demands of the edges are proportional to their
lengths and the graph is Eulerian or a weighted tree. For the general problem, we have
proposed two formulations: a pure arc routing formulation and a node routing formulation
based on a transformation of the original graph. Computational experiments with both
formulations have shown that they can only solve very small instances optimally, within a
reasonable time. Given the difficulty of the problem, we have proposed two metaheuristics
based on the ILS and VNS methodologies. The results obtained with both methods on a very
large set of instances demonstrate that these algorithms provide very good feasible solutions
within short computing times.

Acknowledgments: The work by Ángel Corberán, Isaac Plana, and José M. Sanchis was
supported by the Spanish Ministerio de Economı́a y Competitividad and Fondo Europeo
de Desarrollo Regional (FEDER) through project MTM2015-68097-P (MINECO/FEDER)
and by the Generalitat Valenciana (project GVPROMETEO2013-049). Gilbert Laporte was
supported by the Canadian Natural Sciences and Engineering Research Council under grant
2015-06189.

References

[1] F. Afrati, S. Cosmadakis, C. Papadimitriou and N. Papakostantinou (1986). The com-
plexity of the traveling repairman problem. RAIRO Informatique Théorique et Applica-
tions 20, 79-87.

[2] M. Barth and K. Boriboonsomsin (2008), Real-world impacts of traffic congestion. Trans-
portation Research Record: Journal of the Transportation Research Board 2058, 163-171.

[3] M. Barth, T. Younglove and G. Scora (2005), Development of a heavy-duty diesel modal
emissions fuel consumption model. Technical Report, UC Berkeley: California Partners
for Advanced Transit and Highways (PATH).

[4] T. Bektaş, E. Demir and G. Laporte (2016), Green vehicle routing. In: Psaraftis, H.N.
(Ed.), Green Transportation Logistics: The Quest for Win-Win Solutions. Springer,
Cham, Switzerland, pp. 243-265.

[5] T. Bektaş and G. Laporte (2011), The Pollution-Routing Problem. Transportation Re-
search Part B 45, 1232-1250.

[6] H. Belouadah, M.E. Posner and C.N. Potts (1992), Scheduling with release dates on a
single machine to minimize total weighted completion time. Discrete Applied Mathemat-
ics 36, 213-231.

24

[7] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan and M. Sudan
(1994), The minimum latency problem. In Proc. 26th ACM Symposium on the Theory
of Computing, 163-171.

[8] N. Christofides, V. Campos, Á. Corberán and E. Mota (1981), An algorithm for the
Rural Postman Problem. Technical Report ICOR 81.5, Imperial College, London.

[9] Á. Corberán and G. Laporte (2014), Arc Routing: Problems, Methods, and Applications.
MOS-SIAM Series on Optimization 20, SIAM, Philadelphia.

[10] S. Dabia, E. Demir and T. Van Woensel (2016), An exact approach for a variant of the
pollution-routing problem. Transportation Science, forthcoming.

[11] E. Demir, T. Bektaş and G. Laporte (2011), A comparative analysis of several vehicle
emission models for freight transportation. Transportation Research Part D 16, 347-357.

[12] E. Demir, T. Bektaş and G. Laporte (2012), An adaptive large neighborhood search
heuristic for the pollution-routing problem. European Journal of Operational Research
223, 346-359.

[13] E. Demir, T. Bektaş and G. Laporte (2014a), The bi-objective pollution-routing problem.
European Journal of Operational Research 232, 464-478.

[14] E. Demir, T. Bektaş and G. Laporte (2014b), A review of recent research on green road
freight transportation. European Journal of Operational Research 237, 775-793.

[15] K. Fagerholt, G. Laporte and I. Norstad (2010), Reducing fuel emissions by optimizing
speed on shipping routes. Journal of the Operational Research Society 61, 523-529.

[16] R.W. Floyd (1962), Algorithm 97 - Shortest path. Communications of the ACM 5, 345.

[17] A. Hertz, G. Laporte and P. Nanchen-Hugo (1999), Improvement procedures for the
Undirected Rural Postman Problem. INFORMS Journal on Computing 11, 53-62.

[18] L.M. Hvattum, I. Norstad, K. Fagerholt, and G. Laporte (2013), Analysis of an exact
algorithm for the vessel speed optimization problem. Networks 62, 132-135.

[19] I. Kara, B.Y. Kara and M.K. Yetis (2007), Energy minimizing vehicle routing problem.
In: Dress, A., Xu, Y., Zhu, B. (Eds.), Combinatorial Optimization and Applications.
Lecture Notes in Computer Science 4616, Springer, Berlin/Heidelberg, pp. 62-71.

[20] Ç. Koç, T. Bektaş, O. Jabali and G. Laporte (2014), The fleet size and mix pollution-
routing problem. Transportation Research Part B 70, 239-254.

[21] Ç. Koç, T. Bektaş, O. Jabali and G. Laporte (2016a), The impact of location, fleet
composition and routing on emissions in urban logistics. Transportation Research Part
B 84, 81-102.

[22] Ç. Koç, T. Bektaş, O. Jabali and G. Laporte (2016b), A comparison of three idling
options in long-haul truck scheduling, Transportation Research Part B 93, 631-647.

[23] R. Kramer, A. Subramanian and T. Vidal (2015), A matheuristic approach for the
pollution-routing problem. European Journal of Operational Research 243, 523-539.

25

[24] G. Laporte (2014), The undirected Chinese postman problem. In: Corberán, Á., Laporte,
G. (Eds.), Arc Routing: Problems, Methods, and Applications. MOS-SIAM Series on
Optimization 20, SIAM, Philadelphia, pp. 53-64.

[25] A. McKinnon (2007), CO2 Emissions from freight transport in the UK. TR, Prepared for
the Climate Change Working Group of the Commission for Integrated Transport, Lon-
don, UK. <www.isotrak.com/news/press/CO2 emissions freight transport.pdf>

(accessed 11.02.11).

[26] I. Norstad, K. Fagerholt and G. Laporte (2011), Tramp ship routing and scheduling with
speed optimization. Transportation Research Part C 19, 853-865.

[27] N. van Omme (2011), Le problème du postier chinois cumulatif. PhD thesis, Université
de Montréal.

[28] N. van Omme, M. Gendreau and P. Soriano (2013), On the complexity of the Cumulative
Chinese Postman Problem. Technical Report, CIRRELT, Montréal.

[29] R.C. Prim (1957), Shortest connection networks and some generalizations. Bell System
Technical Journal 36, 1389-1401.

[30] M. Ross (1994), Automobile fuel consumption and emissions: effects of vehicle and
driving characteristics. Annual Review of Energy and the Environment 19, 75-112.

[31] A. Sbihi and R.W. Eglese (2007), Combinatorial optimization and green logistics. 4OR:
A Quarterly Journal of Operations Research 5, 99-116.

[32] R. Sitters (2002), The minimum latency problem is NP-hard for weighted trees. In:
Proc. 9th International IPCO Conference on Integer Programming and Combinatorial
Optimization, 230-239.

26

