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Logic programming: laxness and saturation✩

Ekaterina Komendantskaya∗

Department of Computer Science, Heriot-Watt University, Edinburgh, UK

John Power∗

Department of Computer Science, University of Bath, BA2 7AY, UK

Abstract

A propositional logic program P may be identified with a PfPf -coalgebra on
the set of atomic propositions in the program. The corresponding C(PfPf )-
coalgebra, where C(PfPf ) is the cofree comonad on PfPf , describes derivations
by resolution. That correspondence has been developed to model first-order
programs in two ways, with lax semantics and saturated semantics, based on lo-
cally ordered categories and right Kan extensions respectively. We unify the two
approaches, exhibiting them as complementary rather than competing, reflect-
ing the theorem-proving and proof-search aspects of logic programming. While
maintaining that unity, we further refine lax semantics to give finitary models
of logic programs with existential variables, and to develop a precise semantic
relationship between variables in logic programming and worlds in local state.

Keywords: Logic programming, coalgebra, coinductive derivation tree,
Lawvere theories, lax transformations, saturation

1. Introduction

Over recent years, there has been a surge of interest in category theoretic
semantics of logic programming. Research has focused on two ideas: lax seman-
tics, proposed by the current authors and collaborators [1], and saturated se-
mantics, proposed by Bonchi and Zanasi [2]. Both ideas are based on coalgebra,
agreeing on variable-free logic programs. Both ideas use subtle, well-established
category theory, associated with locally ordered categories and with right Kan
extensions respectively [3]. And both elegantly clarify and extend established
logic programming constructs and traditions, for instance [4] and [5].
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Until now, the two ideas have been presented as alternatives, competing with
each other rather than complementing each other. A central thesis of this paper
is that the competition is illusory, the two ideas being two views of a single, ele-
gant body of theory, those views reflecting different but complementary aspects
of logic programming, those aspects broadly corresponding with the notions of
theorem proving and proof search. Such reconciliation has substantial conse-
quences. In particular, it means that whenever one further refines one approach,
as we shall do to the original lax approach in two substantial ways here, one
should test whether the proposed refinement also applies to the other approach,
and see what consequences it has from the latter perspective.

The category theoretic basis for both lax and saturated semantics is as fol-
lows. It has long been observed, e.g., in [6, 7], that logic programs induce
coalgebras, allowing coalgebraic modelling of their operational semantics. Us-
ing the definition of logic program in Lloyd’s book [8], given a set of atoms At,
one can identify a variable-free logic program P built over At with a PfPf -
coalgebra structure on At, where Pf is the finite powerset functor on Set: each
atom is the head of finitely many clauses in P , and the body of each clause
contains finitely many atoms. It was shown in [9] that if C(PfPf ) is the cofree
comonad on PfPf , then, given a logic program P qua PfPf -coalgebra, the corre-
sponding C(PfPf )-coalgebra structure characterises the and-or derivation trees
generated by P , cf. [4]. That fact has formed the basis for our work on lax
semantics [1, 10, 11, 12, 13] and for Bonchi and Zanasi’s work on saturation
semantics [14, 2].

In attempting to extend the analysis to arbitrary logic programs, both groups
followed the tradition of [15, 6, 5, 16]: given a signature Σ of function symbols,
let LΣ denote the Lawvere theory generated by Σ, and, given a logic program P
with function symbols in Σ, consider the functor category [Lop

Σ , Set], extending
the set At of atoms in a variable-free logic program to the functor from Lop

Σ to
Set sending a natural number n to the set At(n) of atomic formulae with at most
n variables generated by the function symbols in Σ and the predicate symbols in
P . We all sought to model P by a [Lop

Σ , PfPf ]-coalgebra p : At −→ PfPfAt that,
at n, takes an atomic formula A(x1, . . . , xn) with at most n variables, considers
all substitutions of clauses in P into clauses with variables among x1, . . . , xn

whose head agrees with A(x1, . . . , xn), and gives the set of sets of atomic formu-
lae in antecedents, naturally extending the construction for variable-free logic
programs. However, that idea is too simple for two reasons. We all dealt with
the second problem in the same way, so we shall discuss it later, but the first
problem is illustrated by the following example.

Example 1. ListNat (for lists of natural numbers) denotes the logic program
1. nat(0)←
2. nat(s(x))← nat(x)
3. list(nil)←
4. list(cons(x, y))← nat(x), list(y)

ListNat has nullary function symbols 0 and nil, a unary function symbol s,
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and a binary function symbol cons. So the signature Σ of ListNat contains four
elements.

There is a map in LΣ of the form 0 → 1 that models the nullary function
symbol 0. So, naturality of the map p : At −→ PfPfAt in [Lop

Σ , Set] would yield
commutativity of the diagram

At(1)
p1
✲ PfPfAt(1)

At(0)

At(0)

❄

p0

✲ PfPfAt(0)

PfPfAt(0)

❄

But consider nat(x) ∈ At(1): there is no clause of the form nat(x) ← in
ListNat, so commutativity of the diagram would imply that there cannot be a
clause in ListNat of the form nat(0)← either, but in fact there is one. Thus p
is not a map in the functor category [Lop

Σ , Set].

Problem 1. As illustrated by Example 1, i.e., in ListNat, the natural con-
struction of p : At −→ PfPfAt does not form a map, i.e., yield a natural
transformation, in [Lop

Σ , Set].

Proposed resolutions to Problem 1 diverged: at CALCO in 2011, we pro-
posed lax transformations [17], then at CALCO 2013, Bonchi and Zanasi pro-
posed saturation semantics [14]. First we shall describe our approach.

Our approach was to relax the naturality condition on p to a subset condi-
tion, following [18, 19, 20], so that, given a map in LΣ of the form f : n → m,
the diagram

At(m)
pm
✲ PfPfAt(m)

At(n)

At(f)

❄

pn

✲ PfPfAt(n)

PfPfAt(f)

❄

need not commute, but rather the composite via PfPfAt(m) need only yield a
subset of that via At(n). So, for example, p1(nat(x)) could be the empty set
while p0(nat(0)) could be non-empty in the semantics for ListNat as required.
We extended Set to Poset in order to express such laxness, and we adopted
established category theoretic research on laxness, notably that of [20], in order
to prove that a cofree comonad exists and, on programs such as ListNat, behaves
as we wish. This agrees with, and is indeed an instance of, He Jifeng and Tony
Hoare’s use of laxness to model data refinement [21, 22, 23, 24].
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Bonchi and Zanasi’s approach was to use saturation semantics [14, 2], fol-
lowing [6]. The key category theoretic result that supports it asserts that, re-
garding ob(LΣ), equally ob(LΣ)op, as a discrete category with inclusion functor
I : ob(LΣ) −→ LΣ, the functor

[I, Set] : [Lop
Σ , Set] −→ [ob(LΣ)op, Set]

that sends H : Lop
Σ −→ Set to the composite HI : ob(LΣ)op −→ Set has a right

adjoint, given by right Kan extension. The data for p : At −→ PfPfAt, although
not forming a map in [Lop

Σ , Set], may be seen as a map in [ob(LΣ)op, Set]. So,
by the adjointness, the data for p corresponds to a map p̄ : At −→ R(PfPfAtI)
in [Lop

Σ , Set], thus to a coalgebra on At in [Lop
Σ , Set], where R(PfPfAtI) is the

right Kan extension of PfPfAtI along the inclusion I. The right Kan extension
is defined by

R(PfPfAtI)(n) =
∏

m∈LΣ

(PfPfAt(m))LΣ(m,n)

and the function

p̄(n) : At(n) −→
∏

m∈LΣ

(PfPfAt(m))LΣ(m,n)

takes an atomic formula A(x1, . . . , xn), and, for every substitution for x1, . . . , xn

generated by the signature Σ, gives the set of sets of atomic formulae in the
tails of clauses with head A(t1, . . . , tn), where the ti’s are determined by the
substitution. By construction, p̄ is natural, but one quantifies over all possible
substitutions for x1, . . . , xn in order to obtain that naturality, and one ignores
the laxness of p.

As we shall show in Section 5, the two approaches can be unified. If one
replaces

[I, Set] : [Lop
Σ , Set] −→ [ob(LΣ)op, Set]

by the inclusion
[Lop

Σ , Poset] −→ Lax(Lop
Σ , Poset)

[Lop
Σ , Set] being a full subcategory of [Lop

Σ , Poset], one obtains exactly Bonchi
and Zanasi’s correspondence between p and p̄, with exactly the same formula,
starting from lax transformations as we proposed. Thus, from a category the-
oretic perspective, saturation can be seen as complementary to laxness rather
than as an alternative to it. This provides a robustness test for future refine-
ments to models of logic programming: a refinement of one view of category
theoretic semantics can be tested by its effect on the other. We now turn to
such refinements.

Recently, we have refined lax semantics in two substantial ways, the first of
which was the focus of the workshop paper [25] that this paper extends, with
the second being to start to build a precise relationship with the semantics for
local variables [26], which is new here. For the first, a central contribution of
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lax semantics has been the inspiration it provided towards the development of
an efficient logic programming algorithm [1, 10, 11, 12, 13]. That development
drew our attention to the semantic significance of existential variables: such
variables do not appear in ListNat, and they are not needed for a considerable
body of logic programming, but they do appear in logic programs such as the
following, which is a leading example in Sterling and Shapiro’s book [27].

Example 2. GC (for graph connectivity) denotes the logic program
1. connected(x, x)←
2. connected(x, y)← edge(x, z), connected(z, y)

There is a variable z in the tail of the second clause of GC that does not appear
in its head, whereas no such variable appears in ListNat. Such a variable is called
an existential variable, the presence of which challenges the algorithmic signifi-
cance of lax semantics. In describing the putative coalgebra p : At −→ PfPfAt
just before Example 1, we referred to all substitutions of clauses in P into
clauses with variables among x1, . . . , xn whose head agrees with A(x1, . . . , xn).
If there are no existential variables, that amounts to term-matching, which is
algorithmically efficient; but if existential variables do appear, the mere pres-
ence of a unary function symbol generates an infinity of such substitutions,
creating algorithmic difficulty, which, when first introducing lax semantics, we
avoided modelling by replacing the outer instance of Pf by Pc, thus allowing for
countably many choices.

Bonchi and Zanasi, in [14, 2], followed the lead of lax semantics in using
Pc rather than Pf in order to account for existential variables, but one needs
a careful study to see that. In saturated semantics, countability arises in two
ways: applying the right Kan extension R yields countability as there may be
countably many substitutions for variables; and using Pc rather than Pf also
yields countability. In the absence of existential variables, Bonchi and Zanasi
could have applied saturation to the map p : At −→ PfPfAt, with the right Kan
extension generating the countability required for saturation. However, in the
presence of existential variables, there is no such map into PfPfAt to which to
apply saturation. So for saturated semantics, our analysis of existential variables
makes for a subtle difference, clarifying where countability is required.

That is the second of the two problems mentioned just before Example 1.
More succinctly, it may be expressed as follows:

Problem 2. As illustrated by Example 2, an arbitrary logic program does not
generate a map of the form p : At −→ PfPfAt. Previous work addressed that
by an artificial use of countability.

We have long sought a solution to Problem 2. We finally found and presented
such a resolution in the workshop paper [25] that this paper extends. We both
refine it a little more, as explained later, and give more detail here.

The conceptual key to the resolution was to isolate and give finitary lax
semantics to the notion of coinductive tree [28, 1]. Coinductive trees arise from
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term-matching resolution [28, 1], which is a variant of SLD-resolution. Term-
matching captures the theorem proving aspect of logic programming, which
is distinct from, but complementary with, its problem solving aspect, which
is captured by SLD-resolution [12, 11]. The difference is that in the term-
matching approach, one only substitutes in a goal after having exhausted all
possible term-matching, whereas in SLD-resolution, one uses full unification at
any time. We called the derivation trees arising from term-matching coinductive
trees in order to mark their connection with coalgebraic logic programming,
which we also developed.

Syntactically, one can observe the difference between lax semantics and sat-
uration semantics in that lax semantics models coinductive trees, which are
finitely branching, whereas saturation involves infinitely many possible substi-
tutions, leading Bonchi and Zanasi to model different kinds of trees, their focus
being on proof search rather than on theorem proving.

Chronologically, we introduced lax semantics in 2011 as above [17]; lax se-
mantics inspired us to investigate term-matching and to introduce the notion
of coinductive tree [28]; because of the possibility of existential variables, our
lax semantics for coinductive trees, despite inspiring the notion, was potentially
infinitary [1]; so we have now refined lax semantics to ensure finitariness of the
semantics for coinductive trees, even in the presence of existential variables [25],
introducing it in the workshop paper that this paper extends. We further refine
lax semantics here to start to build a precise relationship with the semantics of
local variables [26], which we plan to develop further in future. We regard it
as positive that lax semantics brings to the fore, in semantic terms, the signifi-
cance of existential variables, and allows a precise semantic relationship between
the role of variables in logic programming and local variables as they arise in
programming more generally.

The semantics we give in this paper is subtly different to that in [25]. Here,
we disambiguate the role of Pf in our modelling of existential variables: in
Section 6, we consider

∫
At, then apply PfPf to it, whereas we mixed a con-

struction for
∫

with Pf in [25], but that does not quite match the modelling
of local state. We also give far more detail throughout this paper: in giving
examples, in explaining the relationship with Bonchi and Zanasi’s saturated
semantics, in proofs, and in developing the relationship with local state.

The paper is organised as follows. In Section 2, we set logic programming ter-
minology, explain the relationship between term-rewriting and SLD-resolution,
and introduce the notion of coinductive tree. In Section 3, we give semantics
for variable-free logic programs. This semantics could equally be seen as lax
semantics or saturated semantics, as they agree in the absence of variables. In
Section 4, we model coinductive trees for logic programs without existential
variables and explain the difficulty in modelling coinductive trees for arbitrary
logic programs. In Section 5, we recall saturation semantics and make precise
the relationship between it and lax semantics. We devote Section 6 of the paper
to refining lax semantics, while maintaining the relationship with saturation
semantics, to model the coinductive trees generated by logic programs with ex-
istential variables, and in Section 7, we start to build a precise relationship with
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the semantics of local state [26].

2. Theorem proving in logic programming

A signature Σ consists of a set F of function symbols f, g, . . . each equipped
with an arity. Nullary (0-ary) function symbols are constants. For any set Var
of variables, the set Ter(Σ) of terms over Σ is defined inductively as usual:

• x ∈ Ter(Σ) for every x ∈ Var .

• If f is an n-ary function symbol (n ≥ 0) and t1, . . . , tn ∈ Ter(Σ), then
f(t1, . . . , tn) ∈ Ter(Σ).

A substitution over Σ is a (total) function σ : Var → Ter(Σ). Substitutions
are extended from variables to terms as usual: if t ∈ Ter(Σ) and σ is a substi-
tution, then the application σ(t) is a result of applying σ to all variables in t. A
substitution σ is a unifier for t, u if σ(t) = σ(u), and is a matcher for t against
u if σ(t) = u. A substitution σ is a most general unifier (mgu) for t and u if it
is a unifier for t and u and is more general than any other such unifier, i.e., all
unifiers factor through any most general unifier. A most general matcher (mgm)
σ for t against u is defined analogously.

In line with logic programming (LP) tradition [8], we consider a set P of
predicate symbols each equipped with an arity. It is possible to define logic
programs over terms only, in line with the term-rewriting (TRS) tradition [29],
as in [11], but we will follow the usual LP tradition here. That gives us the
following inductive definitions of the sets of atomic formulae, Horn clauses and
logic programs (we also include the definition of terms for convenience).

Definition 1.
Terms Ter ::= V ar | F(Ter, ..., T er)
Atomic formulae (or atoms) At ::= P(Ter, ..., T er)
(Horn) clauses HC ::= At← At, ..., At
Logic programs Prog ::= HC, ..., HC

In what follows, we will use letters A, B, C, D, possibly with subscripts, to
refer to elements of At.

Given a logic program P , we may ask whether a given atom is logically en-
tailed by P . E.g., given the program ListNat we may ask whether list(cons(0, nil))
is entailed by ListNat. The following rule, which is a restricted form of SLD-
resolution, provides a semi-decision procedure to derive the entailment.

Definition 2 (Term-matching (TM) Resolution). Given a program P and
an atomic formula A, we say P entails A, written as P ⊢ A, if there is a deriva-
tion of P ⊢ A from an empty goal using the following rules:

P ⊢ [ ]

P ⊢ σA1 · · · P ⊢ σAn

P ⊢ σA
if (A← A1, . . . , An) ∈ P
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In contrast, the SLD-resolution rule could be presented in the following form:

B1, . . . , Bj, . . . , Bn ❀P σB1, . . . , σA1, . . . , σAn, . . . , σBn

if (A← A1, . . . , An) ∈ P , and σ is the mgu of A and Bj . The derivation for A
succeeds when A ❀P [ ]; we use ❀

∗
P to denote several steps of SLD-resolution.

At first sight, the difference between TM-resolution and SLD-resolution may
seem only to be notational. Indeed, both ListNat ⊢ list(cons(0, nil)) and
list(cons(0, nil)) ❀

∗
ListNat [ ] by the above rules (see also Figure 1). However,

ListNat 0 list(cons(x, y)) whereas list(cons(x, y)) ❀
∗
ListNat [ ]. And, even

more mysteriously, GC 0 connected(x, y) while connected(x, y) ❀GC [ ].
In fact, TM-resolution reflects the theorem proving aspect of LP: the rules

of Definition 2 can be used to semi-decide whether a given term t is entailed by
P . In contrast, SLD-resolution reflects the problem solving aspect of LP: using
the SLD-resolution rule, one asks whether, for a given t, a substitution σ can be
found such that P ⊢ σ(t). There is a subtle but important difference between
these two aspects of proof search.

For example, when considering the successful derivation list(cons(x, y))
❀

∗
ListNat [ ], we assume that list(cons(x, y)) holds only relative to a com-

puted substitution, e.g. x 7→ 0, y 7→ nil. Of course this distinction is natural
from the point of view of theorem proving: list(cons(x, y)) is not a “the-
orem” in this generality, but its special case, list(cons(0, nil)), is. Thus,
ListNat ⊢ list(cons(0, nil)) but ListNat 0 list(cons(x, y)) (see also Fig-
ure 1). Similarly, connected(x, y) ❀GC [ ] should be read as: connected(x, y)
holds relative to the computed substitution y 7→ x.

According to the soundness and completeness theorems for SLD-resolution [8],
the derivation ❀ has existential meaning, i.e. when list(cons(x, y)) ❀

∗
ListNat

[ ], the successful goal list(cons(x, y)) is not meant to be read as universally
quantified over x and y. In contrast, TM-resolution proves a universal state-
ment. So GC ⊢ connected(x, x) reads as: connected(x, x) is entailed by GC
for any x.

Much of our recent work has been devoted to formal understanding of the
relation between the theorem proving and problem solving aspects of LP [11, 12].
The type-theoretic semantics of TM-resolution, given by “Horn clauses as types,
λ-terms as proofs” is given in [12, 13].

Definition 2 gives rise to derivation trees. E.g. the derivation (or, equiva-
lently, the proof) for ListNat ⊢ list(cons(0, nil)) can be represented by the
following derivation tree:

list(cons(0, nil))

nat(0)

[ ]

list(nil)

[ ]
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list(cons(0, nil))

nat(0)

[ ]

list(nil)

[ ]

list(nil)

[ ]

list(cons(x, y))

nat(x) list(y)

Figure 1: Left: The coinductive tree for list(cons(0, nil)) and the extended program
ListNat+. Right: The coinductive tree for list(cons(x, y)) and ListNat+. Each •-node
marks a clause whose head matches the antecedent of the •-node in the tree.

In general, given a term t and a program P , more than one derivation for
P ⊢ t is possible. For example, if we add a fifth clause to the program ListNat:

5. list(cons(0, x))← list(x)

then yet another, alternative, proof is possible for the extended program:

ListNat+ ⊢ list(cons(0, nil))

via Clause 5:

list(cons(0, nil))

list(nil)

[ ]

To reflect the choice of derivation strategies at every stage of the derivation,
we introduce a new kind of node called an or-node, which we depict by a •-node,
e.g., as in Figure 1.

This intuition is made precise in the following definition of a coinductive
tree, which first appeared in [17, 1] and was refined in [11] under the name of
a rewriting tree. Over a succession of papers, we have made minor modifica-
tions and a few minor corrections to the precise formulation of the notion of
coinductive tree, but the idea and application has remained the same.

Definition 3 (Coinductive tree). Let P be a logic program and A be an
atomic formula. The coinductive tree for A is the possibly infinite tree T satis-
fying the following properties.

• the root of T is labelled by A

• Each node in T is either an and-node or an or-node

• Each or-node is labelled by •

9



• Each and-node is labelled by an atom

• For every and-node A′ occurring in T , if there is a clause Ci in P of the
form Bi ← Bi

1, . . . , B
i
ni

, such that there is an mgm θ of Bi against A′,
then A′ has an or-node as a child, and that or-node has children given
by and-nodes θ(Bi

j), . . . , θ(B
i
k), where {Bj , . . . , Bk} ⊆ {B1, . . . , Bni

} and

Bj , . . . , Bk is the maximal such set for which θ(Bi
j), . . . , θ(B

i
k) are distinct.

Note the use of mgms (rather than mgus) in the last item. There may exist
clauses with empty antecedents: some such exist in Figure 1. An or-node, thus
a •-node with a single child labelled [ ], represents such a clause.

Coinductive trees provide a convenient model for proofs by TM-resolution.
Note that coinductive trees are necessarily finitely branching, logic programs
being inherently finite.

Let us make one final observation on TM-resolution. Generally, given a
program P and an atom t, one can prove that

t ❀
∗
P [ ] with computed substitution σ if and only if P ⊢ σt.

This simple fact may leave the impression that proofs (and correspondingly
coinductive trees) for TM-resolution are in some sense fragments of reductions
by SLD-resolution. Compare, for example, the right-hand tree of Figure 1 be-
fore substitution with the larger left-hand tree obtained after the substitution.
In this case, we could emulate the problem solving aspect of SLD-resolution
by using coinductive trees and allowing the application of substitutions within
coinductive trees, as was proposed in [28, 11, 12]. That works perfectly for
programs such as ListNat, but not for existential programs: although there is a
one step SLD-derivation for connected(x, y) ❀GC [ ] (with y 7→ x), there is no
TM-resolution proof for connected(x, y), as the derivation diverges and gives
rise to the following infinite coinductive tree:

connected(x, y)

edge(x, z) connected(z, y)

edge(x, w) connected(w, y)

.

..

The above tree is not a fragment of the derivation connected(x, y) ❀GC [ ],
moreover, it requires more (infinitely many) variables. Thus, the operational
semantics of TM-resolution and SLD-resolution can be very different for exis-
tential programs, in regard both to termination and to the number of variables
involved.
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This issue is largely orthogonal to that of non-termination. Consider the
non-terminating (but not existential) program Bad:

bad(x)← bad(x)
For Bad, the operational behaviours of TM-resolution and SLD-resolution are
similar: in both cases, derivations do not terminate, and both require only
finitely many variables. Moreover, such programs can be analysed using similar
coinductive methods in TM- and SLD-resolution [13, 30].

The problems caused by existential variables are known in the literature
on theorem proving and term-rewriting [29]. In TRS [29], existential variables
are not allowed to appear in rewriting rules, and in type inference based on
term rewriting or TM-resolution, the restriction to non-existential programs is
common [31].

So theorem-proving, in contrast to problem-solving, is modelled by term-
matching; term-matching gives rise to coinductive trees; and as explained in the
introduction and, in more detail, later, coinductive trees give rise to laxness. So
in this paper, we use laxness to model coinductive trees, and thereby theorem-
proving in LP, and we relate our semantics with Bonchi and Zanasi’s saturated
semantics, which we believe primarily models the problem-solving aspect of logic
programming.

Categorical semantics for existential programs, which are known to be chal-
lenging for theorem proving, is a central contribution of Section 6 and of this
paper.

3. Semantics for variable-free logic programs

In this section, we recall and develop the work of [9], in regard to variable-
free logic programs, i.e., we take V ar = ∅ in Definition 1. Variable-free logic
programs are operationally equivalent to propositional logic programs, as sub-
stitutions play no role in derivations. In this (propositional) setting, coinductive
trees resemble the and-or derivation trees known in the LP literature [4], and
this semantics appears as the ground case of both lax semantics [1] and saturated
semantics [2].

Proposition 1. For any set At, there is a bijection between the set of variable-
free logic programs over the set of atoms At and the set of PfPf -coalgebra struc-
tures on At, where Pf is the finite powerset functor on Set.

Theorem 1. Let C(PfPf ) denote the cofree comonad on PfPf . Then, given a
logic program P over At, equivalently p : At −→ PfPf (At), the corresponding
C(PfPf )-coalgebra p : At −→ C(PfPf )(At) sends an atom A to the coinductive
tree for A.

Proof. Applying the work of [32] to this setting, the cofree comonad is in
general determined as follows: C(PfPf )(At) is the limit of the diagram

. . . −→ At× PfPf (At× PfPf (At)) −→ At× PfPf (At) −→ At
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with maps determined by the projection π0 : At × PfPf (At) −→ At, with
applications of the functor At× PfPf (−) to it.

Putting At0 = At and Atn+1 = At× PfPfAtn, and defining the cone

p0 = id : At −→ At(= At0)

pn+1 = 〈id, PfPf (pn) ◦ p〉 : At −→ At× PfPfAtn(= Atn+1)

the limiting property of the diagram determines the coalgebra p : At −→
C(PfPf )(At). The image p(A) of an atom A is given by an element of the
limit, equivalently a map from 1 into the limit, equivalently a cone of the dia-
gram over 1.

To give the latter is equivalent to giving an element A0 of At, specifi-
cally p0(A) = A, together with an element A1 of At × PfPf (At), specifically
p1(A) = (A, p0(A)) = (A, p(A)), together with an element A2 of At×PfPf (At×
PfPf (At)), etcetera. The definition of the coinductive tree for A is inherently
coinductive, matching the definition of the limit, and with the first step agree-
ing with the definition of p. Thus it follows by coinduction that p(A) can be
identified with the coinductive tree for A.

Example 3. Let At consist of atoms A, B, C and D. Let P denote the logic
program

A ← B, C

A ← B, D

D ← A, C

So p(A) = {{B, C}, {B, D}}, p(B) = p(C) = ∅, and p(D) = {{A, C}}.
Then, as depicted in Figure 2, p0(A) = A, which is the root of the coinductive

tree for A.
Then p1(A) = (A, p(A)) = (A, {{B, C}, {B, D}}), which consists of the same

information as in the first three levels of the coinductive tree for A, i.e., the root
A, two or-nodes, and below each of the two or-nodes, nodes given by each atom
in each antecedent of each clause with head A in the logic program P : nodes
marked B and C lie below the first or-node, and nodes marked B and D lie below
the second or-node, exactly as p1(A) describes.

Continuing, note that p1(D) = (D, p(D)) = (D, {{A, C}}). So

p2(A) = (A, PfPf (p1)(p(A)))
= (A, PfPf (p1)({{B, C}, {B, D}}))
= (A, {{(B, ∅), (C, ∅)}, {(B, ∅), (D, {{A, C}})}})

which is the same information as that in the first five levels of the coinductive
tree for A: p1(A) provides the first three levels of p2(A) because p2(A) must map
to p1(A) in the cone; in the coinductive tree, there are two and-nodes at level 5,
labelled by A and C. As there are no clauses with head B or C, no or-nodes lie
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below the first three of the and-nodes at level 3. However, there is one or-node
lying below D, it branches into and-nodes labelled by A and C, which is exactly
as p2(A) tells us.

A

B C B D

A

. . .

C

Figure 2: The coinductive tree for A and the program P from Example 3.

4. Lax semantics for logic programs

We now lift the restriction on V ar = ∅ in Definition 1 and consider first-order
terms and atoms in full generality.

There are several equivalent ways in which to describe the Lawvere theory
generated by a signature. So, for precision, in this paper, we define the Lawvere
theory LΣ generated by a signature Σ as follows: ob(LΣ) is the set of natural
numbers. For each natural number n, let x1, . . . , xn be a specified list of distinct
variables. Define LΣ(n, m) to be the set of m-tuples (t1, . . . , tm) of terms gener-
ated by the function symbols in Σ and variables x1, . . . , xn. Define composition
in LΣ by substitution.

One can readily check that these constructions satisfy the axioms for a cat-
egory, with LΣ having strictly associative finite products given by the sum of
natural numbers. The terminal object of LΣ is the natural number 0. There
is a canonical identity-on-objects functor from Natop to LΣ, just as there is for
any Lawvere theory, and it strictly preserves finite products.

Example 4. Consider ListNat. The constants O and nil are maps from 0 to
1 in LΣ, s is modelled by a map from 1 to 1, and cons is modelled by a map
from 2 to 1. The term s(0) is the map from 0 to 1 given by the composite of the
maps modelling s and 0.

Given an arbitrary logic program P with signature Σ, we can extend the
set At of atoms for a variable-free logic program to the functor At : Lop

Σ → Set
that sends a natural number n to the set of all atomic formulae, with vari-
ables among x1, . . . , xn, generated by the function symbols in Σ and by the
predicate symbols in P . A map f : n → m in LΣ is sent to the func-
tion At(f) : At(m) → At(n) that sends an atomic formula A(x1, . . . , xm) to
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A(f1(x1, . . . , xn)/x1, . . . , fm(x1, . . . , xn)/xm), i.e., At(f) is defined by substitu-
tion.

As explained in the Introduction and in [9], we cannot model a logic program
by a natural transformation of the form p : At −→ PfPfAt as naturality breaks
down, e.g., in ListNat. So, in [17, 1], we relaxed naturality to lax naturality.
In order to define it, we extended At : Lop

Σ → Set to have codomain Poset by
composing At with the inclusion of Set into Poset. Mildly overloading notation,
we denote the composite by At : Lop

Σ → Poset.

Definition 4. Given functors H, K : Lop
Σ −→ Poset, a lax transformation

from H to K is the assignment to each object n of LΣ, of an order-preserving
function αn : Hn −→ Kn such that for each map f : n −→ m in LΣ, one has
(Kf)(αm) ≤ (αn)(Hf), pictured as follows:

Hm
αm

✲ Km

≥

Hn

Hf

❄

αn

✲ Kn

Kf

❄

Functors and lax transformations, with pointwise composition, form a locally
ordered category denoted by Lax(Lop

Σ , Poset). Such categories and generalisa-
tions have been studied extensively, e.g., in [18, 19, 20, 23].

Definition 5. Define Pf : Poset −→ Poset by letting Pf (P ) be the partial
order given by the set of finite subsets of P , with A ≤ B if for all a ∈ A, there
exists b ∈ B for which a ≤ b in P , with behaviour on maps given by image.
Define Pc similarly but with countability replacing finiteness.

We are not interested in arbitrary posets in modelling logic programming,
only those that arise, albeit inductively, by taking subsets of a set qua discrete
poset. So we gloss over the fact that, for an arbitrary poset P , Definition 5 may
yield factoring, with the underlying set of Pf (P ) being a quotient of the set of
subsets of P . The potential difficulty is that if Definition 5 makes A ≤ B and
B ≤ A, then as Pf is defined in terms of posets, it follows that A is put equal
to B, which would be inconvenient, but in fact, it does not substantially affect
us as we start with discrete posets rather than arbitrary ones.

Example 5. Modelling Example 1, ListNat generates a lax transformation of
the form p : At −→ PfPfAt as follows: At(n) is the set of atomic formulae in
ListNat with at most n variables.

For example, At(0) consists of nat(0), nat(nil), list(0), list(nil), nat(s(0)),
nat(s(nil)), list(s(0)), list(s(nil)), nat(cons(0, 0)), nat(cons(0, nil)),
nat(cons(nil, 0)), nat(cons(nil, nil)), etcetera.
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Similarly, At(1) includes all atomic formulae containing at most one (spec-
ified) variable x, thus all the elements of At(0) together with nat(x), list(x),
nat(s(x)), list(s(x)), nat(cons(0, x)), nat(cons(x, 0)), nat(cons(x, x)), etcetera.

The function pn : At(n) −→ PfPfAt(n) sends each element of At(n), i.e.,
each atom A(x1, . . . , xn) with variables among x1, . . . , xn, to the set of sets of
atoms in the antecedent of each unifying substituted instance of a clause in P
with head for which a unifying substitution agrees with A(x1, . . . , xn).

Taking n = 0, nat(0) ∈ At(0) is the head of one clause, and there is no
other clause for which a unifying substitution will make its head agree with
nat(0). The clause with head nat(0) has the empty set of atoms as its tail, so
p0(nat(0)) = {∅}.

Taking n = 1, list(cons(x, 0)) ∈ At(1) is the head of one clause given by
a unifying substitution applied to the final clause of ListNat, and accordingly
p1(list(cons(x, 0))) = {{nat(x), list(0)}}.

The family of functions pn satisfy the inequality required to form a lax trans-
formation because if A(x1, · · · , xn) is the head of a substituted instance of a
clause in P , then so is A(t1, · · · , tn) for any substitutions ti for xi. The family
does not satisfy the strict requirement of naturality as explained in the Introduc-
tion.

We now analyse the relationship between a lax transformation p : At −→
PfPfAt and p : At −→ C(PfPf )At, the corresponding coalgebra for the cofree
comonad C(PfPf ) on PfPf .

We recall the central abstract result of [17], the notion of an “oplax” map of
coalgebras being required to match that of lax transformation. Notation of the
form H-coalg refers to coalgebras for an endofunctor H , while notation of the
form C-Coalg refers to coalgebras for a comonad C. The subscript oplax refers
to oplax maps and, given an endofunctor E on Poset, the notation Lax(Lop

Σ , E)
denotes the endofunctor on Lax(Lop

Σ , Poset) given by post-composition with E;
similarly for a comonad.

Theorem 2. [17] For any locally ordered endofunctor E on Poset, if C(E) is
the cofree comonad on E, then there is a canonical isomorphism

Lax(Lop
Σ , E)-coalgoplax ≃ Lax(Lop

Σ , C(E))-Coalgoplax

Theorem 2 tells us that for any endofunctor E on Poset, the relationship
between E-coalgebras and C(E)-coalgebras extends pointwise from Poset to
Lax(Lop

Σ , Poset) providing one matches lax natural transformations by oplax
maps of coalgebras. It follows that, given an endofunctor E on Poset with cofree
comonad C(E), the cofree comonad for the endofunctor on Lax(Lop

Σ , Poset)
sending H : Lop

Σ −→ Poset to the composite EH : Lop
Σ −→ Poset sends H to

the composite C(E)H . Taking the example E = PfPf allows us to conclude
the following.

Corollary 1. [17] Lax(Lop
Σ , C(PfPf )) is the cofree comonad on Lax(Lop

Σ , PfPf ).

15



Corollary 1 means that there is a natural bijection between lax transformations

p : At −→ PfPfAt

and lax transformations

p : At −→ C(PfPf )At

subject to the two conditions required of a coalgebra of a comonad given point-
wise, thus by applying the construction of Theorem 1 pointwise. So it is the
abstract result we need in order to characterise the coinductive trees gener-
ated by logic programs with no existential variables, extending Theorem 1. As
explained in the Introduction, an existential variable in a logic program is a
variable that appears in the tail of a clause but not in its head. We explain the
situation in detail in Example 6, but for now, just note that ListNat does not
have existential variables, so the following result applies directly to it.

Theorem 3. Let C(PfPf ) denote the cofree comonad on the endofunctor PfPf

on Poset. Then, given a logic program P with no existential variables on At,
defining pn(A(x1, . . . , xn)) to be the set of sets of atoms in each antecedent of
each unifying substituted instance of a clause in P with head for which a unifying
substitution agrees with A(x1, . . . , xn), the corresponding Lax(Lop

Σ , C(PfPf ))-
coalgebra p : At −→ C(PfPf )At sends an atom A(x1, . . . , xn) to the coinductive
tree for A(x1, . . . , xn).

Proof. The absence of existential variables ensures that any variable that ap-
pears in the antecedent of a clause must also appear in its head. So every atom
in every antecedent of every unifying substituted instance of a clause in P with
head for which a unifying substitution agrees with A(x1, . . . , xn) actually lies in
At(n). Moreover, there are only finitely many sets of sets of such atoms. So the
construction of each pn is well-defined, i.e., the image of A(x1, . . . , xn) lies in
PfPfAt(n). The collection of maps given by pn for each object n of LΣ forms
a lax transformation from At to PfPfAt: the laxness condition holds because
substitution preserves the truth of a clause, i.e., if one makes a substitution into
both the head and tail of a clause that is true, the substituted instance of the
clause is also true.

By Corollary 1, p is determined pointwise. So, to construct it, we may fix
n and follow the proof of Theorem 1, consistently replacing At by At(n). To
complete the proof, observe that the construction of p from a logic program P
matches the construction of the coinductive tree for an atom A(x1, . . . , xn) if P
has no existential variables. So following the proof of Theorem 1 completes this
proof.

Example 6. Attempting to model Example 2, that of graph connectedness, GC,
by mimicking the modelling of ListNat in Example 5, i.e., defining the function
pn : At(n) −→ PfPfAt(n) by sending each element of At(n), i.e., each atom
A(x1, . . . , xn) with variables among x1, . . . , xn, to the set of sets of atoms in the
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antecedent of each unifying substituted instance of a clause in P with head for
which a unifying substitution agrees with A(x1, . . . , xn), fails.

Consider the clause

connected(x, y)← edge(x, z), connected(z, y)

Modulo possible renaming of variables, the head of the clause, i.e., the atom
connected(x, y), lies in At(2) as it has two variables. There is trivially only
one substituted instance of a clause in GC with head for which a unifying substi-
tution agrees with connected(x, y), and the singleton set consisting of the set of
atoms in its antecedent is {{edge(x, z), connected(z, y)}}, which does not lie in
PfPfAt(2) as it has three variables appear in it rather than two. See Section 2
for a picture of the coinductive tree for connected(x, y).

We dealt with that inelegantly in [17]: in order to force p2(connected(x, y))
to lie in PfPfAt(2) and model GC in any reasonable sense, we allowed sub-
stitutions for z in {{edge(x, z), connected(z, y)}} by any term on x, y on the
basis that there is no unifying such, so we had better allow all possibilities. So,
rather than modelling the clause directly, recalling that At(2) ⊆ At(3) ⊆ At(4),
etcetera, modulo renaming of variables, we put

p2(connected(x, y)) = {{edge(x, x), connected(x, y)}, {edge(x, y), connected(y, y)}}

p3(connected(x, y)) = {{edge(x, x), connected(x, y)}, {edge(x, y), connected(y, y)},

{edge(x, z), connected(z, y)}}

p4(connected(x, y)) = {{edge(x, x), connected(x, y)}, {edge(x, y), connected(y, y)},

{edge(x, z), connected(z, y)}, {edge(x, w), connected(w, y)}}

etcetera: for p2, as only two variables x and y appear in any element of
PfPfAt(2), we allowed substitution by either x or y for z; for p3, a third vari-
able may appear in an element of PfPfAt(3), allowing an additional possible
subsitution; for p4, a fourth variable may appear, etcetera.

Countability arises if a unary symbol s is added to GC, as in that case, for
p2, not only did we allow x and y to be substituted for z, but we also allowed
sn(x) and sn(y) for any n > 0, and to do that, we replaced PfPf by PcPf ,
allowing for the countably many possible substitutions.

Those were inelegant decisions, but they allowed us to give some kind of
model of all logic programs. We shall revisit this in Section 6.

Theorem 3 models the coinductive trees generated by ListNat as the latter
has no existential variables, but for GC, as explained in Example 6, the natural
construction of p did not model the clause

connected(x, y)← edge(x, z), connected(z, y)

directly, and so its extension a fortiori could not model the coinductive trees
generated by connected(x, y).

For arbitrary logic programs, the way we defined p(A(x1, . . . , xn)) in earlier
papers such as [1] was in terms of a variant of the coinductive tree generated by
A(x1, . . . , xn) in two key ways:
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1. coinductive trees allow new variables to be introduced as one passes down
the tree, e.g., with

connected(x, y)← edge(x, z), connected(z, y)

appearing in it. However, because of the presence of the variable z, the
set {{edge(x, z), connected(z, y)}} does not appear in PfPfAt(2). In
previous papers, we made clumsy adaptations of the natural model in
order to model the clause.

2. coinductive trees are finitely branching, as one expects in logic program-
ming, but in previous papers, we allowed p(A(x1, . . . , xn)) to be infinitely
branching in order to model the countably many possible applications of
a unary function symbol.

5. Saturated semantics for logic programs

Bonchi and Zanasi’s saturated semantics approach to modelling logic pro-
gramming in [14] was to consider PfPf as we did in [17], sending At to PfPfAt,
but to ignore the inherent laxness, replacing Lax(Lop

Σ , Poset) by [ob(LΣ), Set],
where ob(LΣ) is the set of objects of LΣ treated as a discrete category, i.e., as a
category containing only identity maps. Their central construction may be seen
in a more axiomatic setting as follows.

For any small category C, let ob(C) denote the discrete subcategory with
the same objects as C, with inclusion I : ob(C) −→ C. Then the functor

[I, Set] : [C, Set] −→ [ob(C), Set]

has a right adjoint given by right Kan extension, and that remains true when
one extends from Set to any complete category, and it all enriches, e.g., over
Poset [3]. As ob(C) has no non-trivial arrows, the right Kan extension is a
product, given by

(ranIH)(c) =
∏
d∈C

HdC(c,d)

By the Yoneda lemma, to give a natural transformation from K to (ranIH)(−)
is equivalent to giving a natural, or equivalently in this setting, a “not necessarily
natural”, transformation from KI to H . Taking C = Lop

Σ gives exactly Bonchi
and Zanasi’s formulation of saturated semantics [14].

It was the fact of the existence of the right adjoint, rather than its characteri-
sation as a right Kan extension, that enabled Bonchi and Zanasi’s constructions
of saturation and desaturation, but the description as a right Kan extension
informed their syntactic analysis.

Note for later that products in Poset are given pointwise, so agree with
products in Set. So if we replace Set by Poset here, and if C is an ordinary
category without any non-trivial Poset-enrichment, the right Kan extension
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would yield the same set as above, with an order on it determined by that on
H .

In order to unify saturated semantics with lax semantics, we need to rephrase
Bonchi and Zanasi’s formulation a little. Upon close inspection, one can see
that, in their semantics, they only used objects of [ob(LΣ)op, Set], equivalently
[ob(LΣ), Set], of the form HI for some H : Lop

Σ −→ Set [14]. That allows us,
while making no substantive change to their body of work, to reformulate it a
little, in axiomatic terms, as follows.

Let [C, Set]d denote the category of functors from C to Set and “not neces-
sarily natural” transformations between them, i.e., a map from H to K consists
of, for all c ∈ C, a function αc : Hc −→ Kc, without demanding a naturality
condition. The functor [I, Set] : [C, Set] −→ [ob(C), Set] factors through the
inclusion of [C, Set] into [C, Set]d as follows:

[C, Set]
JSet

✲ [C, Set]d
J ′

✲ [ob(C), Set]

The functor J ′ : [C, Set]d −→ [ob(C), Set] sends a functor H : C −→ Set to the
functor HI : ob(C) −→ Set. The composite [I, Set] = J ′JSet has a right adjoint
given by right Kan extension, and J ′ is fully faithful. By elementary category
theory [33], it follows that JSet : [C, Set] −→ [C, Set]d has a right adjoint that
sends H : C −→ Set to the right Kan extension of J ′(H) = HI along I.

Thus one can rephrase Bonchi and Zanasi’s work to assert that the central
mathematical fact that supports saturated semantics is that the inclusion

[Lop
Σ , Set] −→ [Lop

Σ , Set]d

has a right adjoint that sends a functor H : Lop
Σ −→ Set to the right Kan

extension ranIHI of the composite HI : ob(LΣ)op −→ Set along the inclusion
I : ob(LΣ) −→ LΣ.

We can now unify lax semantics with saturated semantics by developing a
precise body of theory that relates the inclusion

JSet : [C, Set] −→ [C, Set]d

which has a right adjoint that sends H : C −→ Set to ranIHI, with the
inclusion

J : [C, Poset] −→ Lax(C, Poset)

which also has a right adjoint, that right adjoint being given by a restriction of
the right Kan extension ranIHI of the composite HI : ob(C) −→ Poset along
the inclusion I : ob(C) −→ C.

The existence of the right adjoint follows from Theorem 3.13 of [19], but we
give an independent proof here and a description of it in terms of right Kan
extensions in order to show that Bonchi and Zanasi’s explicit constructions of
saturation and desaturation apply equally in this setting.

Consider the inclusions

[C, Poset] −→ Lax(C, Poset) −→ [C, Poset]d
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Exactly as for Set as above, for any small category C, the inclusion

JPoset : [C, Poset] −→ [C, Poset]d

has a right adjoint sending H : C −→ Poset to ranIHI. In order to give a
right adjoint to J : [C, Poset] −→ Lax(C, Poset), we will restrict ranIHI to a
subfunctor R(H) in [C, Poset] so that to give a natural transformation from K
into the restriction R(H) of ranIHI is equivalent to giving a map from K to H
in Lax(C, Poset), i.e., a map in [C, Poset]d that satisfies the condition that, for
all f : c −→ d, one has Hf.αc ≤ αd.Kf . This can be done by defining R(H) to
be an inserter, which is a particularly useful kind of limit that applies to locally
ordered categories and is a particular kind of generalisation of the notion of
equaliser.

Definition 6. [19] Given parallel maps f, g : X −→ Y in a locally ordered
category D, an inserter from f to g is an object Ins(f, g) of D together with
a map i : Ins(f, g) −→ X such that fi ≤ gi and is universal such, i.e., for
any object Z and map z : Z −→ X for which fz ≤ gz, there is a unique map
k : Z −→ Ins(f, g) such that ik = z. Moreover, for any such z and z′ for which
z ≤ z′, then k ≤ k′, where k and k′ are induced by z and z′ respectively.

An inserter is a form of limit. Taking D to be Poset, the poset Ins(f, g) is
given by the full sub-poset of X determined by {x ∈ X |f(x) ≤ g(x)}. Being
limits, inserters in functor categories are determined pointwise.

The inserter we require is subtle, in the spirit of the work of [19] and [3].
Given a functor H : C −→ Poset, we define a parallel pair of maps in [C, Poset],
i.e., natural transformations, δ1 and δ2. Their domains and codomains, which
must be functors from C to Poset, are given as follows:

δ1, δ2 :
∏
d∈C

HdC(−,d) −→
∏

d,d′∈C

Hd′C(−,d)×C(d,d′)

i.e., the domain of both δ1 and δ2 is the functor from C to Poset that sends c
to

∏
d∈C HdC(c,d), and similarly for the codomain.

Using the property of products, to give such natural transformations is equiv-
alent, via Currying, to giving, for each c, d and d′ in C, maps of the form

(δ1)(d,d′)c, (δ2)(d,d′)c : C(c, d) × C(d, d′)×
∏
d∈C

HdC(c,d) −→ Hd′

natural in c. We define the two maps as follows:

1. the (d, d′)-component of δ1c is determined by composing

◦C × id : C(c, d) × C(d, d′)×
∏
d∈C

HdC(c,d) −→ C(c, d′)×
∏
d∈C

HdC(c,d)

with the evaluation of the product at d′, i.e., taking the d′-th component
of the product and applying evaluation to C(c, d′)×HdC(c,d′)
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2. the (d, d′)-component of δ2c is determined by evaluating the product at d

C(c, d)× C(d, d′)×
∏
d∈C

HdC(c,d) −→ C(d, d′)×Hd

then composing with

C(d, d′)×Hd
H × id

✲ Hd′Hd ×Hd
eval

✲ Hd′

Theorem 4. The right adjoint R to the inclusion J : [C, Poset] −→ Lax(C, Poset)
sends H : C −→ Poset in Lax(C, Poset) to the inserter in [C, Poset] from δ1

to δ2

δ1, δ2 : (ranIHI)(−) =
∏
d∈C

HdC(−,d) −→
∏

d,d′∈C

Hd′C(−,d)×C(d,d′)

Although the statement of the theorem is complex, the proof is routine,
along similar lines to proofs in [3]. One simply needs to check that δ1 and δ2 are
natural, which they routinely are, and that the inserter satisfies the universal
property we seek, which it does by construction.

Corollary 2. Let R be the right adjoint to the inclusion J : [C, Poset] −→
Lax(C, Poset). Then, for any functor H : C −→ Poset in Lax(C, Poset), the
functor R(H) : C −→ Poset is a subfunctor in [C, Poset] of the right Kan
extension, ranIHI, of HI along the inclusion I : ob(C) −→ C.

The inclusion of R(H) into ranIHI is given by the canonical map from the
inserter that defines R(H) in the statement of Theorem 4 into ranIHI, the
domain of δ1 and δ2.

Bonchi and Zanasi’s saturation and desaturation constructions remain ex-
actly the same: the saturation of p : At −→ PfPfAt is a natural transformation
p : At −→ ranIPfPfAtI that factors through Ins(δ1, δ2) without any change
whatsoever to its construction, that being so because of the fact of p being lax.

With this result in hand, it is routine to work systematically through Bonchi
and Zanasi’s papers, using their saturation and desaturation constructions ex-
actly as they had them, without discarding the inherent laxness that logic pro-
gramming, cf data refinement, possesses.

So this unifies lax semantics, which flows from, and may be seen as an in-
stance of, Tony Hoare’s semantics for data refinement [21, 22, 23], with saturated
semantics and its more denotational flavour [6].

6. Lax semantics for logic programs refined: existential variables

In Section 4, following [17], we gave lax semantics for logic programs without
existential variables, such as ListNat. In particular, we modelled the coinductive
trees they generate. Restriction to non-existential examples such as ListNat is
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common for implementational reasons [1, 11, 12, 13], so Section 4 allowed the
modelling of coinductive trees for a natural class of logic programs.

Nevertheless, we would like to model coinductive trees generated by logic
programming in full generality, including examples such as that of GC. We
need to refine the lax semantics of Section 4 in order to do so, and, having just
unified lax semantics with saturated semantics in Section 5, we would like to
retain that unity in making such a refinement. So that is what we do in this
section.

We initially proposed such a refinement in the workshop paper [25] that
this paper extends, but since the workshop, we have found a further refinement
that strengthens the relationship with the modelling of local state [26]. So our
constructions here are a little different to those in [25].

In order to model coinductive trees, it follows from Example 6 that the
endofunctor Lax(Lop

Σ , PfPf ) on Lax(Lop
Σ , Poset) that sends At to PfPfAt, needs

to be refined as {{edge(x, z), connected(z, y)}} is not an element of PfPfAt(2)
as it involves three variables x, y and z. In general, we need to allow the im-
age of pn to lie in the set given by applying PfPf to a superset of At(n), one
that includes At(m) for all m ≥ n. In Example 6, that would allow the image
of p2 to lie in PfPfAt(3) rather than in PfPfAt(2), thus allowing us to map
connected(x, y) to {{edge(x, z), connected(z, y)}} as desired.

However, we do not want to double-count: there are six injections of 2 into
3, inducing six inclusions At(2) ⊆ At(3), and one only wants to count each atom
in At(2) once. So we refine PfPfAt(n) to become PfPf (

∫
At(n)), where

∫
At is

defined as follows.
Letting Inj denote the category of natural numbers and injections, for any

Lawvere theory L, there is a canonical identity-on-objects functor J : Injop −→
L.

Definition 7. We define
∫
At(n) to be the colimit of the composite functor

n/Inj
cod

✲ Inj
J

✲ Lop
Σ

At
✲ Poset

This functor sends an injection j : n −→ m to At(m), with the j-th compo-
nent of the colimiting cocone being of the form ρj : At(m) −→

∫
At(n).

The colimiting property is precisely the condition required to ensure no
double-counting (see [33] or, for the enriched version, [3] of this construction in
a general setting).

It is not routine to extend the construction of
∫
At(n) for each n to give a

functor
∫
At : Lop

Σ −→ Poset. To do so, we mimic the construction on arrows
used to define the monad for local state in [26]. We first used this idea in [25]
and we refine our use of it in this paper to make for a closer technical relation-
ship with the semantics of local state in [26]: we do not fully understand the
relationship yet, but there seems considerable potential based on the work here
to make precise comparison between the role of variables in logic programming
with that of worlds in modelling local state.
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Following [26], we extend
∫

At(n) to a functor
∫
At : Lop

Σ −→ Poset by send-
ing a map f : n −→ n′ in LΣ to the order-preserving function

∫
At(f) :

∫
At(n′) −→

∫
At(n)

determined by the colimiting property of
∫

At(n′) as follows.
For each j′ : n′ −→ l ∈ n′/Inj, there are a unique natural number k and at

least one isomorphism between l and n′ + k, such that composite of j′ with the
isomorphism is the canonical injection from n′ to n′ +k. So, in calculating with
the colimit, we may identify j′, via composition with a chosen such isomorphism,
with the canonical injection from n′ to n′ + k. This induces a cocone

At(l) ∼= At(n′ + k)
At(f + k)

✲ At(n + k)
ρj
✲

∫
At(n)

where j : n −→ n+k is the canonical injection of n into n+k, thus determining∫
At(f). It is routine to check that this assignment makes

∫
At functorial with

respect to maps in Lop
Σ .

There is nothing specific about the functor At : Lop
Σ −→ Poset in the above

construction. The construction generalises without fuss from defining the func-
tor

∫
At : Lop

Σ −→ Poset to the definition of
∫
H : Lop

Σ −→ Poset for any functor
H : Lop

Σ −→ Poset.
In order to make each map α : H ⇒ K generate a map

∫
α :

∫
H ⇒

∫
K, we

need to specify in exactly what category we treat H as an object. Lax(Lop
Σ , Poset)

is not possible because
∫
H(n) is defined to be a (strict rather than lax) col-

imit, so a (strict) cocone into
∫
K(n) is required in order to generate the map∫

α(n) :
∫

H(n) →
∫

K(n). We would have that if we had strict naturality
of α with respect to injections, but that is not true of an arbitrary map α in
Lax(Lop

Σ , Poset). So we refine Lax(Lop
Σ , Poset) by restricting its maps in order

to do that.
We accordingly restrict the maps of Lax(Lop

Σ , Poset) to allow only those lax
transformations α : H ⇒ K that are strict with respect to maps in Inj, i.e.,
those α such that for any injection i : n −→ m, the diagram

Hn
αn

✲ Kn

Hm

Hi

❄

αm

✲ Km

Ki

❄

commutes. A restriction of this nature is standard in 2-category theory, e.g.,
in [19], as one typically needs to distinguish between lax and strict maps, with
strict commutativity only in regard to the latter.

Summarising this discussion yields the following:
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Definition 8. Let LaxInj(L
op
Σ , Poset) denote the category with objects given

by functors from Lop
Σ to Poset, maps given by lax transformations that strictly

respect injections, and composition given pointwise.

Proposition 2. cf [26] Let J : Injop −→ LΣ be the canonical inclusion. Define

∫
: LaxInj(L

op
Σ , Poset) −→ LaxInj(L

op
Σ , Poset)

on objects as above. Given α : H ⇒ K in LaxInj(L
op
Σ , Poset), define

∫
α(n)

by the fact that j ∈ n/Inj is coherently isomorphic to the canonical inclusion
j : n −→ n + k for a unique natural number k, and applying the definition of∫
H(n) as a colimit to the cocone given by composing

αn+k : H(m) = H(n + k) −→ K(n + k) = K(m)

with the canonical map K(m) −→
∫

K(n) exhibiting
∫
K(n) as a colimit. Then∫

(−) is an endofunctor on LaxInj(L
op
Σ , Poset).

The proof is routine, albeit after lengthy calculation involving colimits.
We can now model an arbitrary logic program by a map p : At −→ PfPf

∫
At

in LaxInj(L
op
Σ , Poset), modelling ListNat as we did in Example 5 but now mod-

elling the clauses of GC directly rather than using the awkward substitution
instances of Example 6.

Example 7. Except for the restriction of Lax(Lop
Σ , Poset) to LaxInj(L

op
Σ , Poset),

ListNat is modelled in exactly the same way here as it was in Example 5, the
reason being that no clause in ListNat has a variable in the tail that does not
already appear in the head. We need only observe that, although p is not strictly
natural in general, it does strictly respect injections. For example, if one views
list(cons(x, 0)) as an element of At(2), its image under p2 agrees with its
image under p1.

Example 8. In contrast to Example 6, using PfPf

∫
, we can emulate the con-

struction of Examples 5 and 7 for ListNat to model GC.
Modulo possible renaming of variables, connected(x, y) is an element of

At(2). The function p2 sends it to the element {{edge(x, z), connected(z, y)}}
of (PfPf

∫
At)(2). This is possible by taking n = 2 and m = 3 in Definition 7.

In contrast, {{edge(x, z), connected(z, y)}} is not an element of PfPfAt(2),
hence the failure of Example 6.

The behaviour of PfPf

∫
At on maps ensures that the lax transformation

p strictly respects injections. For example, if connected(x, y) is seen as an
element of At(3), the additional variable is treated as a fresh variable w, so does
not affect the image of connected(x, y) under p3.

For the proof of the centrepiece theorem of this section, we need briefly to
analyse Definition 7, which defines

∫
At(n). We do not assert that the colimit
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defining
∫
At(n) is ω-directed, but it can be built from an ω-directed colimit as

follows.
For any injection j : n −→ l, there are a unique k and at least one isomor-

phism between l and n+k such that the composite of j with the isomorphism is
the canonical injection from n to n + k. There may be more than one such iso-
morphism: for instance, if n = 2 and l = 4, there are two. So the colimit

∫
At(n)

is given by first taking the ω-directed colimit colimm≥nAt(m) determined by
the canonical injections, then by quotienting colimm≥nAt(m) by structural per-
mutations. This extends routinely to arbitrary functors.

Lemma 1. The construction
∫

preserves monomorphisms in [Inj, Poset].

Proof. Monomorphisms in [Inj, Poset] are given pointwise. An ω-directed
colimit is, a fortiori, a filtered colimit, so, by Gabriel-Ulmer, it commutes with
finite limits, so respects monomorphisms. So, given a monomorphism ι : H ⇒
K, for any n, the induced map from colimm≥nH(m) to colimm≥nK(m) is a
monomorphism.

∫
H(n) is the quotient of colimm≥nH(m) under structural

permutations; likewise for
∫
K(n). Given two elements of colimm≥nH(m) that

are sent by ι to equivalent elements of colimm≥nK(m), without loss of generality,
a permutation θ in Inj generates the equivalence. Naturality of ι, together with
injectivity of ιm, implies that applying H(θ) to the original two elements of
colimm≥nH(m) also renders them equivalent, thus yielding injectivity of

∫
ι(n).

Theorem 5. The functor PfPf

∫
: LaxInj(L

op
Σ , Poset) −→ LaxInj(L

op
Σ , Poset)

induces a cofree comonad C(PfPf

∫
) on LaxInj(L

op
Σ , Poset). Moreover, given

a logic program P qua PfPf

∫
-coalgebra p : At −→ PfPf

∫
At, the corresponding

C(PfPf

∫
)-coalgebra p : At −→ C(PfPf

∫
)(At) sends an atom A(x1, . . . , xn) ∈

At(n) to the coinductive tree for A(x1, . . . , xn).

Proof. Proposition 2 defined
∫

as an endofunctor on LaxInj(L
op
Σ , Poset). It

is routine to verify, by inspection, that the construction of
∫

also yields an
endofunctor on [Inj, Poset], giving a restriction of PfPf

∫
to [Inj, Poset].

If one restricts PfPf

∫
to [Inj, Poset], there is a cofree comonad on it for

general reasons, [Inj, Poset] being locally finitely presentable and PfPf

∫
being

an accessible functor [32]. The cofree comonad may be constructed as follows.
By Lemma 1,

∫
preserves monomorphisms in [Inj, Poset]. Post-composition

with Pf does too (up to equivalence). Thus [Inj, Poset] is accessible and PfPf

∫
is accessible and preserves monomorphisms (up to equivalence). So we may
apply Corollary 3.3 of [32] to obtain a description of the cofree comonad on the
restriction of PfPf

∫
to [Inj, Poset] in terms of limits.

We cannot directly apply the same argument to LaxInj(L
op
Σ , Poset) as the

category LaxInj(L
op
Σ , Poset) does not have arbitrary limits (and so is not lo-

cally finitely presentable), cf, the analysis of categories of maps of algebras
in 2-categories in [19, Section 2]. However, the specific limit that describes
the cofree comonad on the restriction of PfPf

∫
to [Inj, Poset] does extend

to LaxInj(L
op
Σ , Poset), with that extension describing the cofree comonad on

PfPf

∫
. So, if we check that the limiting properties of that specific pointwise
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limit allow us to define functoriality with respect to arbitrary maps in LΣ,
i.e., for every functor H : LΣ −→ Poset, they allow us to define the functor
PfPf

∫
H : LΣ −→ Poset, and then in turn, they allow us to define functoriality

with respect to arbitrary maps in LaxInj(L
op
Σ , Poset), together with a small

amount of coherence, the fact of its describing the cofree comonad on the re-
striction, that yielding the data and axioms for the comultiplication and counit,
gives us the result we seek.

In detail, the cofree comonad C(PfPf

∫
) on LaxInj(L

op
Σ , Poset) is given

pointwise by the same limit as in the proof of Theorem 1, similarly to The-
orem 3. In particular, replacing At by At(n) and replacing PfPf by PfPf

∫
in

the diagram in the proof of Theorem 1, one has

. . . −→ At(n)×(PfPf

∫
)(At×PfPf

∫
At)(n) −→ At(n)×(PfPf

∫
At)(n) −→ At(n)

with maps determined by the projection π0 : At(−) × (PfPf

∫
)At(−) −→

At(−), with the endofunctor At(n) × PfPf

∫
(−) applied to it. For any n,

C(PfPf

∫
)(At)(n) is the limit, potentially transfinite, of the diagram [32, Corol-

lary 3.3].
Products in the category LaxInj(L

op
Σ , Poset) are given pointwise, with point-

wise projections. Moreover, those projections are strictly natural, as explained
in Proposition 2.1 and Remark 2.9 of [19]. Because the projections are strictly
natural, and because

∫
and Pf send strictly natural transformations to strictly

natural transformations, the limiting property applied to the above directed
cone, of which C(PfPf

∫
)(At)(n) is the limit, determines, for each map f : n −→

m in LΣ, a map of posets from C(PfPf

∫
)(At)(m) to C(PfPf

∫
)(At)(n). The

unicity property of the limit ensures that this construction makes C(PfPf

∫
)(At)

into a functor from Lop
Σ to Poset.

The construction and proof apply equally to an arbitrary functor H : Lop
Σ −→

Poset in LaxInj(L
op
Σ , Poset) as they do to At, yielding the construction of

C(PfPf

∫
)(H) in general.

A map in LaxInj(L
op
Σ , Poset) is a lax transformation α : H ⇒ K that is

strictly natural with respect to injections. The data for any such map, i.e., the
collection of poset maps α(n), is fully determined by its restriction to a map in
[Inj, Poset]. The limiting property of C(PfPf

∫
)(K)(n) as explained above

yields the data, i.e., the components, for C(PfPf

∫
)(α) : C(PfPf

∫
)(H) ⇒

C(PfPf

∫
)(K). Moreover, the limiting property ensures that this data satis-

fies the properties required of an endofunctor on [Inj, Poset], i.e., it respects
composition and identities.

We next need to see that C(PfPf

∫
)(α) is lax natural with respect to ar-

bitrary maps in LΣ, i.e., for any map f : n −→ m in LΣ, that there is an
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inequality

C(PfPf

∫
)(H)(m)

C(PfPf

∫
)(α)(m)

✲ C(PfPf

∫
)(K)(m)

≥

C(PfPf

∫
)(H)(n)

C(PfPf

∫
)(H)(f)

❄

C(PfPf

∫
)(α)(n)

✲ C(PfPf

∫
)(K)(n)

C(PfPf

∫
)(K)(f)

❄

i.e., for every element of the poset C(PfPf

∫
)(H)(m), the diagram yields an

inequality as indicated in the poset C(PfPf

∫
)(K)(n).

That follows from the two-dimensional property of limits in Poset, cf the
proof of [19, Proposition 2.1]. Given any small diagram F : D −→ Poset
with limit L and limiting cone π : L ⇒ F , for any cone c : C ⇒ F , the one-
dimensional property of the limit L asserts the existence of a unique intermediary
map γ : C −→ L. The two-dimensional property asserts that, given any two
cones c and c′ with the same vertex C, if cx ≤ c′x for each x in D, it follows that
γ ≤ γ′.

Here, C(PfPf

∫
)(K)(n) is given by the limit of the potentially transfinite

diagram

. . . −→ K(n)×(PfPf

∫
)(K×PfPf

∫
K)(n) −→ K(n)×(PfPf

∫
K)(n) −→ K(n)

So F : D −→ Poset is the diagram. We denote Fx by Kxn. By induction,
together with Proposition 2, Kx is functorial in n. The limit L of the diagram F
is the poset C(PfPf

∫
)(K)(n). All four vertices of the potential inequality above

may be viewed as limits in the same way. We take C to be C(PfPf

∫
)(H)(m)

and the cones c and c′ to be the precomposition of γ and γ′ respectively with the
limiting cone π for C(PfPf

∫
)(K)(n), with γ and γ′ given by the top-right and

bottom-left legs of the potential inequality respectively. In order to deduce lax
naturality of C(PfPf

∫
)(α) from that of α, it suffices, by the two-dimensional

property, to show that for any x ∈ D, one has πxγ ≤ πxγ′.
Not only are the four vertices in the potential inequality given by limits, but

also, necessarily, the four legs are determined by the one-dimensional property
of limits. So πxγ is given by composing πx : C(PfPf

∫
)(H)(m) −→ Hxm with

the map from Hxm to Kxn that generates γ. We denote the latter map by γx.
The same applies to γ′. So it suffices for us to show that, for each x ∈ D, one
has γx ≤ γ′

x, with the order on the products Kxn taken pointwise. We do that
by potentially transfinite induction.

For the base case, Kxn = K(n), Hxm = H(m), and γx and γ′
x are the

top-right and bottom-left legs of the following inequality, which holds by lax
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naturality of α:

H(m)
α(m)

✲ K(m)

≥

H(n)

H(f)

❄

α(n)
✲ K(n)

K(f)

❄

Thus for x = 0, α is a lax transformation from Hx to Kx that we denote by αx.
For a successor ordinal, we may assume that αx : Hx ⇒ Kx is lax natural,

and we need to see that we have an inequality in the following diagram:

H(m)× (PfPf

∫
Hx)(m)

αx+1(m)
✲ K(m)× (PfPf

∫
Kx)(m)

≥

H(n)× (PfPf

∫
Hx)(n)

H(f)× (PfPf

∫
Hx)(f)

❄

αx+1(n)
✲ K(n)× (PfPf

∫
Kx)(n)

K(f)× (PfPf

∫
Kx)(f)

❄

where αx+1 = α × PfPf

∫
αx. By Proposition 2,

∫
αx is lax natural as

∫
is

functorial; composition with Pf is also functorial; and so, αx+1, being a product
of two lax natural transformations, is itself lax natural, yielding the inequality.

For a limit ordinal, we have the inequality we seek by a simple application
of the two-dimensional property applied to the limit of the partial diagram for
C(PfPf

∫
)(K)(n) up to stage x.

Thus we have defined C(PfPf

∫
) as an endofunctor on LaxInj(L

op
Σ , Poset).

The counit and comultiplication of C(PfPf

∫
) are also constructed by restricting

to [Inj, Poset], using the classical result for the strict setting [32], then using the
two-dimensional property of the limit to verify coherence in regard to arbitrary
maps in LΣ.

The construction of p is given pointwise, with it following from its coinductive
construction that it yields the coinductive trees as required: because of our
construction of

∫
At to take the place At in Theorem 3, the image of p lies in

PfPf

∫
At.

The lax naturality in respect to general maps f : m −→ n means that
a substitution applied to an atom A(x1, . . . , xn) ∈ At(n), i.e., application of
the function At(f) to A(x1, . . . , xn), followed by application of p, i.e., taking
the coinductive tree for the substituted atom, or application of the function
(C(PfPf

∫
)At)f) to the coinductive tree for A(x1, . . . , xn) potentially yield dif-

ferent trees: the former substitutes into A(x1, . . . , xn), then takes its coinductive
tree, while the latter applies a substitution to each node of the coinductive tree
for A(x1, . . . , xn), then prunes to remove redundant branches.
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Example 9. Extending Example 8, consider connected(x, y) ∈ At(2). In ex-
pressing GC as a map p : At −→ PfPf

∫
At in Example 8, we put

p2(connected(x, y)) = {{edge(x, z), connected(z, y)}}

Accordingly, p2(connected(x, y)) is the coinductive tree for connected(x, y),
thus the infinite tree generated by repeated application of the same clause modulo
renaming of variables.

If we substitute x for y in the coinductive tree, i.e., apply the function
(C(PfPf

∫
)At)(x, x) to it (see the definition of LΣ at the start of Section 4

and observe that (x, x) is a 2-tuple of terms, thus an arrow from 1 to 2), we
obtain the same tree but with y systematically replaced by x. However, if we
substitute x for y in connected(x, y), i.e., apply the function At(x, x) to it, we
obtain connected(x, x) ∈ At(1), whose coinductive tree has additional branching
as the first clause of GC, i.e., connected(x, x)← may also be applied.

In contrast to this, we have strict naturality with respect to injections: for
example, an injection i : 2 −→ 3 yields the function At(i) : At(2) −→ At(3) that,
modulo renaming of variables, sends connected(x, y) ∈ At(2) to itself seen as
an element of At(3), and the coinductive tree for connected(x, y) is accordingly
also sent by (C(PfPf

∫
)At)(i) to itself seen as an element of (C(PfPf

∫
)At)(3).

Example 9 illustrates why, although the condition of strict naturality with
respect to injections holds for PfPf

∫
, it does not hold for Lax(Lop

Σ , PfPf ) in
Example 6 as we did not model the clause

connected(x, y)← edge(x, z), connected(z, y)

directly there, but rather modelled all substitution instances into all available
variables.

Turning to the relationship between lax semantics and saturated semantics
given in Section 5, we need to refine our construction of the right adjoint to the
inclusion

[Lop
Σ , Poset] −→ Lax(Lop

Σ , Poset)

to give a construction of a right adjoint to the inclusion

[Lop
Σ , Poset] −→ LaxInj(L

op
Σ , Poset)

As was the case in Section 5, such a right adjoint exists for general reasons
as an example of the main result of [19]. An explicit construction of it arises
by emulating the construction of Theorem 4. In the statement of Theorem 4,
putting C = Lop

Σ , we described a parallel pair of maps in [Lop
Σ , Poset] and con-

structed their inserter, the inserter being exactly the universal property corre-
sponding to the laxness of the maps in Lax(Lop

Σ , Poset). Here, we use the same
technique but with equaliser replacing inserter, to account for the equalities in
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LaxInj(C, Poset). Thus we take an equaliser of two variants of δ1 and δ2 seen
as maps in [Lop

Σ , Poset] with domain Ins(δ1, δ2)
Again, one may use the same constructions of saturation and desaturation

as before, i.e., use a right Kan extension. However, now, instead of applying
the right Kan extension to PcPf as in [2], one may apply it to PfPf

∫
At. This

still generates countability as application of the right Kan extension generates
countability, but the saturation construction is now applied to an inherently
finitary map, p : At −→ PfPf

∫
At, rather than to a map with countability

already built into it. So our account of existential variables allows a refinement,
albeit a subtle one, to saturated semantics, in addition to refining lax semantics.

7. Semantics for variables in logic programs: local variables

The relationship between the semantics of logic programming we propose
here and that of local state is yet to be explored fully, and we leave the bulk
of it to future work. However, as explained in Section 6, the definition of

∫
was informed by the semantics for local state in [26], and we have preliminary
results that strengthen the relationship.

Proposition 3. The endofunctor
∫
(−) on LaxInj(L

op
Σ , Poset) canonically sup-

ports the structure of a monad, with unit ηH : H ⇒
∫
H defined, at n, by the

idn component ρidn
: Hn −→

∫
Hn of the colimiting cocone, and with multipli-

cation µH :
∫ ∫

H =⇒
∫

H defined, at n, by observing that if m = n + k and
p = m+ l, then p = n+(k+ l) with canonical injections jk, jl and jk+l coherent
with each other, and applying the doubly indexed colimiting property of

∫ ∫
H to

ρjk+l
: H(p) −→

∫
H(n),

This bears direct comparison with the monad for local state in the case
where one has only one value, as studied by Stark [34]. The setting is a little
different. Stark does not consider maps in LΣ or laxness, and his base category
is Set rather than Poset. However, if one restricts our definition of

∫
and the

other data for the monad of Proposition 3 to [Inj, Set], one obtains Stark’s
construction.

The monad for local state in [26] also extends Stark’s construction but in a
different direction: for local state, neither Inj nor Set is extended, but state,
which is defined by a functor into Set is interpolated into the definition of the
functor

∫
, which restricts to [Inj, Set]. That interpolation of state is closely

related to our application of PfPf to
∫

: just as the former gives rise to a monad
for local state on [Inj, Set], the latter bears the ingredients for a monad as
follows.

Proposition 4. For any endofunctor P on Set, here is a canonical distributive
law ∫

P (−) −→ P

∫
(−)

of the endofunctor P ◦ − over the monad
∫

on [Inj, Set].
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The canonicity of the distributive law arises as
∫

is defined pointwise as a
colimit, and the distributive law is the canonical comparison map determined
by applying P pointwise to the colimiting cone defining

∫
.

The functor PfPf does not quite satisfy the axioms for a monad [35] (see
also [2]), but variants of PfPf , in particular PfMf , where Mf is the finite mul-
tiset monad on Set, do [35] (also see [2]). Putting P = PfMf , the distributive
law of Proposition 4 respects the monad structure of PfMf , yielding a canonical
monad structure on the composite PfMf

∫
.

The full implications of that are yet to be investigated, but, trying to emulate
the analysis of local state in [26], we believe we have a natural set of operations
and equations that generate the monad PfMf

∫
. That encourages us consider-

ably towards the possibility of seeing the semantics for logic programming, both
lax and saturated, as an example of a general semantics of local effects. We have
not yet fully understood the significance of the specific combination of opera-
tions and equations generating the monad, but we are currently investigating
it.

8. Conclusions and Further Work

Let Pf be the covariant finite powerset functor on Set. Then, to give a
variable-free logic program P is equivalent to giving a PfPf -coalgebra structure
p : At −→ PfPfAt on the set At of atoms in the program. Now let C(PfPf )
be the cofree comonad on PfPf . Then, the C(PfPf )-coalgebra p : At −→
C(PfPf )At corresponding to p sends an atom to the coinductive tree it gener-
ates. This fact is the basis for both our lax semantics and Bonchi and Zanasi’s
saturated semantics for logic programming.

Two problems arise when, following standard category theoretic practice, one
tries to extend this semantics to model logic programs in general by extending
from Set to [Lop

Σ , Set], where LΣ is the free Lawevere theory generated by a
signature Σ. The first is that the natural construction p : At −→ PfPfAt does
not form a natural transformation, so is not a map in [Lop

Σ , Set].
Two resolutions were proposed to that: lax semantics [1], which we have

been developing in the tradition of semantics for data refinement [21], and sat-
urated semantics [2], which Bonchi and Zanasi have adopted. In this paper, we
have shown that the two resolutions are complementary rather than competing,
the first modelling the theorem-proving aspect of logic programming, while the
latter models proof search.

In modelling theorem-proving, lax semantics led us to identify and develop
the notion of coinductive tree. To express the semantics, we extended [Lop

Σ , Set]
to Lax(Lop

Σ , Poset), the category of strict functors and lax transformations be-
tween them. We followed standard semantic practice in extending Pf from Set
to Poset and we postcomposed the functor At : Lop

Σ −→ Poset by PfPf . Bonchi
and Zanasi also postcomposed At by PfPf , but then saturated. We showed that
their saturation and desaturation constructions are generated exactly by start-
ing from Lax(Lop

Σ , Poset) rather than from [ob(LΣ)op, Set] as they did, thus
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unifying the underlying mathematics of the two developments, supporting their
computational coherence.

The second problem mentioned above relates to existential variables, those
being variables that appear in the antecedent of a clause but not in its head.
The problem of existential clauses is well-known in the literature on theorem
proving and within communities that use term-rewriting, TM-resolution or their
variants. In TRS [29], existential variables are not allowed to appear in rewriting
rules, and in type inference, the restriction to non-existential programs is com-
mon [31]. In logic programming, the problem of handling existential variables
when constructing proofs with TM-resolution marks the boundary between its
theorem-proving and problem-solving aspects.

Existential variables are not present in many logic programs, but they do
occasionally occur in important examples, such as those developed by Sterling
and Shapiro [27]. The problem for us was that, in the presence of existential
variables, the natural model p : At −→ PfPfAt of a logic program might
escape its codomain, i.e., pn(A) might not lie in PfPfAt(n) because of the
new variables. On one hand, we want to model them, but on the other, the fact
of the difficulty for us means that we have semantically identified the concept
of existential variable, which is positive.

In this paper, we have resolved the problem by refining Lax(Lop
Σ , Poset) to

LaxInj(L
op
Σ , Poset), insisting upon strict naturality for injections, and by refin-

ing the construction PfPfAt to PfPf

∫
At, thus allowing for additional variables

in the tail of a clause in a logic program. That has allowed us to model coinduc-
tive trees for arbitrary logic programs, in particular those including existential
variables. We have also considered the effect of such refinement on saturated
semantics, where the right Kan extension generates countability but use of Pc

is no longer required.
In order to refine PfPf (−), we followed a technique developed in the seman-

tics of local state [26]. That alerted us to the relationship between variables
in logic programming with the use of worlds in modelling local state. So, as
ongoing work, we are now relating our semantics for logic programming with
that for local state. For the future, we shall continue to develop that, with
the hope of being able to locate our semantics of logic programming within a
general semantics for local effects.

Beyond that, a question that we have not considered semantically at all
yet but which our applied investigations are encouraging is that of modelling
recursion. There are fundamentally two kinds of recursion that arise in logic
programming as there may be recursion in terms and recursion in proofs. For
example, stream(scons(x, y))← stream(y) is a standard (co-)recursive defini-
tion of infinite streams in logic programming literature. More abstractly, the
following program P1: p(f(x))← p(x) defines an infinite data structure p with
constructor f . For such cases, proofs given by coinductive trees will be finite.
An infinite sequence of (finite) coinductive trees will be needed to approxi-
mate the intended operational semantics of such a program, as we discuss in
detail in [1, 36]. In contrast, there are programs like P2: p(x)← p(x) or P3:
p(x)← p(f(x)) that are also recursive, but additionally their proofs as given by
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coinductive trees will have an infinite size.
In [37, 38] programs like P1 were called productive, for producing (infinite)

data, and programs like P2 and P3 – non-productive, for recursing without
producing substitutions. The productive case amounts to a loop in the Lawvere
theory LΣ [39], while the non-productive case amounts to repetition within
a coinductive tree, possibly modulo a substitution. This paper gives a close
analysis of trees. That should set the scene for investigation of recursion, as it
seems likely to yield more general kinds of graph that arise by identifying loops
in LΣ and by equating nodes in trees.

The lax semantics we presented here has recently inspired investigations
into the importance of TM-resolution (as modelled by the coinductive trees)
in programming languages. In particular, TM-resolution is used in type class
inference in Haskell [31]. In [13, 40] we showed applications of nonterminating
TM-resolution in Haskell type classes. We plan to continue looking for applica-
tions of this work in programming language design beyond logic programming.

Acknowledgements

Ekaterina Komendantskaya would like to acknowledge the support of EPSRC
Grant EP/K031864/1-2. John Power would like to acknowledge the support of
EPSRC grant EP/K028243/1 and Royal Society grant IE151369. We both ac-
knowledge the support of LMS grant SC7-1617-10, which facilitated the writing
of this paper.

Bibliography

[1] E. Komendantskaya, J. Power, M. Schmidt, Coalgebraic logic program-
ming: from semantics to implementation, J. Log. Comput. 26 (2) (2016)
745 – 783.

[2] F. Bonchi, F. Zanasi, Bialgebraic semantics for logic programming, Logical
Methods in Computer Science 11 (1) (2015) 1–47.

[3] G. Kelly, Basic concepts of enriched category theory, Vol. 64, Cambridge
University Press, 1982.

[4] G. Gupta, V. Costa, Optimal implementation of and-or parallel prolog, in:
PARLE’92, 1994, pp. 71 – 92.

[5] R. Bruni, U. Montanari, F. Rossi, An interactive semantics of logic pro-
gramming, TPLP 1 (6) (2001) 647 – 690.

[6] F. Bonchi, U. Montanari, Reactive systems, (semi-)saturated semantics and
coalgebras on presheaves, Theor. Comput. Sci. 410 (41) (2009) 4044 – 4066.

[7] M. Comini, G. Levi, M. C. Meo, A theory of observables for logic programs,
Inf. Comput. 169 (1) (2001) 23 – 80.

33



[8] J. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1987.

[9] E. Komendantskaya, G. McCusker, J. Power, Coalgebraic semantics for
parallel derivation strategies in logic programming, in: AMAST’2010, Vol.
6486 of Lecture Notes in Computer Science, Springer, 2011, pp. 111 – 127.

[10] E. Komendantskaya, M. Schmidt, J. Heras, Exploiting parallelism in coal-
gebraic logic programming, Electr. Notes Theor. Comput. Sci. 303 (2014)
121 – 148.

[11] P. Johann, E. Komendantskaya, V. Komendantskiy, Structural resolution
for logic programming, in: Proceedings of the Technical Communications
of the 31st International Conference on Logic Programming (ICLP 2015),
Cork, Ireland, August 31 - September 4, 2015., Vol. 1433 of CEUR Work-
shop Proceedings, 2015.

[12] P. Fu, E. Komendantskaya, A type-theoretic approach to resolution, in:
Logic-Based Program Synthesis and Transformation - 25th International
Symposium, LOPSTR 2015, Siena, Italy, July 13-15, 2015. Revised Selected
Papers, Vol. 9527 of Lecture Notes in Computer Science, Springer, 2015,
pp. 91 – 106.

[13] P. Fu, E. Komendantskaya, T. Schrijvers, A. Pond, Proof relevant corecur-
sive resolution, in: Functional and Logic Programming - 13th International
Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings,
Vol. 9613 of Lecture Notes in Computer Science, Springer, 2016, pp. 126 –
143.

[14] F. Bonchi, F. Zanasi, Saturated semantics for coalgebraic logic program-
ming, in: Algebra and Coalgebra in Computer Science - 5th International
Conference, CALCO 2013, Warsaw, Poland, September 3-6, 2013. Proceed-
ings, Vol. 8089 of Lecture Notes in Computer Science, Springer, 2013, pp.
80 – 94.

[15] G. Amato, J. Lipton, R. McGrail, On the algebraic structure of declarative
programming languages, Theor. Comput. Sci. 410 (46) (2009) 4626 – 4671.

[16] Y. Kinoshita, A. J. Power, A fibrational semantics for logic programs, in:
Extensions of Logic Programming, 5th International Workshop, ELP’96,
Leipzig, Germany, March 28-30, 1996, Proceedings, Vol. 1050 of Lecture
Notes in Computer Science, Springer, 1996, pp. 177 – 191.

[17] E. Komendantskaya, J. Power, Coalgebraic semantics for derivations in
logic programming, in: Algebra and Coalgebra in Computer Science -
4th International Conference, CALCO 2011, Winchester, UK, August 30 -
September 2, 2011. Proceedings, Vol. 6859 of Lecture Notes in Computer
Science, Springer, 2011, pp. 268 – 282.

[18] J. Benabou, Introduction to bicategories, Lecture Notes in Mathematics 47
(1967) 1 – 77.

34



[19] R. Blackwell, G. Kelly, A. Power, Two-dimensional monad theory, J. Pure
Appl. Algebra 59 (1989) 1 – 41.

[20] G. Kelly, Coherence theorems for lax algebras and for distributive laws, in:
Category seminar, Vol. 420 of Lecture Notes in Mathematics, Spriniger,
1974, pp. 281 – 375.

[21] J. He, C. A. R. Hoare, Categorical semantics for programming languages,
in: Mathematical Foundations of Programming Semantics, 5th Interna-
tional Conference, Tulane University, New Orleans, Louisiana, USA, March
29 - April 1, 1989, Proceedings, Vol. 442 of Lecture Notes in Computer Sci-
ence, Springer, 1989, pp. 402 – 417.

[22] H. Jifeng, C. Hoare, Data refinement in a categorical setting, Tech. Rep.
Technical Monograph PRG-90, Oxford University Computing Laboratory,
Programming Research Group, Oxford (1990).

[23] Y. Kinoshita, A. Power, Lax naturality through enrichment, J. Pure Appl.
Algebra 112 (1996) 53 – 72.

[24] A. J. Power, An algebraic formulation for data refinement, in: Mathemati-
cal Foundations of Programming Semantics, 5th International Conference,
Tulane University, New Orleans, Louisiana, USA, March 29 - April 1, 1989,
Proceedings, Vol. 442 of Lecture Notes in Computer Science, Springer,
1989, pp. 390 – 401.

[25] E. Komendantskaya, J. Power, Category theoretic semantics for theorem
proving in logic programming: Embracing the laxness, in: Coalgebraic
Methods in Computer Science - 13th IFIP WG 1.3 International Workshop,
CMCS 2016, Colocated with ETAPS 2016, Eindhoven, The Netherlands,
April 2-3, 2016, Revised Selected Papers, Vol. 9608 of Lecture Notes in
Computer Science, Springer, 2016, pp. 94 – 113.

[26] G. D. Plotkin, J. Power, Notions of computation determine monads, in:
Foundations of Software Science and Computation Structures, 5th Inter-
national Conference, FOSSACS 2002. Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble,
France, April 8-12, 2002, Proceedings, Vol. 2303 of Lecture Notes in Com-
puter Science, Springer, 2002, pp. 342 – 356.

[27] L. Sterling, E. Shapiro, The art of Prolog, MIT Press, 1986.

[28] E. Komendantskaya, J. Power, Coalgebraic derivations in logic program-
ming, in: Computer Science Logic, 25th International Workshop / 20th An-
nual Conference of the EACSL, CSL 2011, September 12-15, 2011, Bergen,
Norway, Proceedings, Vol. 12 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2011, pp. 352 – 366.

[29] Terese, Term Rewriting Systems, Cambridge University Press, 2003.

35



[30] L. Simon, A. Bansal, A. Mallya, G. Gupta, Co-logic programming: Ex-
tending logic programming with coinduction, in: Automata, Languages
and Programming, 34th International Colloquium, ICALP 2007, Wroclaw,
Poland, July 9-13, 2007, Proceedings, Vol. 4596 of Lecture Notes in Com-
puter Science, Springer, 2007, pp. 472 – 483.

[31] S. P. Jones, M. Jones, E. Meijer, Type classes: An exploration of the design
space, in: Haskell Workshop, 1997.

[32] J. Worrell, Terminal sequences for accessible endofunctors, Electr. Notes
Theor. Comput. Sci. 19 (1999) 24 – 38.

[33] S. MacLane, Categories for the Working Mathematician, Graduate Texts
in Mathematics, Springer, 1971.

[34] I. Stark, Categorical models for local names, Lisp and Symbolic Computa-
tion 9 (1) (1996) 77 – 107.

[35] M. Hyland, M. Nagayama, J. Power, G. Rosolini, A category theoretic
formulation for engeler-style models of the untyped lambda, Electr. Notes
Theor. Comput. Sci. 161 (2006) 43 – 57.

[36] P. Johann, E. Komendantskaya, Structural resolution: a framework for
coinductive proof search and proof construction in horn clause logic,
Draft.Arxiv.org/abs/1707.01541.

[37] E. Komendantskaya, P. Johann, M. Schmidt, A productivity checker for
logic programming, in: Logic-Based Program Synthesis and Transforma-
tion - 26th International Symposium, LOPSTR 2016, Edinburgh, UK,
September 6-8, 2016, Revised Selected Papers, Vol. 10184 of Lecture Notes
in Computer Science, Springer, 2017, pp. 168–186.

[38] P. Fu, E. Komendantskaya, Operational semantics of resolution and pro-
ductivity in horn clause logic, Formal Asp. Comput. 29 (3) (2017) 453–474.

[39] E. Komendantskaya, Y. Li, Productive corecursion in logic programming,
Journal of Theory and Practice of Logic Programming. International Con-
ference on Logic Programming (ICLP’17).

[40] F. Farka, E. Komendantskaya, K. Hammond, Coinductive soundness of
corecursive type class resolution, in: Logic-Based Program Synthesis and
Transformation - 26th International Symposium, LOPSTR 2016, Edin-
burgh, UK, September 6-8, 2016, Revised Selected Papers, Vol. 10184 of
Lecture Notes in Computer Science, Springer, 2017, pp. 311–327.

36


