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Abstract: HVDC technology is increasingly important for long distance bulk power 
transmission, but existing protection relaying techniques for such a system are subject to 
limitations. This paper presents a novel Artificial Neural Network (ANN) based on an 
algorithm for fault detection, location and classification in VSC-HVDC systems. Taking 
advantage of the ability of ANNs to identify and classify patterns, the proposed algorithm 
is able to detect and correctly classify a fault occurring at either the rectifier substation on 
the DC line or at the inverter substation. Therefore, such a scheme can be used as a 
decision support tool or as a backup protection. Only local signals are used at the rectifier 
substation and no communication link is necessary, thus improving the system’s 
protection reliability and reducing the overall cost of the hardware implementation. A 
detailed VSC-HVDC system is described and used to simulate a number of fault 
scenarios in the system. Using the resulting fault waveforms, a comprehensive decision 
support scheme is developed and described, paying particular attention to the signal 
processing chain and design of the specific ANNs for each relaying task. Finally, a 
detailed analysis of the influence of key fault parameters on the limits of the algorithm’s 
performance is carried out. 
 
Index Terms—Artificial neural networks, fault detection, HVDC transmission, pattern 

recognition, power system protection, relay. 

1. Introduction 
 Currently, High Voltage Direct Current (HVDC) transmission systems are the 

best option to transfer a large amount of power over long distances. The advantages are: 

the ability to interconnect asynchronous systems; fewer losses compared to High Voltage 

Alternating Current (HVAC) systems; improvements in power system stability; smaller 



 

power towers; and a narrower transmission corridor meaning less rights of way. In spite 

of the technical, economical and environmental advantages, HVDC systems pose many 

challenges for power protection engineers as the transient behaviour of very long DC 

lines and complex terminal converter stations should be modeled to study the system’s 

post fault response. 

 In order to safely operate HVDC systems, it is important to detect and clear any 

fault which occurs in the HVDC system as soon as possible [1] – [3]. For this purpose, 

the most common HVDC protection systems are based on the travelling wave theory [4] 

– [10], the DC voltage level [11] and differential voltage measurement [12] techniques, 

the rate of voltage change technique [13] and the current differential scheme [1] – 

[3],[13]. The rate of voltage change and DC voltage level techniques are normally used as 

a main protection to detect single phase faults. However, some problems can arise 

concerning high resistance or multi-phase faults [4] – [6]. Conventional current 

differential schemes are commonly used as a backup protection, but they are affected by 

the capacitance of long lines. In addition, they require a communication link and the 

information must be synchronized between the two ends [14]. Travelling wave based 

methods still experience problems concerning their practical application since they are 

very dependent on the high sampling rate, and are therefore difficult to implement, even 

in hardware. Moreover, this method can be easily influenced by noise [6], [7], [11]. 

 In an attempt to overcome all the aforementioned challenges, researchers are 

working on novel methods to protect HVDC systems. The method presented in [4] is 

based on symmetrical components and travelling waves for fault classification and faulty 

pole selection. Reference [5] describes a new transient harmonic current protection 

scheme to identify the type of fault. This method uses the DFT to extract information 

from both terminals of the DC transmission line. In [6] and [7], a hybrid method is shown 

combining travelling waves and a boundary protection scheme for bipolar HVDC lines. 

This method was implemented and evaluated in real time using programmable logic 

devices. Research carried out in [8] presents a new scheme for fault location based on the 

natural frequency of a distributed parameter line model. In this proposal, only currents 

from the sending terminal are used and the natural frequency is obtained by the PRONY 

algorithm. A method for fault location also based on the travelling wave theory is 



 

presented in [9], where Discrete Wavelet Transformation is applied to the voltage and 

current signals only at the relay terminal and the fault location can be estimated in a 

segmented HVDC transmission line. The scheme presented in [10] uses a method based 

on distance protection to enhance the fault distance estimation for faults nearest the 

remote terminal, and is able to distinguish internal faults from external faults. 

 As the protection relay of HVDC systems presents complex problem spaces, an 

alternative approach is to use Artificial Intelligence [15], more specifically Artificial 

Neural Networks (ANNs) [16] – [23]. Such techniques are appropriate when the 

conventional approaches do not appear as an effective solution. Most of them describe 

methods using a pre-processing stage coupled with a Multi Layer Perceptron (MLP) 

neural network [16] - [19], but significant variations on this theme exist, including using 

adaptive linear neurons [20], radial basis function neural networks [21] and ANNs 

optimized by the particle swarm theory [22]. Still considering MLP neural networks, a 

scheme to detect and classify faults in a HVDC line, presented in [23], should be 

highlighted. It is important to note that this scheme is only able to operate for DC faults, 

by using a very high sampling rate, which makes it more complex to implement. 

Furthermore, cases considering different fault resistances and non-nominal conditions 

were not considered. As will be discussed later, the solution proposed in the current paper 

overcomes these limitations.    

 The work herein presents a solution based on ANN, specifically a feed forward 

MLP to support the protection scheme of the whole HVDC system, i.e., the rectifier 

substation, the DC transmission line, and the inverter substation. It is important to 

highlight that the main focus and contribution of this paper is to clarify and discuss some 

different possibilities to improve the protection scheme of HVDC systems using ANNs. 

In addition, it is shown how the outputs of several ANNs, each designed for different 

purposes, can be combined together with logic gates to improve the robustness and 

extend the overall protection of the algorithm’s operational range. 

  In order to develop ANNs and evaluate the proposed algorithm, a VSC-HVDC 

system is modeled and simulated in MATLAB Simulink’s Power System Blockset 

(PSB). A large number of fault cases were generated by varying different fault locations, 

types of fault, fault resistances and power across the DC transmission line. This paper is 



 

organized as follows. In Section 2, the VSC-HVDC system used is presented and its 

settings and characteristics are discussed. In Section 3, the proposed algorithm is 

described in detail.  In particular, the training process, pre and post processing and ANN 

validation criteria are included. In this section, the algorithm is evaluated regarding the 

training space and signals from PSB/Simulink. In Section 4, the limits of the proposed 

algorithm are evaluated and a study about accuracy and response time is presented. 

Finally, the conclusions are drawn in Section 5. 

2. VSC-HVDC System Model in PSB/Simulink 
 Fig. 1 shows the single line diagram of the VSC-HVDC system used in this work 

to generate a wide range of fault cases.  The output waveforms were used to generate 

RMS values to be used in the ANN training process and to evaluate the final algorithm’s 

performance. This system was modeled and validated in MATLAB [24] and it is 

essentially representative of a symmetric monopole configuration with Neutral Point 

Clamped (NPC) and 12-pulse converters on both the rectifier and inverter sides. The 

nominal voltage at the DC link is ± 100 kV and the rated transmission power is 200 

MVA. Regarding the AC sides, both operate with a nominal voltage of 230 kV (50 Hz) 

and the short-circuit power is 2000 MVA. More details about the used VSC-HVDC 

system are included in the Appendix, where Fig. A.1 and Fig. A.2 present the AC 

systems connected at buses 1 and 2, respectively. Similarly, Fig. A.3. and A.4 present the 

AC and DC filters connected at the rectifier and inverter side, respectively. Table A.1 

shows the VSC-HVDC parameters.     

 To model the distributed nature of the line’s parameters more closely, the original 

“π” model 75 km length DC transmission line was replaced by a DC transmission line 

with 40 “π” sections, which is sufficient to accurately represent a DC transmission line of 

200 km length [25], used in this work. 

 As can be seen in Fig. 1, the whole system consists of AC equivalent sources, AC 

and DC filters, capacitors, phase and smoothing reactors and a data acquisition system, 

only at the rectifier substation. At bus 1, the RMS AC voltages (Va, Vb, and Vc) and the 

values of the voltage and current (Vd and Id) of the faulted pole in the DC line are 

available. It is important to highlight that the proposed decision support scheme only uses 

these available RMS values and DC quantities, provided by existing meters. Vd and Id 



 

are averaged to give the mean values of the voltage and current (Vd and Id) over the last 

20 ms, equivalent to one cycle at 50 Hz. It is assumed that the data acquisition system is 

supplied with AC and DC transducers with sufficient bandwidths. Once the algorithm 

developed here uses RMS AC values and time averaged DC values, this is a realistic 

assumption since the transducers only need to provide an accurate response up to the AC 

system frequency.  

 In terms of fault types and fault locations on the AC side, all common fault 

configurations are simulated. On the DC side, only pole-to-ground faults are simulated, 

because pole-to-pole faults can only be caused by sufficient physical damage to bring the 

conductor poles together and, therefore, they are very rare [2]. In addition, [26] states that 

pole-to-pole faults on the DC cables are considered unlikely if the two poles are laid in 

separate cables with some distance in-between. 

3. Proposed Algorithm Based on ANN 
 The main concept behind this proposal is to use the ANN classification and 

pattern identification capability to support the protection scheme of the HVDC system 

presented in Section 2. Signals are collected at the rectifier substation and processed by 

the algorithm providing a mechanism to generate a trip signal or any other pre-defined 

control actions. Fig. 2 shows all the input signals used by the algorithm, as well as the 

processing steps involved. The main part of the algorithm is an ANN using RMS three 

phase values and DC quantities to detect the operational condition of the HVDC system. 

To develop this task, four different kinds of ANNs are considered, as follows: 

1) ANN to detect a fault; 

2) ANN to identify the fault section; 

3) ANN to classify a fault at the rectifier substation; 

4) ANN to classify a fault at the inverter substation. 

 Firstly, the algorithm’s performance is evaluated regarding each ANN operating 

separately. This will be followed by a discussion on combining the ANN outputs with 

logic gates to extend the algorithm’s application. Fig. 3 shows the ANNs used in this 

work, highlighting that all the ANNs take the same input signals and have the same three 

layer topology, with the exception of the output layer: 100 – 20 – (1, 3 or 7). 



 

 A sampling rate of 4 kHz is used to acquire signals at the rectifier substation and 

five data windows (Va, Vb, Vc, Vd, and Id) of 20 samples each are applied to the ANN 

input. Thus, each ANN receives the same input vector with 100 inputs and they work 

independently from each other. It is important to emphasize that after detailed analysis, it 

was concluded that an ANN using a sample rate of 4 kHz and data windows of 20 

samples offered the best performance for the proposed algorithm. Such a sampling rate 

also makes the overall algorithm relatively easy to implement in hardware and software. 

Whilst the algorithm could be implemented with an FPGA [6], [27], it is also well within 

the capabilities of the DSP chips in modern numerical relays. 

 It is important to note that different ANN topologies were evaluated and the 

chosen one was the smallest, which was successful in the training process for all ANNs. 

Furthermore, data windows of 80, 40, 20 and 10 samples were considered, but regarding 

accuracy and computational burden, the data windows of 20 samples presented the best 

performance. 

 The choice of the aforementioned ANNs is entirely based on the ability of ANNs 

to identify and classify patterns. In turn, the proposed scheme should be able to detect, 

locate and classify faults at any place in the VSC-HVDC system, since the input signals 

change for different types and fault locations, as exemplified in Fig. 4. As shown, 

depending on the type and fault location, the input signals present different behavior 

before and after a fault so that the ANNs can make a decision about the HVDC 

operational condition. To make this decision properly, the ANNs continuously receive 

voltage and current samples (each 250 μs) by moving data windows. 

 

3.1 Pre-Processing Step 
 

 A simple pre-processing step is used to form the input vector with the five data 

windows required, using RMS and DC quantities. When a new sample is acquired, all 

data windows are updated with the newest sample and the oldest one is discarded. 

Therefore, when a fault occurs, new samples from the HVDC system under fault go from 

the rectifier substation to the pre-processing step and data windows containing voltage 

and current short circuit samples are now used by the ANN. In this situation, the ANN 

should change its output offering information about the HVDC system. 



 

 Mathematically, the pre-processing step is presented in (1) – (4), where k is the 

latest sample, M is the data window size, i.e., 20 samples in this case, Va  is the RMS 

phase A voltage at bus 1, aV  is the normalized RMS phase A voltage, Vd  is the mean 

voltage value of the DC line, dV  is the normalized mean voltage value of the DC line, Id  

is the mean value of current through the DC line, and dI  is the normalized mean value of 

current through the DC line. The normalization process considerably improves the ANN 

performance and is based on a suitable choice of base values as will be discussed in 

Subsection 3.4. Regarding the AC quantities, only phase A is presented, as phases B and 

C are treated identically. 

 
 

3.2 Artificial Neural Networks (ANNs) 
 

 With reference to Fig. 3, each ANN receives the same input vector from the 

preprocessing step. Depending on the task each ANN was designed for, the relevant 

output neuron is then trained to change output from -1 to 1 to indicate detection of a 

positive fault condition. For example, for the ANN in Fig. 3(b), the output vector [-1 1 -1] 

indicates a fault in the DC line. Thus, using the ANNs shown in Fig. 3, it is possible to 

detect the fault, identify the section under fault and classify the fault. 

 The classification task for AC faults beyond the rectifier and inverter substations 

is different. As will be discussed later, the phases involved in any fault occurring at the 
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rectifier substation can be accurately classified as the measurements are made locally. 

However, for AC faults occurring beyond the inverter substation, only the type of faults 

can be identified, i.e., single-phase, double-phase or three-phase. In this case, no specific 

information about the phases can be identified due to the converters between the relay 

and the fault and the similarity between the pre and post fault conditions, mainly for high 

fault resistance values. 

 
3.3 Counter Function 
 

 An independent counter was connected to each ANN output to avoid any unstable 

response. It generates a trip signal only after a predefined number (N) of consecutive 

ANN outputs higher than a threshold value (V). Otherwise, the counter is reset and the 

counter output remains at level 0, which prevents false trips due to noise or any other 

transient condition in the power system. Both parameters N and V can be changed to fine 

tune the algorithm’s response without the need for ANN retraining, as will be shown 

later. 

 
3.4 ANN Training Process 
 

 The training process seeks to provide the ANN with enough knowledge to 

robustly conduct a specific pattern recognition task and, therefore, is a vital step in the 

development of the proposed algorithm. As is well known, a representative training set 

must capture the full range of possible pre and post fault VSC-HVDC operational 

conditions. Therefore, a careful study was undertaken to determine the best training set 

size for this application, showing that 4,346 input vectors were the most suitable choice. 

 The training set was built from 53 different operational cases of the system 

presented in Fig. 1. From each new case, 21 pre-fault and 61 post-fault input vectors were 

acquired, resulting in 4,346 input vectors [(21+61)×53]. To generate each particular case, 

the simulation was executed under a different condition, i.e., one of the following 

parameters was changed: 

1) Type of fault at the rectifier or inverter side (single-phase, double-phase or three-

phase); 

2) Fault location on the DC line (0, 50%, and 100%); 



 

3) Fault inception angle (0º, 45º, and 90º); 

4) Fault resistance (0, 5 Ω, 10 Ω, 15 Ω, and 20 Ω); 

5) Power across the line MVA (0.7 pu, 0.8 pu, 0.9 pu, 1 pu); 

6) Voltage magnitude at the Thevenin equivalent of the AC system at bus 1 (0.9 pu, 0.95 

pu, 1 pu, and 1.05 pu). 

 It is important to note that the training set did not include all possible 

combinations, but instead a sample of 53 cases was chosen to accurately represent the 

boundaries of the problem space.  

 The training set used to train the ANN fault detection is presented in Fig. 5, where 

each input vector is defined according to (1) – (4). When an input vector is related to a 

pre-fault condition, all the ANNs in Fig. 3 are trained to an output equal to -1, but when 

an input vector is related to a post-fault condition, only the relevant output neuron is 

trained to an output equal to 1. The training set purposefully did not include input vectors 

that had pre and post fault data together, which could make this process infeasible. 

 Before training the ANN, the training set should be normalized, as the neurons at 

the input layer only work effectively with values ranging between -1 and 1. Therefore, 

three base values were defined for the normalization process, which makes the training 

process more efficient and it improved the algorithm performance. The base values 

defined are respectively the highest elements of AC RMS, Vd and Id present in the 

training setting, shown in Fig. 5. These values are called respectively VAC base, VDC base 

and IDC base and they were used in the normalization process, but also in the pre-

processing step as shown in (1) – (3). 

 As mentioned earlier, this ANN is an MLP type with a hyperbolic tangent 

activation function in the input and hidden layers and a linear activation function in the 

output layer, which is suitable for applications involving pattern recognition and 

classification tasks [15]. The Backpropagation algorithm was used to perform a 

supervised learning training process, which is a typical choice when using ANN in power 

systems [16] – [23]. The main training parameters used in this work are: 

• Momentum: 0.9; 

• Learning rate: 0.01; 

• Desired error (minimum error): 1x10-9; 



 

• Maximum number of iterations: 500,000; 

• Learning procedure: Batch. 

 
3.5 Algorithm’s Validation Process 
 

 To validate the proposed algorithm, forty new operational situations were 

executed using PSB/Simulink and applied to ANN inputs following the pre-processing 

step. The same parameters described in Section 3, Subsection 3.4 (items 1 to 6), were 

used to generate cases different from those used in the training process. In the context of 

ANNs, it could be called a Generalization Test. However, not only is the ANN output 

analyzed, but also the overall algorithm’s response time as power system protection is a 

time critical application. 

 Table 1 shows 40 test cases used in this work. Each case’s parameters are shown 

compared to the respective response times, where VAC1 and P are in pu, and RF is in 

Ohms. The Detection Time (TD), Location Time (TL), Rectifier Classification Time (TCR) 

and Inverter Classification Time (TCI) are respectively the response time in ms related to 

the ANN output presented in Fig. 3. The fault inception angle is not presented due to the 

fact that when using the AC RMS values, its effect is not significant in the final result. 

The times presented in Table 1 include the delay generated by the counter and represent a 

completely stable and reliable response. 

 Table 2 presents N and V for each ANN output and Fig. 6 (a) illustrates the ANN 

output and the counter output for case 21, presented in Table 1 and Fig. 2. Furthermore, 

Fig. 6 shows the response time analysis for each specified ANN from Fig. 3, under 

different fault conditions presented in Table 1. It can be seen that the counter ensures that 

the algorithm issues a decisive response only after the ANN output stabilizes. For all 

cases, the simulation time was 3 s and the fault was always applied between 1.5 s and 2.5 

s. It is important to highlight that the main purpose of Fig. 6 is to show how each ANN 

works, i.e., as can be seen, only the expected ANN output ranges from -1 to 1, while the 

other outputs do not change, remaining at -1.  

 As summarized in Table 1, it can be observed that the response time for faults at 

the inverter side is longer than in all the other cases. Therefore, whilst this algorithm 

would be viable as a main protection or logical support for the rectifier side and DC line, 



 

it should be restricted to backup protection (or logical support) for the inverter side. In 

terms of an integrated protection scheme, it is a very interesting application, whereby the 

whole system is protected by the same hardware with the same robust and fault-tolerant 

technique (ANN) and without any communication link, i.e., operating only with local 

signals. An improvement is expected in the protection system reliability when the amount 

of cables, the number of different hardware and monitoring signals are reduced. As 

shown in Fig. 7, only available signals are used to protect/monitor the whole HVDC 

system and no new infrastructure is needed, which means it is inexpensive to implement. 

Moreover, as the proposed scheme is designed to be used as a backup protection or 

logical support, its response time is not as strict as the main protection response time. It 

makes the proposed scheme suitable to be implemented in hardware, even using generic 

hardware platforms available on the market. As highlighted, no additional devices or 

communication links are needed.   

 As shown in Table 1, the algorithm failed to detect a single-phase fault before a 

double-phase fault for case 8. The next subsection explores a way to overcome this 

drawback and improves the algorithm performance for faults at the inverter side. In this 

case, “performance” is defined as the algorithm's ability to correctly respond to normal 

and fault conditions, as well as its response time following a fault. 

 
3.6 Improving the Algorithm’s Performance 
 

 To improve the algorithm’s performance concerning faults at the inverter side, the 

approach reported in this subsection uses three independent ANNs to classify faults, 

instead of only one ANN with three outputs, as discussed before. Thus, in this approach 

each ANN has a specific function, as follows: a) ANN to detect single-phase faults; b) 

ANN to detect double-phase faults; c) ANN to detect three-phase faults. All of them have 

the same topology, identical to the one shown in Fig. 3(a). The same input training set 

discussed in Subsection 3.1, as well as the output vector adjusted depending on the 

ANN’s designated task is used. Specifically, the output vector for the ANN responsible 

for single-phase faults was trained to 1 only for inputs related to a single-phase fault case 

and -1 otherwise (even for double-phase or three-phase faults at the inverter side). The 

same procedure was used for the other two ANNs, and consequently three completely 



 

exclusive ANNs were developed. It should be highlighted that this new proposal is now 

formed by six ANNs and not only four ANNs, as previously shown in Fig. 3.   

 The new scheme was tested using the same forty cases initially used (see Table 1) 

and the results are presented in Table 3. The last column still has the response time TCI 

obtained for the first approach (one ANN with three outputs), allowing a direct 

performance comparison between both approaches. It is important to note that the 

response time for single-phase faults was increased to 10 ms, however for double-phase 

and three-phase faults this time was reduced. Nevertheless, the most significant impact is 

the correct classification of case 8, which is explained by the fact that it is an ANN 

specially used for classifying single-phase faults. The adjustments of parameters N and V 

used in each ANN output are presented in Table 4. These parameters are chosen to meet 

the worst fault case, which can be found by analyzing all the simulation results. 

4. Evaluation of Algorithm Limits 
 As discussed in the previous section, the algorithm performance is very 

promising, as it robustly and quickly produced the required output for forty new fault 

cases. However, these test cases all exist within the limits of the training set range 

whereas practical, real world conditions could present fault parameters that lie outside of 

this range. By using the same presented training set generation methodology to extend the 

training set, the algorithm’s range could be improved. However, this could result in 

prohibitively long training times or larger ANNs topologies. This section, therefore, 

intends to show the real limits of the algorithm, i.e., identify the fault conditions where 

each ANN fails. 

 The methodology to find the limits of the algorithm is based on the following 

steps: 

a) To identify the most critical case for each type of fault, considering the forty cases 

initially used. This is assumed to be the case with the slowest response time, i.e., for the 

three-phase fault at the rectifier side, the worst case is 31 (Table 1). 

b) For each critical case selected, to change the parameters to generate cases outside of 

the training range. This can be done by doing the following: 0.85 pu < VAC1 > 1.05 pu, P 

< 0.7 pu, RF > 20 Ω. 



 

c) Systematically adjust these parameters to produce new test cases until the ANN fails. 

This is assumed to be the limit of the algorithm. 

 This procedure quantified the difference between the limits of the training set and 

the real limits of the algorithm (ΔVAC1, ΔRF, and ΔP).  As shown in Fig. 8, it is important 

to note that the applicability of the proposed scheme increases the larger the ΔVAC1, ΔRF, 

and ΔP are. New tests considering cases outside the training range (item b 

aforementioned) define a new "real working space". It is a relevant issue to be considered 

when applying the proposed scheme (methodology) to protect different VSC-HVDC 

systems. 

 Table 5 shows the results for 126 new simulated cases, defining ΔVAC1, ΔRF, and 

ΔP. A comparison is made between the different ANN performances, as well as the same 

operational condition. Specific ANNs are also compared to different operational 

conditions.  

 
4.1 Three-Phase Fault at the Rectifier Side 
 

 After 12 new simulations for each ANN, it was observed that RF does not have 

any influence on the algorithm performance. Indeed, the performance was affected by P, 

regardless of the ANN considered.  It is important to note that until P = 0.65 pu, the NN1 

(detection) works with an average time for responding TA = 15.92 ms, i.e., about ¾ of 

cycle. Moreover, it can be seen that NN2 (location) works for P = 0.5 pu and TA = 9.2 ms, 

which means less than ½ cycle. The NN3 (classification) works for P = 0.2 pu and TA = 

21.18 ms, i.e., about one cycle. The successful operational range of each ANN can be 

observed, which is larger than the one specified during the training process where P = 0.7 

pu and RF = 20 Ω. If the response time is not the main concern, the NN3 could also be 

used to assist the detection function, significantly extending the operational range for the 

algorithm. Overall output could be derived using an OR operator connected at NN3 

outputs (see Fig. 3(a) and Fig. 3(c)), as shown in Fig. 9. Thus, the NN3 could be used 

both to classify faults and also as a support to detect three-phase faults at the rectifier 

side. The range of VAC1 (see item b aforementioned) did not significantly affect the 

algorithm´s performance.  

 



 

4.2 Double-Phase Fault at the Rectifier Side 
 

 After 10 new simulations for each ANN, it was observed that the RF has a 

minimal influence on the ANN´s performance, in contrast to P which was observed to 

significantly affect the ANN's performance. Regarding P, only the NN3 shows 

improvements considering the values specified during the training process (0.7 pu).  

However, with respect to fault resistance, all of them respond to values larger than the 

one used in the training set (20 Ω). The response time is less than one cycle for NN2 and 

NN3 and slightly longer than one cycle for the NN1. Depending on the system´s 

requirements, the ANN1 could be used in association with others to extend its operational 

range. As an example, the NN2 or NN3 outputs could be used for an OR operator to assist 

the detection function, as discussed in the previous Subsection 4.1. 

 
4.3 Single-Phase Fault at the Rectifier Side 
 

 After 16 new simulations for each ANN, it was observed that the RF significantly 

affects the ANN's performance and all the limits are practically the same as the ones used 

in the training process, unless two of them can work with 25 Ω, against 20 Ω used in the 

training set. 

 
4.4 Three-Phase Fault at the Inverter Side 
 

 After 12 new simulations for each ANN, it was observed that NN1 and NN2 are 

not affected by RF and they work for P = 0.6 pu and P = 0.5 pu, respectively. Both cases 

present TA about a half cycle. The NN4 is also not affected by RF and is able to work for P 

= 0.5 pu, but TA = 41.05 ms (~ 2 cycles). 

 
4.5 Double-Phase Fault at the Inverter Side 
 

 After 12 new simulations for each ANN, it was observed that NN1 and NN2 are 

able to respond to RF = 50 Ω, whilst the power across the line can be set to P = 0.6 pu and 

P = 0.5 pu, respectively. The NN4 is more restricted, as the maximum fault resistance is 

RF = 40 Ω and the minimum power across the line is P = 0.7 pu. To classify the type of 

fault at the inverter side, TA = 157.80 ms (almost 8 cycles). 

 



 

4.6 Single-Phase Fault at the Inverter Side 
 

 After 16 new simulations for each ANN, a similar behavior was noticed when 

compared to a single-phase fault at the rectifier side. This means that essentially the 

training set values were maintained, unless RF = 30 Ω for NN2. 

 
4.7 DC Transmission Line Fault 
 

 For this type of fault, case 36 was selected as the most critical case (see Table 1) 

and 48 new simulations were applied to each ANN. It could be observed that NN1 and 

NN2 are significantly affected by the power across the line, and the minimum limit 

permitted is P = 0.7 pu, which is the same used during the training process. However, for 

fault detection, the NN1 is able to respond correctly until RF = 40 Ω and for the fault 

location, NN2 is able to respond correctly until RF = 180 Ω within TA = 29.95 ms, which 

represents no more than one and a half cycles. Once again, an association could be made 

between NN1 and NN2 to provide a faster response time and more robust behaviour, i.e., 

they can work together through an OR operator to extend the fault detection function 

limits. Fig. 10 presents the NN2 response time considering different fault resistances for 

seven different test cases, as follows: 

a) Test 1: fault at 150 km, VAC1 = 0.97 pu, P = 0.98 pu; 

b) Test 2: fault at 190 km, VAC1 = 0.97 pu, P = 0.98 pu; 

c) Test 3: fault at 190 km, VAC1 = 0.90 pu, P = 0.70 pu; 

d) Test 4 and 5: fault at 190 km, VAC1 = 1.05 pu, P = 1.0 pu; 

e) Test 6: fault at 5 km, VAC1 = 1.05 pu, P = 1.0 pu; 

f) Test 7: fault at 5 km, VAC1 = 0.90 pu, P = 0.70 pu. 

 As can be seen in Fig. 10, the response time increases for higher values of RF and 

smaller values of VAC1 and P. 
 

4.8 Faults under a Nominal Condition 
 

 In this subsection, the ANNs are evaluated when the power system operates under 

nominal voltage and power condition, as these will be the most common pre fault 

condition. To carry out this evaluation, the power across the line P and the voltage at the 

equivalent system at bus 1 VAC1 are both fixed to 1 pu. Table 6 shows the average time 



 

for responding to 36 new cases applied to each ANN considering different RF values (30 

Ω, 40 Ω, 50 Ω, and 60 Ω). Confirming the behaviour presented in Table 5, the ANNs 

respond as expected for a three-phase fault or double-phase fault at the rectifier and 

inverter sides, even when RF = 60 Ω. Moreover, similar to Table 5, the ANNs respond as 

expected to single-phase faults on both sides, but they are practically restricted to RF = 20 

Ω, used in the training process. With respect to the DC transmission line, it can be noted 

that the NN1 is limited to respond correctly for RF ≤ 50 Ω, whilst the NN2 is able to work 

for RF = 60 Ω, as previously highlighted. According to the times presented, this scheme 

could be used as the main protection (or a decision support tool) for the rectifier side and 

DC line, but it is confined as a backup protection considering the inverter side. 

5. Conclusions 
 This work presents a complete scheme based on ANNs to support the protection 

scheme of VSC based HVDC systems. Using information from the rectifier substation 

only, the scheme can robustly detect and classify faults at the rectifier side, the inverter 

side, and the DC transmission line and detect in which of these sections the fault is 

located. In turn, such a scheme can be used as a decision support tool or as a backup 

protection. It should be pointed out that the proposed scheme imparts much more 

information to the protection system compared to conventional methods.  

 The training methodology developed makes the training process fast and efficient, 

and independent of the HVDC control system, as only AC and DC data (voltage and 

current) are used. As discussed in item 3.4 and shown in Fig. 5, by properly adopting 

three base values and a suitable training set (with representative operational cases), this 

methodology can be used to defined ANN based decision support tools for other VSC-

HVDC systems.  

 A large number of simulations (202 for each ANN) were used to evaluate the 

algorithm´s performance and its characteristics. For cases existing within the training 

space, the expected response was reliably obtained, which indicates that the proposed 

scheme is completely robust for fault cases within the training space. Moreover, 

extensive tests showed the limits of the algorithm´s performance lie beyond the range of 

the training parameters. Other than extending the training data, a number of ways to 



 

increase these performance limits were investigated, such as tuning the counter 

parameters and  combining the outputs of different ANNs by associating them with logic 

gates. 

 It should be clear that all benefits reported in this paper are possible without any 

significant additional costs, as only available signals are used, no communication link is 

needed, and no special hardware is provided. It means that a more reliable protection 

system can be achieved, by using practically the available infrastructure.    

 It is important to state that, at present, most point-to-point DC links are protected 

by breakers residing on the AC side and in the event of a fault, the entire link is de-

energised. The proposed scheme would, therefore, suit existing systems or new systems 

with future DC breakers with better fault current interrupting capabilities. 
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8. Appendices 
 

Fig. A.1. to Fig. A.4. 

Table A.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 























Table 1 Test Cases and Response Times (ms) 
 

Case  Fault VAC1  P RF TD TL TCR  TCI 
1‐R  ABC 0.92  1 0 21.0 6.50 21.3  X 
2‐R  B  1  0.85 0 31.0 18.2 15.3  X 
3‐R  BC 1  1 10 34.0 12.8 19.5  X 
4‐D  0% 0.95  0.82 0 14.0 6.70 X  X 
5‐D  25% 1  0.95 5 18.0 10.3 X  X 
6‐D  75% 1  0.95 5 18.5 10.8 X  X 
7‐D  100% 1  0.8 10 20.8 12.8 X  X 
8‐I  AC 0.9  0.9 5 5.00 11.5 X  (1) 
9‐I  C  0.97  0.9 10 18.7 17.3 X  51.5 
10‐I  ABC 0.95  0.87 10 10.5 10.5 X  32.0 
11‐R  ABC 0.9  0.95 20 21.5 7.50 21.0  X 
12‐R  A  1  0.75 18 29.5 27.3 16.8  X 
13‐R  AC 0.92  0.7 25 3.80 7.00 15.5  X 
14‐D  0% 0.9  0.8 20 28.3 14.8 X  X 
15‐D  25% 0.96  0.75 22 27.0 15.0 X  X 
16‐D  75% 1  1 25 28.0 15.8 X  X 
17‐D  100% 0.98  0.7 15 23.3 14.5 X  X 
18‐I  BC 0.9  0.75 15 13.8 13.8 X  86.0 
19‐I  B  0.9  0.9 20 18.5 17.8 X  51.3 
20‐I  ABC 0.9  0.7 15 9.50 9.80 X  31.8 
21‐R  ABC 0.92  0.85 15 18.0 6.30 21.0  X 
22‐R  B  0.95  0.8 8 33.5 17.8 16.0  X 
23‐R  BC 0.96  0.77 20 15.5 11.8 19.5  X 
24‐D  0% 0.97  0.79 16 23.0 13.5 X  X 
25‐D  25% 1  0.95 15 21.8 12.8 X  X 
26‐D  75% 0.96  0.89 3 18.5 10.8 X  X 
27‐D  100% 0.98  0.98 9 21.0 12.5 X  X 
28‐I  AC 0.99  0.79 8 13.5 13.3 X  89.2 
29‐I  C  1.01  0.92 15 21.0 19.3 X  53.2 
30‐I  ABC 0.95  1 12 11.5 11.3 X  30.8 
31‐R  ABC 1.02  0.85 18 21.0 10.0 21.3  X 
32‐R  A  1  0.77 16 29.0 19.8 16.5  X 
33‐R  AC 1.05  0.75 22 18.3 14.5 16.5  X 
34‐D  0% 0.95  0.85 15 23.3 13.5 X  X 
35‐D  25% 1.04  0.85 23 24.3 14.3 X  X 
36‐D  75% 0.97  0.98 25 30.2 16.0 X  X 
37‐D  100% 1.03  0.75 18 23.3 14.5 X  X 
38‐I  BC 0.9  0.76 17 15.0 15.0 X  86.5 
39‐I  B  1.05  0.93 20 23.8 21.0 X  54.0 
40‐I  ABC 1.04  0.75 19 11.5 11.5 X  53.0 

R = Rectifier side; D = DC Line; I = Inverter side. 
(1) = A single‐phase fault was indicated before the double‐phase fault. 

X = Not applicable. 
 



Table 2 Counter Settings 
 

TD 
TL TCR TCI

R  D  I  All 7 
outputs 1φ  2φ  3φ 

N 20  20  20 20 20 160 160 40 
V 0.8  0.8  0.8 0.8 0.8 0.8 0.8 0.8 
For a sample rate of 4 kHz, N (20 samples) is equal to 5 ms. 

 



Table 3 Improved Approach - Test Cases and response Time (ms) 
 

Case  Fault VAC1  P RF T‐1φ  T‐2φ  T‐3φ  TCI 
8‐I  AC 0.9  0.9 5 ∞ 89.5 ∞  (1) 
9‐I  C  0.97  0.9 10 62.0 ∞ ∞  51.5 
10‐I  ABC 0.95  0.87 10 ∞ ∞ 29.3  32.0 
18‐I  BC 0.9  0.75 15 ∞ 71.0 ∞  86.0 
19‐I  B  0.9  0.9 20 62.0 ∞ ∞  51.3 
20‐I  ABC 0.9  0.7 15 ∞ ∞ 29.0  31.8 
28‐I  AC 0.99  0.79 8 ∞ 42.0 ∞  89.2 
29‐I  C  1.01  0.92 15 63.3 ∞ ∞  53.2 
30‐I  ABC 0.95  1 12 ∞ ∞ 28.5  30.8 
38‐I  BC 0.9  0.76 17 ∞ 71.0 ∞  86.5 
39‐I  B  1.05  0.93 20 64.0 ∞ ∞  54.0 
40‐I  ABC 1.04  0.75 19 ∞ ∞ 30.2  53.0 

T-1φ, T-2φ, T-3φ = single-phase, double-phase, and three-phase ANN. 
(1) = A single-phase fault was indicated before the double-phase fault. 

 



Table 4 Improved Approach - Counter Settings 
 

 
Independents ANN 

T‐1φ  T‐2φ  T‐3φ 

N  200  80  30 

V  0.9  0.9  0.9 

 



Table 5 Algorithm’s Limits 
 

Rectifier Inverter
DC 

3φ  2φ  1φ  3φ  2φ  1φ 

NN1 

RF  ∞  60  25  ∞  50  20  40 
P  0.65  0.7  0.7  0.6  0.6  0.7  0.7 
TA  15.92  28.47  33.75  10.94  14.77  20.77  42.64 

NN2 

RF  ∞  60  20  ∞  50  30  180 
P  0.5  0.7  0.7  0.5  0.5  0.7  0.7 
TA  9.2  10.97  18.25  11.63  16.08  20.16  29.95 

NN3 

RF  ∞  60  25  X  X  X  X 
P  0.2  0.4  0.7  X  X  X  X 
TA  21.18  16.22  20.53  X  X  X  X 

NN4 

RF  X  X  X  ∞  40  20  X 
P  X  X  X  0.5  0.7  0.7  X 
TA  X  X  X  41.05  157.8  62.82  X 

NN1: Fault detection; NN2: Fault location; NN3: Fault classification at the rectifier side; NN4: Fault 
classification at the inverter side: RF: Fault resistance (Ω); TA: Average time for responding (ms); X: Not 

applicable. 



Table 6 Average time for Responding in Nominal Operation (ms) 
 

 
Rectifier  Inverter 

DC 
3φ  2φ  1φ  3φ  2φ  1φ 

NN1  21.50  33.34  20.8A  12.0  16.80  25.3B  39.8C 

NN2  9.0  13.35  16.1A  11.50  16.30  23.2D  29.95 

NN3  21.0  16.50  26.5B  X  X  X  X 

NN4  X  X  X  28.30  82.10  52.5A  X 
A: Limited to training set value RF = 20 Ω; B: maximum RF = 30 Ω; 

C: maximum RF = 50 Ω; D: Maximum RF = 40 Ω; X: Not applicable.   
 





TABLE A.1 VSC-HVDC PARAMETERS 
 

Component Value
L1 23.9 mH
Lp1 8 mH
Ln1 8 mH
Cp1 70 μF 
Cn1 70 μF 
T1 200 MVA ‐ 230:100 kV
L2 23.9 mH
Lp2 8 mH
Ln2 8 mH
Cp2 70 μF 
Cn2 70 μF 
T2 200 MVA ‐ 100:230 kV

 


