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The Value of Information for Correlated GLMs

Evangelos Evangelou1 and Jo Eidsvik2

1. Department of Mathematical Sciences – University of Bath, Bath, UK

2. Department of Mathematical Sciences – NTNU, Trondheim, Norway

Abstract: We examine the situation where a decision maker is considering in-
vesting in a number of projects with uncertain revenues. Before making a deci-
sion, the investor has the option to purchase data which carry information about
the outcomes from pertinent projects. When these projects are correlated, the
data are informative about all the projects. The value of information is the
maximum amount the investor would pay to acquire these data.

The problem can be seen from a sampling design perspective where the sampling
criterion is the maximisation of the value of information minus the sampling cost.
The examples we have in mind are in the spatial setting where the sampling is
performed at spatial coordinates or spatial regions.

In this paper we discuss the case where the outcome of each project is modelled
by a generalised linear mixed model. When the distribution is non-Gaussian, the
value of information does not have a closed form expression. We use the Laplace
approximation and matrix approximations to derive an analytical expression to
the value of information, and examine its sensitivity under different parameter
settings and distributions. In the Gaussian case the proposed technique is exact.
Our analytical method is compared against the alternative Monte-Carlo method,
and we show similarity of results for various sample sizes of the data. The closed
form results are much faster to compute. Model weighting and bootstrap are used
to measure the sensitivity of our analysis to model and parameter uncertainty.
A general guidance on making decisions using our results is offered.

Application of the method is presented in a spatial decision problem for treating
the Bovine Tuberculosis in the United Kingdom, and for rock fall avoidance
decisions in a Norwegian mine.

Keywords: Decision analysis; Generalised linear mixed model; Laplace approx-
imation; Sampling design; Value of Information.

1 Introduction

One goal of statistical modelling and methodology is to provide useful inputs for decision
making under uncertainty. The planning and evaluation of various data acquisition schemes
for making improved decision is also a field where statistics is expected to contribute. We
apply value of information (VOI) analysis to study when a data set is likely to help us make
sufficiently better decisions, i.e. whether it is worthwhile acquiring. We also use VOI analysis
for the comparison of various possible experiments. The VOI is a monetary amount, which
is computed from the statistical model as well as the costs and revenues of the decision
situations. A recent review of decision analysis is given in Howard and Abbas (2015).

We consider the situation with dependent projects having uncertain profits. In our
applications the projects will be associated with spatial coordinates, and their correlation

Date: May 27, 2016

1



depends on the distance between projects. Eidsvik et al. (2015) present a framework for
VOI analysis in this spatial context. Our methods also work for other kinds of dependence.
We assume that the decision maker freely selects projects with positive expected monetary
value. Initially, the investor has prior knowledge about the outcome of the projects, including
dependence, and the overall prior value of projects. There is much at stake, and one can
purchase some data before making the decisions. With the option to purchase some data,
the posterior value of projects can be computed. When the projects are correlated, the data
will be informative of the probability distribution of all projects. The VOI is the difference
between the expected posterior value averaged over all possible data sets, and the prior value.

A typical example of this situation is presented in Section 6.2. In this example a mine
operator is considering adding rock support at selected locations to avoid rock fall. The
support will ensure that the rock will not fall but comes with the cost of equipment and
labour. Without the rock support, a rock fall will cause loss of revenue. To assess the
likelihood of rock fall, the mining operator can collect data at a number of spatial locations.
The number of rock joints counted at those locations is a measure of the rock strength and is
modelled by a Poisson spatial model. However, the data are not free and different sampling
schemes are considered. VOI analysis can be used to compare sampling schemes for different
price ranges, and for various statistical models and/or parameter settings. It then forms a
solid basis for management who is making information gathering decisions in the light of
budgets and resources.

Mathematically speaking, we consider the set S of spatial projects. The latent variable
of interest is denoted xs, s ∈ S. We allow for the components of X = {xs, s ∈ S} to be
correlated and normally distributed. The decision is tied to this variable. For the case
where the distribution of X is categorical, see Bhattacharjya et al. (2010). The potential
outcomes of experiments are denoted ys, s ∈ S. The distribution of ys is defined to be
conditionally independent of the outcomes of the other experiments with mean g(xs) where
g(·) denotes the inverse link function. In the examples discussed in this paper the outcome
of each experiment is either binary or a count variable. The generalised linear model (GLM)
is used for modelling data of this type where the response y is then assumed to follow a
conditional distribution in the form of the exponential family.

Suppose that the cost of making a decision at any site s is Cs, while the revenue is a
fixed amount Rs times the expectation of the binary or count variable. When no data are
available, the prior value (PV) is

PV(S) =
∑

s∈S

max{0, Rs × Ex g(xs) − Cs}, (1)

i.e. a risk-neutral decision maker selects site s if its expected profit is positive, otherwise
the decision maker avoids this site. The decision maker is free to select as many sites as
are profitable, thus the sum over all sites. Note that in some situations the objective is to
maximise the negative loss, rather than the revenues.

Now suppose that there is the potential of obtaining data y corresponding to a collection
of spatial experiments S. We assume that the data from each experiment at s ∈ S consists
of the total over ms replications of the experiment. In the context of exponential families,
ms would denote the number of trials in a binomial experiment or the time length, area or
volume for Poisson responses. The resulting data ys are informative of the latent variable
xs. Under these circumstances the posterior value (PoV) for the experiments S is

PoV(S|S) = Ey

∑

s∈S

max{0, Rs × Ex[g(xs)|y] − Cs}. (2)

The difference of (2) from (1) is the VOI provided by the experiments S, i.e

VOI(S|S) = PoV(S|S) − PV(S). (3)
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It can be shown by an application of Jensen’s inequality that VOI(S|S) ≥ 0 ∀S. Thus, there
is always the incentive of collecting more data. However, one must weight this information
against its cost so accurate calculation of (3) is important for planning purposes. Moreover,
when the optimal experiment set S is sought, these calculations need to be quick. From a
computational point of view, calculation of (1) is straightforward and in some cases it can
be written in closed-form. The calculation of (2) is more difficult due to the intractable
conditional expectation inside the maximum, and the outer expectation over the data.

The case where the outcome of each experiment is normally distributed has been studied
by Bhattacharjya et al. (2013). The contribution of the current paper is to extend these
results to the general exponential family case. We also consider the risk of decisions and
suggest methods to account for model and parameter uncertainty. In some sense the context
is similar to that of spatial design. This is usually done based on entropy, see e.g. Fuentes
et al. (2007), prediction variance, see e.g. Evangelou and Zhu (2012), or prediction error, see
e.g. Peyrard et al. (2013). The main difference between these measures of information and
VOI analysis is that the latter is based on decision theoretic concepts and directly tied to
monetary units. The VOI analysis is commonly done for medicine and health, see e.g. Baio
(2012), and in the context of conservation biology, see Moore and McCarthy (2010); Moore
and Runge (2012), but this has not been done in the setting with spatial decisions and latent
models incorporating dependence and GLM likelihoods. Analytical expressions can also be
useful in sequential decision problems (Morgan and Cressie, 1997). The contribution of our
paper is to formulate analytical results for the large class of hierarchical GLMs.

The remaining parts of the paper are organised as follows. Section 2 presents some
pertinent asymptotic results for the conditional mean and variance of the latent process.
These results are used in Section 3 to derive the approximation to the VOI for different
models. Section 4 presents methods for dealing with model and parameter uncertainty. In
Section 5 we present computational results where we compare the proposed approximation to
the Monte-Carlo method and discuss the sensitivity of our approximation to the parameters
of the model. In Section 6 we illustrate our method to applications and finally, in Section 7
we present our conclusions. Some technical derivations are given in the Appendix.

2 Some asymptotic results for GLMs

We denote the latent process on S by x := {x1, . . . , xn}. Let further µ := Ex x be the mean
and Σ := Vx x be the covariance matrix of x. The notation Ex is used here to denote the
expectation, or conditional expectation, with respect to the distribution of X = {xs : s ∈ S}
and similarly for Vx. Similar notation is used for expectations with respect to the distribution
of data variables Y = {yij , i = 1, . . . , n, j = 1, . . . ,mi}, with realised outcome y.

The conditionally independent distribution of yij|xi is in the form

p(yij|xi) ∝ exp

∫ gi

yij

yij − u

τ2v(u)
du, i = 1, . . . , n, j = 1, . . . ,mi

where gi := g(xi), τ
2 is called the dispersion parameter and v(·) is the variance function.

The case v(g) = g, where g = g(x) is the conditional mean of y given x, gives the Poisson
distribution and the case v(g) = g(1 − g) gives the Bernoulli distribution, while v(g) = 1 is
the normal distribution (McCullagh and Nelder, 1999, p. 326). In this section we derive a
Gaussian approximation to the distribution p(xs|y) using Laplace’s method.

3



2.1 Laplace approximation

Laplace’s method (Barndorff-Nielsen and Cox, 1989) approximates multidimensional inte-
grals of the form

I =

∫
f(x)e−h(x) dx,

as h(·) → ∞, around
x̂ := argmin

x

h(x).

The first order approximation is

I ≈ f(x̂)e−h(x̂)

∣∣∣∣
1

2π
Ĥ

∣∣∣∣
−1/2

,

where Ĥ denotes the Hessian matrix of h(·) evaluated at x̂.
When the Laplace approximation is applied to ratios of integrals of the form

If
I1

=

∫
f(x)e−h(x) dx∫

e−h(x) dx
,

the approximation to first order is (Tierney et al., 1989)

If
I1

≈ f(x̂). (4)

If the dimension of x is fixed, the asymptotic error of (4) is O(h−1) as h(x) → ∞. The
requirement h(x) → ∞ is equivalent to mi → ∞ for all i in our setting. The case where
n → ∞ has been studied in Shun and McCullagh (1995) and Evangelou et al. (2011) who
showed that the approximation error for the geo-spatial case becomes O(nh−1) to the first
order.

The Laplace approximation is a consequence of the Gaussian approximation to e−h(x).
In particular, application of second order Taylor expansion to h(x) around x̂ gives

e−h(x) ≈ e−h(x̂) exp

{
−1

2
(x− x̂)TĤ(x− x̂)

}
,

so if e−h(x) represents a pdf, then it can be approximated by the Gaussian pdf with mean x̂

and variance Ĥ−1.

2.2 Gaussian approximation to the conditional distribution of x|y
Consider the conditional distribution of x|y. This distribution is in general not available in
closed-form. A Gaussian approximation to this distribution is derived using

p(x|y) ∝ p(y|x)p(x) = p(x,y),

where p(y|x) =
∏

p(yij|xi) and p(x) is the multivariate normal pdf with mean µ and variance
Σ. To that end, let

x̂ := argmax
x

p(y|x)p(x),

and Ĥ := Σ−1 + D̂ denotes the negative Hessian of log p(y,x) with respect to x evaluated
at x̂. Here, the matrix D denotes the diagonal matrix with ith element miv(gi)τ

−2 if a
canonical link is used, while D̂ is the same as D with x replaced by x̂.
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Then, an approximation to the mean and variance of x|y is

Ex[x|y] ≈ x̂

Vx[x|y] ≈ Ĥ−1.
(5)

This motivates approximation of the conditional distribution of x|y by the normal distribu-
tion with mean and variance given by (5), i.e

x|y ∼ Nn(x̂, Ĥ−1). (6)

Using the result in (6), we can predict xs at any given spatial experiment site s. Let cs
denote the covariance between xs and x, where xs need not be an element of x. Then,

κs := Ex[xs|x] = µs + cT

sΣ
−1(x− µ),

ξ2s := Vx[xs|x] = σ2
s − cT

sΣ
−1cs,

νs := Ex[xs|y] ≈ µs + cT

sΣ
−1(x̂− µ).

(7)

The notation ≈ will be used here to denote the first order approximation to the left hand side.
Note that the first two equations in (7) are the well-known expressions for the conditional
mean and variance of the multivariate Gaussian distribution. The expression for νs is derived
by applying (4) with f(x) being κs = κs(x), i.e. νs = κs(x̂).

Since the mean and variance in (5) depend on y only through x̂,

Ex[x|x̂] ≈ x̂

Vx[x|x̂] ≈ Ĥ−1.
(8)

By an application of the law of iterated expectations on the left and right-hand sides
of (8) we have

µ = Ex x = Ex̂[Ex[x|x̂]] ≈ Ex̂[x̂]

Σ = Vx x = Vx̂ Ex[x|x̂] + Ex̂ Vx[x|x̂] ≈ Vx̂ x̂ + Ex̂ Ĥ
−1

⇒ Vx̂ x̂ ≈ Σ − Ex̂ Ĥ
−1 = ΣEx̂(Σ + D̂−1)−1Σ =: Ψ,

(9)

where we used Ĥ−1 = (Σ−1 + D̂)−1 = Σ−Σ(Σ + D̂−1)−1Σ in the last line. Asymptotically,
the distribution of x̂ is the n-dimensional multivariate normal with mean µ and variance Ψ.
Note that the elements of D̂−1 are negligible for large mi. In this case, by two applications
of (I + ǫA)−1 ≈ I − ǫA as ǫ → 0, we have

Ψ = ΣEx̂(Σ + D̂−1)−1Σ

= ΣEx̂(I + Σ−1D̂−1)−1

≈ ΣEx̂(I − Σ−1D̂−1)

= Σ(I − Σ−1
Ex̂ D̂

−1)

≈ Σ(I + Σ−1
Ex̂ D̂

−1)−1

= Σ(Σ + K)−1Σ

where K = Ex̂D
−1. Applying this result to (7), we have

Ey[νs] ≈ µs,

Vy[νs] ≈ cT

s(Σ + K)−1cs =: χ2
s.

(10)

Equation (10) is the main result of this section and is used for the approximation of VOI as
we show next.
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3 Approximation to the VOI

In this section we show how the results from Section 2 are used to derive the contribution
VOI(s|S) of a single site s to the VOI.

Consider first the expectation Ex[g(xs)|y] and define

Mg(κs, ξs) = Ex[g(xs)|x].

Then, by an application of (4) for f(x) = Mg(κs(x), ξs),

Ex[g(xs)|y] = Ex[Ex[g(xs)|x]|y]

= Ex[Mg(κs, ξs)|y]

≈ Mg(νs, ξs). (11)

Note the dependence of the right-hand side of (11) on y through x̂.
By combining (1), (2), (3) and (11), we have

VOI(s|S) = Ey max{0, Rs × Ex[g(xs)|y] − Cs} − max{0, Rs × Ey[Ex g(xs)|y] − Cs}
≈ Ey max{0, Rs ×Mg(νs, ξs) − Cs} − max{0, Rs × Ey Mg(νs, ξs) − Cs}
= Eνs max{0, Rs ×Mg(νs, ξs) − Cs} − max{0, Rs × Eνs Mg(νs, ξs) − Cs}. (12)

The last expectation is with respect to the distribution of νs which from (10) can be taken to
be νs ∼ N(µs, χ

2
s). This result can be readily applied to the different distributions considered.

In the following, without loss of generality, we set Rs = R and Cs = C for all s to simplify
notation.

3.1 Assessing the risk of decisions

A constraint of the VOI criterion is that it reduces the decision making to one number, which
can be interpreted as the expected gain in information (GI) about the proposed experiment.
This can potentially obscure information from sampling experiments. For example, two
sampling experiments S1 and S2 could have VOI(S|S1) = VOI(S|S2) but the data coming
from S1 may carry more uncertainty than those coming from S2.

To assess the risk associated with an experiment S properly, we consider the distribution
of GI across all possible outcomes y from an experiment S, defined by

GI(s|S;y) = max{0, R × Ex[g(xs)|y] − C} − max{0, R × Ex g(xs) − C}.

Then, the VOI is simply given by

VOI(S|S) =
∑

s∈S

Ey GI(s|S;y).

By (11),

GI(s|S;y) ≈ max{0, R ×Mg(νs, ξs) − C} − max{0, R × Eνs Mg(νs, ξs) − C},

where νs ∼ N(µs, χ
2
s). The distribution of GI for different sampling strategies can be com-

pared to assess their risk under different criteria such as the probability of no learning at
site s, Pr(GI(s|S;y) ≤ 0).

To derive the distribution of GI(s|S;y), define for z ≥ 0,

Gs(z) = Pr[GI(s|S;y) ≤ zR− PV(s)].

Then,
Gs(z) ≈ Pr[Mg(νs, ξs) ≤ z + C/R], for z ≥ 0. (13)
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3.2 Specific models

3.2.1 Normal-identity model

We consider first the case where ys|xs is normally distributed with variance τ2 and g(x) = x
so the variance function v(g) = 1. Then K = diag{τ2/ms, s ∈ S} and Mg(κs, ξs) = κs. This
gives, for a = C/R,

VOI(s|S) = Rχsφ

(
µs − a

χs

)
+ R(µs − a)Φ

(
µs − a

χs

)
−Rmax{0, µs − a}.

Note that in this case the approximation is exact.
Based on the closed form expression one can easily gauge the effect of input parameters

on the VOI. For instance, when µs → ±∞, the Gaussian density φ
(
µs−a
χs

)
→ 0. The

cumulative function Φ
(
µs−a
χs

)
goes to 0 or 1 in these cases, and the posterior value cancels

with the prior value Rmax{0, µs − a}. Thus, the VOI goes towards zero for very low or
high values of the prior mean. Data will not help us make better decisions for extreme prior
means. For intermediate values of the prior mean parameter the data will likely help us in
the decision making and the VOI is positive.

The distribution of GI, by (13) simplifies to

Gs(z) = Φ

(
z + a− µs

χs

)

As an example, consider the experiment where x1 and x2 are univariate standard normal
with correlation ρ > 0 and our reward from performing experiment s is xs, s = 1, 2, i.e.
Rs = 1 and Cs = 0. Our investment consists of sampling both x1 and x2. The prior value
for this investment is PV = 0.

Now suppose we given the following two sampling schemes:

• Scheme 1 (Perfect information from one experiment): Sample y1 = x1.

• Scheme 2 (Imperfect information from both experiments): Sample y′1 = x1+ǫ1
and y′2 = x2 + ǫ2, where ǫ1, ǫ2 ∼ N(0, τ2) independently and τ2 = (1 + ρ)−2(2 +√

4 + ρ2(1 + ρ)4) − 1.

Then, for both schemes PoV = (1 + ρ)φ(0). On the other hand we find, for Scheme 1,

G1(h) = Φ(h), G2(h) = Φ(h/ρ), for h ≥ 0,

while for Scheme 2,
G′

1(h) = G′

2(h) = Φ(2h/(1 + ρ)), for h ≥ 0,

so G1(h) < G′

1(h) = G′

2(h) < G2(h). These functions are plotted in Figure 1 for ρ = 0.5.
Evidently, the risk associated with Scheme 1 is higher than the one of Scheme 2.

3.2.2 Poisson-log model

In this case g(x) = ex, and its expectation becomes Mg(κs, ξs) = exp(κs + 1
2ξ

2
s ). For the

Poisson model v(g) = g, and we get K = diag{τ2/ms exp(−µs + 1
2σ

2
s), s ∈ S}. Then, for
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Figure 1: Probabilities Pr(GI ≤ h) for the two sampling schemes discussed in Section 3.2.1.

a = log(C/R) and using Lemma 1 in the Appendix,

VOI(s|S) = Eνs max

{
0, R × exp

(
νs +

1

2
ξ2s

)
− C

}
− max

{
0, R × Eνs exp

(
νs +

1

2
ξ2s

)
− C

}

= R exp

(
µs +

1

2
ξ2s +

1

2
χ2
s

)
Φ

(
χs +

µs + 1
2ξ

2
s − a

χs

)
−ReaΦ

(
µs + 1

2ξ
2
s − a

χs

)

−Rmax

{
0, exp

(
µs +

1

2
ξ2s +

1

2
χ2
s

)
− ea

}
. (14)

The closed form facilitates interpretation. When the prior mean µs gets large, the cumu-
lative functions in (14) go to 1. This means the VOI goes to 0. The variance χ2

s is influenced
by the correlation in the model. We have χs = 0 if the outcome at site s is independent of
the data. In this case the cumulative functions again go to either 0, 0.5, or 1, depending on
whether µs + 1

2ξ
2
s − a is negative, zero or positive, and the VOI contribution at s becomes 0.

The distribution of GI is

Gs(z) =





Φ

(
a− 1

2ξ
2
s − µs

χs

)
if z = 0,

Φ

(
a + log(1 + ze−a) − 1

2ξ
2
s − µs

χs

)
if z > 0.

3.2.3 Binomial-logit model

In this case we need C < R otherwise the problem becomes trivial. For v(g) = g(1 − g), we
have, by an application of Lemma 2 in the Appendix,

K = diag

{
τ2

ms

(
2 + exp

(
−µs + σ2

s/2
)

+ exp
(
µs + σ2

s/2
))

, s ∈ S

}
.

The inverse link function is g(x) = (1 + e−x)−1. Then, Mg(κs, ξ
2
s ) ≈ g

(
κs/
√

1 + α2ξ2s

)
.

This approximation uses the Gaussian approximation to the logistic-normal integral (Demi-
denko, 2004), derived in the Appendix (Section 8.2).
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For a = logit(C/R) we have

VOI(s|S) = Eνs max
{

0, R × g
(
νs/
√

1 + α2ξ2s

)
− C

}
− max

{
0, R × Eνs g

(
νs/
√

1 + α2ξ2s

)
− C

}

= RΛa

(
µs√

1 + α2ξ2s
,

χ2
s

1 + α2ξ2s

)
−Rg(a)Φ

(
µs − a

√
1 + α2ξ2s

χs

)

−Rmax
{
0,Λ(µs, ξ

2
s + χ2

s) − g(a)
}
,

where Λ(·) and Λa(·) denote the complete and incomplete logistic-normal integrals. See
Appendix (Section 8.2). As in the other cases at the limits µ → +∞ and µ → −∞ the
functions Λ, Λa and Φ tend to 1 or 0 respectively and the VOI tends to 0.

For computing the distribution of GI, we use the same approximation to the logistic-
normal integral.

Gs(z) =





Φ

(
a
√

1 + α2ξ2s − µs

χs

)
if z = 0,

Φ

(
logit(z + g(a))

√
1 + α2ξ2s − µs

χs

)
if 0 < z < 1 − g(a),

1 if z ≥ 1 − g(a).

4 Incorporating uncertainty

Up to this point we have assumed that the distribution of the latent variable x is known.
This is rarely the case in practice, and the sensitivity of VOI to different models and model
parameters could be taken into account in the computations. One can directly study the
sensitivity of the VOI results for different parameter values and/or models. More formally
one can study the weighted average VOI results (with uncertainties) over different models
and parameter values.

One approach to account for the uncertainty about the values of the parameters is to
use the asymptotic distribution of their estimators. A large sample of parameter values can
be drawn from their asymptotic distribution and the VOI is computed based on these new
values. Credible intervals are then computed using the VOI samples from this procedure.

4.1 Model-averaged VOI

When considering more than one models, a model-weighting correction of the VOI can be
calculated in the spirit of Buckland et al. (1997). To that end, suppose K different models are
being considered, which we will denote by M1, . . . ,MK , with associated set of parameters
θ1, . . . , θK . Either by eliciting expert opinion or past data or some other way, each model
Mk is given a weight wk, such that wk ≥ 0 for k = 1, . . . ,K and

∑
k wk = 1. If data

are available, Buckland et al. (1997) suggest using a model-selection criterion such as AIC
for deriving these weights. Let Âk be the AIC for model M̂k, derived by plugging-in the
estimated parameter values θ̂k using the data. Then the corresponding weight is

wk =
exp(−Âk/2)∑
l exp(−Âl/2)

.

An aggregate VOI is then computed using wk by

V̂OI =
K∑

k=1

wkV̂OIk

where V̂OIk is the VOI assuming model M̂k.
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4.2 Bootstrap confidence interval for VOI

Alternatively, we can use the bootstrap method to correct for uncertainty in the parameters
in combination with model weighting. The following procedure is repeated for b = 1, . . . , B
to produce B bootstrap samples of the VOI.

1. Sample M(b) from {M̂1, . . . ,M̂K} with respective weights w1, . . . , wK .

2. Generate data y(b) from model M(b).

3. For each k = 1, . . . ,K, let M̂(b)
k be the fitted model Mk to y(b) with estimated param-

eters θ̂
(b)
k , let Â

(b)
k be the AIC of M̂(b)

k , and let V̂OI
(b)

k be the corresponding VOI.

4. Compute the weight of M̂(b)
k for k = 1, . . . ,K, by

w
(b)
k =

exp(−Â
(b)
k /2)

∑
l exp(−Â

(b)
l /2)

.

5. Compute the VOI for the bth bootstrap sample by

V̂OI
(b)

=

K∑

k=1

w
(b)
k V̂OI

(b)

k .

The bootstrap samples, V̂OI
(1)

, . . . , V̂OI
(B)

, can be used to derive bootstrap confidence
intervals. Efron and Tibshirani (1994) discuss several approaches to that, the simpler being
the percentile confidence interval constructed by computing appropriate sample quantiles
from the bootstrap sample.

On the other hand, when an investment consists of multiple projects s ∈ S, it is im-
portant that the confidence intervals for the VOI from each project hold simultaneously.
An algorithm for constructing simultaneous confidence intervals using bootstrap samples is
described in Mandel and Betensky (2008) and proceeds as follows. Let VOI(b,s) denote the
bth bootstrap sample for project s among a bootstrap sample of size B, and let r(b, s) be
its corresponding rank among those B samples. For b = 1, . . . , B, let r(b) = mins r(b, s),
R(b) = maxs r(b, s), and rp and Rp denote the p-percentiles of r(b) and R(b) respectively,
b ∈ {1, . . . , B}. Then a level-(1 − p) simultaneous confidence interval for the VOI of project

s is given by the rp/2 and R1−p/2 ordered elements of {V̂OI
(b,s)

, b = 1, . . . , B}.

5 Computational Experiments

In this section we compare the approximations to the VOI derived in Section 3 against the
Monte-Carlo sampling. We also perform a sensitivity analysis of the proposed approximation.
The general setup consists of the spatial domain [0, 1]2 with the possible experiments con-
sisting of the n = 25 pairs S = {sij = ( i

4 ,
j
4) i, j = 0, 1, . . . , 4}. We define S = {sij : i, j odd}

and compute VOI(sij |S) with Cs = C = 0.5 and R = 1.
The latent component x is assumed to have mean at location sij equal to µij = −1+(i+

j)/4 and variance-covariance matrix σ2R(ρ) where R(ρ) is the matrix whose elements are
of the form exp(−ρ‖sij − si′j′‖). Larger values of the parameter ρ decrease the correlation
between experiments.

The outcome of each experiment is taken to be from the exponential family. We consider
the Gaussian, Poisson and binomial cases, with m replications and dispersion parameter τ2.
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Figure 2: Comparison between the analytical and Monte-Carlo approximations to VOI.

5.1 Comparison with Monte-Carlo

In this section we fix σ2 = 10, τ2 = 1, ρ = 0.6 and perform computations for m = 10b,
b = 0, . . . , 4. The Monte-Carlo method was implemented as follows:

1. Sample NO times y
(i)
S ∼ p(yS) on S. This is done in two steps, first a sample x

(i)
S ∼

p(xS) on S is taken and then y
(i)
S ∼ p(yS |x

(i)
S ).

2. For i = 1, . . . , NO

Compute a Monte-Carlo approximation A
(i)
S

to the expectation Ex[g(xS)|y(i)
S ].

This is computed using importance sampling with NI samples and proposal dis-

tribution equal to the Gaussian approximation to p(xS|y(i)
S ).

3. Approximate the VOI by

VOI(s|S) ≈ 1

NO

NO∑

i=1

max
{

0, R×A(i)
s − C

}
− max

{
0, R ×

[
1

NO

NO∑

i=1

A(i)
s

]
− C

}

for s ∈ S.

In step 3 above we use the property of the iterated expectation for the second term. For our
computations we used NO = NI = 104 samples for all cases.

Figure 2 shows the square-root mean square difference between the analytical approxi-
mation to the VOI and the Monte-Carlo approximation for each of the three distributions
considered. As the analytical approximation is exact for the Gaussian case, that case indi-
cates the increase in the Monte-Carlo error as m increases. This is due to the larger variance
of the simulated y, which increases the variability of the Monte-Carlo average. For the
Poisson and binomial cases the mean square difference between the two methods drops as
m increases which can be explained by the improvement of the analytical approximation for
large m.

A similar pattern can be obtained by considering the distribution of GI for each setting.
The approximate distribution function G(z) given in (13) was compared against the em-
pirical probabilities derived from the Monte-Carlo sample using the algorithm outlined at
the beginning of this section without the final step. Both probabilities were computed for
32 values of z, where z = 10c for c = −∞,−5,−4.8, . . . , 1. For two identical distributions,
these probabilities will be identical. We compare the two distributions by computing a root
mean square difference between the corresponding probabilities across all experiments and
the different values of z.
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Figure 3: Comparison between the analytical and Monte-Carlo approximations to the dis-
tribution of the information gain.
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Figure 4: Results from the sensitivity study. For each distribution we plot the approximate
VOI against the different parameter values considered.

Figure 3 plots the root mean square difference against the values of m for the three
distributions. The figure verifies that the approximation to the distribution of GI improves
with larger m as with VOI. Note again that the Gaussian case is exact so the increasing
pattern is due only to the Monte-Carlo error.

5.2 Sensitivity analysis

In this section we fix m = 100 and compute the VOI as a function of the parameters σ2, τ2

and ρ. We choose 3× 3× 3 combinations with σ2, τ2 ∈ {0.1, 1, 10} and ρ ∈ {0.2, 0.6, 1}. The
analytical approximation to the VOI is computed for each combination and for the three
families considered. The results are plotted in Figure 4.

The pattern corresponding to the three distributions is similar. The variance parameter
σ2 has the largest impact and τ2 the least. The effect of the correlation parameter ρ is more
apparent when the σ2 is large. Also the VOI decreases as the sites become less correlated to
each other. For the Poisson distribution we notice a relatively faster decline in VOI when ρ
increases.

The case where the range of the mean µ varies together with the other parameters was
also considered but not shown. In this case the results support our interpretation in Section 3
that the effect of the mean is larger for intermediate values, when we are most indifferent
and the data can be more helpful.
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6 Examples

A typical procedure for decision making based on the VOI should cover (i) comparison of
different sampling schemes; (ii) investigation of the sensitivity of the VOI to changes in the
costs and revenues; (iii) investigation of the sensitivity of the VOI to model and parameter
uncertainty. In this section we illustrate the application of our methods to two examples.

6.1 Poisson spatio-temporal model for disease pretesting

We consider the bovine tuberculosis (BTB) data collected during the years 1989 to 2002
from farms in Cornwall, UK. The data consist of the locations of infected farms found upon
inspection during the fourteen-year period. The data were analysed by Diggle et al. (2005)
among others.

6.1.1 The decision problem

To formulate the decision problem, we take the role of the monitoring agency that decides
whether to test for the disease or not, and where. To that end, the entire spatial region
is split into 90 grid cells with maximum width 8Km and maximum height 8Km as shown
in Figure 5. If all cattle within a cell are inspected and all infected farms are eliminated,
then that particular cell is considered “treated” for that year. Thus, the reward for treating
cell s at time t (number of years since 1988) is −Cs − R1ys,t, where Cs is the search cost
proportional to the area of the cell s, R1 is the loss occurring when an infected farm is
found and therefore eliminated, and ys,t is the number of infected farms at time t in cell s.
Alternatively, the agency may decide to “skip” cell s, in which case the reward is −R2ys,t.
We set R2 > R1 because an infected farm can incur higher losses if it remains undetected.
With these rewards, the prior value for treating cell s at time t is

PVt(s) = max {−Cs −R1 Ey ys,t,−R2 Ey ys,t} , (15)

i.e. the agency’s decision is to treat cell s if its expected loss is less than the expected loss
when the cell is skipped.

Let us also suppose that, prior to treatment, the monitoring agency has the option to
administer a pretest to a sample of cattle from each farm within a cell. The pretest can be
used to gain information, denoted y, about the distribution of the disease and help decide
which cells to treat. Suppose that the cells S = {s1, . . . , sn} have been chosen for the pretest.
Then, the posterior value for treating cell s at time t provided by S is

PoVt(s|S) = Ey max {−Cs −R1 Ey[ys,t|y],−R2 Ey[ys,t|y]} . (16)

By combining (15) and (16), the VOI for treating cell s at time t provided by the pretest S
becomes

VOIt(s|S) = Ey max {−Cs −R1 Ey[ys,t|y],−R2 Ey[ys,t|y]} − max {−Cs −R1 Ey ys,t,−R2 Ey ys,t}
= Ey max {−Cs + (R2 −R1)Ey[ys,t|y], 0} −R2 Ey Ey[ys,t|y]

− max {−Cs + (R2 −R1)Ey ys,t, 0} + R2 Ey ys,t

= Ey max {0, (R2 −R1)Ey[ys,t|y] − Cs} − max {0, (R2 −R1)Ey ys,t −Cs} . (17)

For the purposes of this example, we assume that the agency is able to pretest a total of
n = 9 cells (10% of all cells).
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Figure 5: Sampling grid for the BTB example. The numbers show the total number of
infected farms in that cell across the years 1989 to 1998; the empty cells correspond to zero
counts.

We now specify our modelling framework. Let xs,t denote the logarithmic disease intensity
at cell s at time t, s ∈ S, t ∈ T. For the purposes of this example, we model {xs,t} as a
separable spatio-temporal Gaussian process with constant mean, i.e.

xs,t = β0 + ηs + ǫt,

where {ηs} is a spatial conditional autoregressive process (CAR) on a square lattice (Cressie,
1993, Section 6.3.2) and {ǫt} is a temporal CAR process. We will denote by CAR(p, q) the
spatial-temporal model with spatial dependence of order p and temporal dependence of
order q. Specific details on the spatial and temporal components of the model are given in
Appendix 8.3. Unless otherwise stated, the CAR(1, 1) model was used.

Conditional on xs,t, the number of infected farms ys,t within cell s at time t is Poisson
distributed with mean mse

xs,t where ms denotes the area of cell s divided by 64 in Km2.
The cost Cs for cell s is also set to Cs = ms while the difference in revenue R2 − R1 = 1.
Then, the VOI from (17) becomes

VOIt(s|S) = ms Ey max {0,Ex[exp(xs,t)|y] − 1} −ms max {0,Ex exp(xs,t) − 1} .

For any given year t, we assume that all data prior to that year were observed and use
them to estimate the parameters of our model by maximum likelihood. Given parameter
estimates, the plug-in predictive distribution of xt is the normal distribution with mean and
variance given by (20) in the Appendix.

6.1.2 Comparison of alternative sampling schemes

For comparison, we consider four different sampling schemes: (1) The sequentially optimal
sampling scheme as described below; (2) Select the n cells which correspond to the maximum
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Scheme 1999 2000 2001 2002

1 2.237 1.886 1.547 1.990
2 2.130 (7) 1.804 (5) 1.462 (5) 1.908 (4)
3 2.168 (5) 1.815 (4) 1.469 (5) 1.989 (1)
4 2.147 (5) 1.804 (4) 1.462 (5) 1.975 (1)

Table 1: VOI for the four schemes considered for the BTB example in each year. The number
of sites that differ from Scheme 1 are shown in parentheses for Schemes 2–4.

count in the previous year; (3) Select the n cells which correspond to the maximum total
count up to the previous year; (4) Select the n cells which correspond to the maximum
estimated mean for the present year.

The choice of the pretest cells for the sequentially optimal scheme is done as follows. The
posterior value for pretesting each cell is calculated and the cell S1 = {s1} that corresponds
to the highest VOI(S|S1) is selected. The remaining 89 cells are searched again to obtain
S2 = {s1, s2} which corresponds to the highest VOI(S|S2). This procedure is repeated until
we obtain S9 = {s1, . . . , s9}. More generally, the choice of the pretest locations can also be
seen as a spatial design problem.

Table 1 shows the VOI for the four schemes considered. As anticipated, Scheme 1 achieves
the largest VOI, while Schemes 2 and 4 appear to be worse than Scheme 3.

After the pretest locations are selected using the sequentially optimal scheme, the pretest
is administered and the corresponding cells are observed. The data from the pretest cells
are augmented with the existing data and the model is refitted and a new prior value for
each cell is computed. Figure 6 shows the treatment scheme before and after the pretest.
The middle column of Figure 6 shows that the sequentially optimal strategy for identifying
pretest cells tends to give tests near borders of the grey-white zones, i.e. zones where we are
most indifferent and additional information would assist the decision making. In some cases
pretesting increases the number of treated cells and in others it reduces them.

6.1.3 VOI sensitivity to the cost of pretesting

To assess the sensitivity of decision to the costs, we compare the sequentially optimal decision
scheme when Cs = rms, where r is a cost factor and is chosen to be r ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20}.
The case r = 1 gives our original cost values. We compare the VOI for the sequentially opti-
mal decision for the different values of r. Let VOIi be the VOI for cost factor ri, i = 1, . . . , 6.
Then (VOIi−VOIi−1)/(ri− ri−1) denotes the change in VOI per cost change. This measure
is plotted against ri for each year in Figure 7. We observe that there is larger impact if the
costs are lower. As the costs get higher, we do not expect large changes between the VOI
and this is apparent in our results.

6.1.4 Incorporating model and parameter uncertainty in the VOI

Next, we consider incorporating parameter and model uncertainty in our decisions. Initially
we consider 8 different CAR(p, q) models for p = 0, 1, 2, q = 0, 1, 2, p + q > 0. These
models were fitted to the data up to, and including, 1998, however the models with no
spatial correlation (p = 0) were significantly worse than the remaining models and were
subsequently discarded.

From the models fitted we compute the weighted VOI at each cell for the year 1999 for
the optimal sequential sampling scheme from Section 6.1.2. Based on the individual VOI
values we produce an aggregate value as we discuss in Section 4.1. The results are shown in
Table 2. When considering an ensemble of models, there can be significant changes in the
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Figure 6: The grey cells indicate for each year: treated cells without pretesting (left column),
pretest cells (middle), treated cells after pretesting (right).
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Figure 7: Change in VOI from the previous cost value per cost change, (VOIi−VOIi−1)/(ri−
ri−1), plotted against the cost factor ri for each year.

Model AIC Weight Total VOI 90% Percentile interval

CAR(1, 0) 766.52 0.05 4.99 (2.98, 6.81)
CAR(2, 0) 765.27 0.09 4.81 (3.00, 6.58)
CAR(1, 1) 764.21 0.16 4.38 (2.71, 7.66)
CAR(2, 1) 762.98 0.29 4.24 (2.53, 7.61)
CAR(1, 2) 764.45 0.14 2.43 (0.57, 6.64)
CAR(2, 2) 763.20 0.26 2.23 (0.53, 6.31)

Weighted 3.57 (1.09, 6.62)

Table 2: Models fitted to the BTB data with corresponding weights, total VOI and corre-
sponding 90% percentile interval. The VOI and percentile interval for the weighted model is
also shown.

calculated VOI. Figure 8 plots the model-weighted VOI against the VOI for the CAR(1, 1)
model. As we can see, the general ordering of cells is preserved but the actual values can
differ.

Next we consider bootstrap calibration based on B = 100 bootstrap samples. The
bootstrap data y(b) were generated conditioned on the fitted values η̂ and ǫ̂ for the selected
model. For each bootstrap sample we fit the 6 CAR models considered and compute a
weighted aggregate VOI for each cell. Individual 90% percentile confidence intervals and
simultaneous confidence intervals were constructed as we discuss in Section 4.2. These are
plotted in Figure 9. As we would expect, the simultaneous confidence intervals are wider but
the pattern follows the non-calibrated VOI. We observe shrinkage of the bootstrap average
towards the overall mean compared to the non-calibrated VOI.

A closer examination of the features which induce uncertainty in the calculation of the
VOI reveals that cells which are near the boundary and therefore have fewer neighbours,
carry little uncertainty. Also, the uncertainty is reduced at cells which have close to zero
or very high counts. Most uncertainty is featured at cells which are in the middle and have
moderate counts.
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Figure 8: Aggregate VOI plotted against the VOI for the CAR(1, 1) model only.

6.2 Poisson spatial model for joint counts affecting stability in mining

6.2.1 The decision problem

We consider decisions related to rock support in mining operations, where one would avoid
rock fall. The strength of the rock mass depends on a number of attributes such as joint
intensity, rock mechanical properties, fluid components, faulting, and so on, see e.g. Nilsen
et al. (2003). The joints of the rocks are critical here, and it is the focus of our example from
a mine in Norway (Ellefmo and Eidsvik, 2009), see Figure 10.

A set of 52 critical tunnelling locations near altitude 250 metres have been selected. The
decision to add support at any of these locations comes with the cost of bolting equipment
and labour, but ensures that rock fall will not occur at this location. Without the added
support at a location we assume the cost of rock fall depends on the uncertain joint intensity
at that location.

Let xs be the log intensity of joints at site s. Let further Cs be the cost of adding
support at this location and RsEx[exp(dsxs)] be the expected loss associated with rock
fall at the same location when we do not add support. Note that Cs, Rs and ds will
depend on rock mechanical properties, fluid composition, geometric considerations, cost
of rock mass transport, and other engineering inputs. For simplicity, these input variables
have been set to Cs = C = 20000 and Rs = R = 100 money units ($), and ds = d =
3. The prior value for this decision problem related to rock support becomes PV(S) =∑

s∈S max{−C,−REx[exp(dxs)]}.
We use VOI analysis to evaluate which borehole information would be more informa-

tive in such a decision situation. Letting y denote a generic joint count data set ac-
quired according to a specific spatial design S, the posterior value is given by PoV(S|S) =
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Figure 9: For each cell, percentile bootstrap confidence intervals (filled triangles); simultane-
ous bootstrap confidence intervals (hull triangles); bootstrap average VOI (+); non-bootstrap
weighted VOI (circles).

Figure 10: Top: Illustration of a joint frequency count data set. The dots indicate locations
of joint counts data. Larger dots mean larger number of joints. The largest count is 93, the
smallest is 0. There are 1615 locations in about 100 boreholes. Bottom: Histogram of the
joint counts.
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Design Data size VOI ($)

All boreholes 1615 216 000
Half of the boreholes 768 165 000
Every second observation in half of the boreholes 383 159 000
A quarter of the boreholes 383 96 000

Table 3: Comparison of different designs for the mining example.

Ey
∑

s∈S max{−C,−REx[exp(dxs)|y]}. By similar arguments as in Section 6.1, we get

VOI(S|S) = Ey

∑

s∈S

max{0, REx[exp(dxs)|y] − C} −
∑

s∈S

max{0, REx[exp(dxs)] − C},

which can be approximated using the methods presented in Section 3.
We now specify our statistical model. Ellefmo and Eidsvik (2009) analysed the joint count

data using a Poisson likelihood model and a Gaussian model for the latent log intensity xs.
The authors used a Gaussian model with constant mean and covariance structure defined by
a nugget effect plus an exponential anisotropic covariance function. Based on the Laplace
approximation parameter values for that dataset were specified to: mean 1.55, partial sill
0.13, nugget 0.04 and in-strike effective correlation 300 metres (meaning ρ = 3/300 = 0.01).
The correlation perpendicular to the ore strike was set to a quarter of the in-strike correlation
length, i.e. 75 metres. In the current paper we consider the prospective analysis of joint
measurements of a similar type.

The mean for the joint intensity is relatively large, and the prior decision is to add support
at all locations. By collecting borehole data we will pull these decisions more clearly towards
added support, or towards avoiding support when the neighbouring joint count observations
are small, indicating that more support is likely not necessary.

6.2.2 Comparison of alternative sampling schemes

The VOI depends on the spatial acquisition design S. We compare the VOI of gathering
the entire set of 1615 borehole data against the three partial designs mentioned in Table 3.
The boreholes for the partial designs were chosen randomly but in a way that samples from
smaller designs consisted of a subset of samples from larger ones.

The VOI decreases when we collect less data, but the decrease is slower than one would
expect from the fractional splitting of the data. Moreover, the spatial dependence clearly
influences the VOI since the strategy with half of the boreholes and coarser core samples of
joint counts has a much higher VOI than dense sampling in a quarter of the boreholes, even
though the data size is the same for these two options.

6.2.3 VOI sensitivity to price ranges

These VOI results must be compared with the price levels of the different data acquisition
schemes. We compare the option defined by a quarter of the boreholes with that of every
second observation in half of the boreholes (Half-Half). The number of data is then the same
(383), so the processing price of joint counts data is assumed equal for the two schemes, but
the cost of drilling is twice as large for the Half-Half option (drilling 3000 metres versus 1500
metres). The notion of decision regions for data collection here relies on selecting the largest
option as follows:

Decision = argmax
(
VOIHalf-Half − PriceHalf-Half,VOIQuarter − PriceQuarter, 0

)
.
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Figure 11: Decision regions for two possible data acquisition schemes in the mining joint
example.

Figure 11 shows the decision regions as a function of the price of drilling per metre
(horizontal axis) and the price of processing per sample (vertical axis). When the drilling
cost increases, the Quarter option is better. If the prices become very large, the decision is
to purchase no data.

6.2.4 VOI sensitivity to model parameters

We next study the sensitivity to the statistical model parameters. This is done by perturbing
the prior mean and covariance parameter from their reference level, assuming the exponential
covariance model is valid here. The sensitivity range of parameter values is determined by
the approximate Gaussian distribution for mean and covariance parameters (partial sill,
nugget and correlation range), given the current data. The reference VOI for a full design is
216 000 money units. The 90% coverage (sensitivity) interval for VOI in this case becomes
(110 000, 260 000). When we cross-plot the VOI results for individual parameters, we notice
the clearest trend for the mean parameter. The VOI is highest for prior mean near 1.5, at
which we are most indifferent about rock support decisions. When the mean value gets lower
(or higher), it is easier to make decisions about no support (or added support). Additional
joint count data are unlikely to change this decision, and the VOI is smaller.

7 Discussion

In this paper we derive approximations to the VOI for the generalised linear mixed model with
correlated random effects, with particular focus to the spatial case. Our method consists
of a mix of Laplace approximation techniques and matrix approximations, together with
an approximation to the logistic-normal integral for the binomial model. Under certain
conditions on the sample size the approximation is comparable to, and significantly faster
than Monte-Carlo integration. In fact, we find that the Monte-Carlo method exhibits larger
error when the sample size is large which is in contrast with the error of our analytical
approximation.

To assess the risk of the decision, we also derive an approximation to the distribution of
the gain in information when acquiring data. The approximation uses the same tools and
has the same properties as the approximation to the VOI.

Because of the inherent correlation in the response variable, the outcome from one site
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can provide information about the outcome at other sites and indeed in our computations
we find that the stronger the correlation the higher the value. We observe strong sensitivity
to the variance of the random effects, but the variability in the response is less influential.
This suggests that misspecification of the variance may lead to incorrect estimates of the
true VOI.

Rather than seeing the VOI as one definite number for management decisions, we argue
that VOI analysis should include risks and sensitivities by computing the VOI for a range of
statistical models and input parameters. When this kind of VOI analysis is done for a set of
possible experiments, it forms an instructive foundation for making relevant, material and
economic management decisions related to information gathering.

Our methods assume that the parameters of the model, and the model itself, are known.
To allow for parameter uncertainty to be incorporated in the model, we suggest using model
averaging techniques to combine the VOI from different models. Parameter uncertainty
can be incorporated in the VOI either by considering the asymptotic distribution of their
estimators or by bootstrap calibration.

The VOI can be seen as a design criterion where the objective is expressed in monetary
units. In this case budget constraints can be used naturally within a design framework. We
illustrated elements of this for the bovine tuberculosis and the mining stability examples.

We have assumed that the decision maker is risk neutral, and the calculations are based
on expected values. For non-linear utility functions the computations involved for GI and
VOI would require further approximations. A second open question is incorporating param-
eter learning as data arrive sequentially, and to phrase the overall problem as a coupled or
sequential decision problem.

8 Appendix

8.1 Some preliminary results

Lemma 1. ∫
∞

A
exp(χz)φ(z) dz = exp(

χ2

2
)Φ(χ−A).

Proof.

∫
∞

A
exp(χz)φ(z) dz =

∫
∞

A
exp(−1

2
z2 + χz)

1√
2π

dz

=

∫
∞

A
exp{−1

2
(z2 − 2χz + χ2 − χ2)} 1√

2π
dz

= exp(
χ2

2
)

∫
∞

A
exp{−1

2
(z − χ)2} 1√

2π
dz

= exp(
χ2

2
){1 − Φ(A− χ)}

= exp(
χ2

2
)Φ(χ−A).

Lemma 2. If z ∼ N(µ, σ2), then

Ez[exp(−z)(1 + exp(z))2] = 2 + exp(−µ + σ2/2) + exp(µ + σ2/2).
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Proof.

Ez[exp(−z)(1 + exp(z))2] =

∫
(2 + exp(−σu− µ) + exp(σu + µ))φ(u) du

= 2 + e−µ

∫
exp(−σu)φ(u) du + eµ

∫
exp(σu)φ(u) du

= 2 + exp(−µ + σ2/2) + exp(µ + σ2/2).

8.2 Approximation to the logistic-normal integral

Let g(x) = (1 + e−x)−1 and consider

Λ(µ, σ2) :=

∫
∞

−∞

g(x)σ−1φ

(
x− µ

σ

)
dx, (18)

Λa(µ, σ
2) :=

∫
∞

a
g(x)σ−1φ

(
x− µ

σ

)
dx. (19)

The above integrals do not have a closed-form solution. The one in (18) is known as the
logistic-normal integral. Demidenko (2004) discusses different approximations to it in Sec-
tion 7.1.2. The one in (19) will be referred to as the incomplete logistic-normal integral.
By an application of the dominated convergence theorem, both integrals converge to 0 as µ
tends to −∞ and to 1 as µ tends to +∞ with σ constant.

One can approximate the logistic function g(x) by the Gaussian CDF Φ(αx) for an
appropriate α > 0. Depending on the criterion, α =

√
π/8 and α = 16/(π

√
75) are two

choices mentioned in Demidenko (2004). Let us assume that an appropriate α is chosen.
Then, define the approximations to (18) and (19)

Λ̂(µ, σ2;α) := Φ

(
αµ√

1 + α2σ2

)
≈ g

(
µ√

1 + α2σ2

)
,

Λ̂a(µ, σ
2;α) :=

∫
∞

a
Φ(αx) × 1

σ
φ

(
x− µ

σ

)
dx

= Φ

(
µ− a

σ

)
− Pr

(
Z1 <

µ− a

σ
,Z2 < ασZ1 − αµ

)

= Φ

(
µ− a

σ

)
− Φ2

(
µ− a

σ
,− αµ√

1 + α2σ2
;− ασ√

1 + α2σ2

)
,

where Z1 and Z2 are independent standard normal random variables and Φ2(x, y; r) denotes
the bivariate standard normal CDF with correlation r.

8.3 Details on the spatiotemporal model

In this section we describe the spatiotemporal model used in the example of Section 6.1.
Let N = 90 be the number of cells. The first-order spatial neighbours of a given cell

consist of the, at most four, cells immediately above, below, to the left of, and to the
right of the current cell. The second-order neighbours consist of the, at most four, cells
immediately to the above-right, above-left, bottom-right and bottom-left of the current cell.
The neighbours are described by the N ×N adjacency matrices B1 and B2 for the first and
second order respectively such that the (i, j) element of B1 is 1 if the si and sj cells are
first-order neighbours and 0 otherwise. The matrix B2 is defined similarly.
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For the first-order spatial CAR model, let κi denote the number of neighbours of the cell
si, i = 1, . . . , N and define the N ×N matrices P = diag{κi}. Then, the joint distribution
of η = (η1, . . . , ηN ) is set to

η ∼ NN (0, u2Ξ), Ξ = (P − h1B1)
−1,

where h1 is a scalar parameter.
A similar definition applies for the temporal component of the model. Here the notion of

neighbour corresponds to consecutive time points in {1, 2, . . . , T}. The first-order neighbours
of time t are t− 1 and t + 1 and the second-order neighbours are t− 2 and t + 2. The first
and second order adjacency matrices are denoted by C1 and C2.

Similar to the spatial case, we define the diagonal matrix Q to contain the number of
temporal neighbours of each time point in its diagonal. Then, the joint distribution of
ǫ = (ǫ1, . . . , ǫT ) is

ǫ ∼ NT (0, v2Υ), Υ = (Q− k1C1)
−1,

with scalar parameter k1.
We use the available data to estimate β0, u2, v2, h1, and k1. These parameters are

estimated by maximum likelihood given all available data after integrating out η and ǫ by
Laplace approximation. Given the parameter estimates we derive a plug-in predictive dis-
tribution to xT+1, the spatial field at time at the next time point, as discussed in Evangelou
et al. (2011), i.e.

xT+1 ∼ NN (µ̂T+1, Σ̂T+1), (20)

The mean and variance of (20) are the required mean and variance terms for computing the
VOI.

A similar model is used for higher-order dependence. The spatial covariance matrix Ξ is
modelled as Ξ = (P −h1B1−h2B2)

−1 with h1, h2 unknown scalars and constrained to make
the matrix Ξ positive definite, and Υ = (Q− k1C1 − k2C2)

−1.
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