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Figure 1: We present the first approach to tackle the hard intrinsic video decomposition problem at real-time frame rates. The decomposition is
the basis for live augmented video applications such as illumination-aware recoloring (left), material editing (right), retexturing and stylization.

Abstract

Intrinsic video decomposition refers to the fundamentally ambiguous
task of separating a video stream into its constituent layers, in partic-
ular reflectance and shading layers. Such a decomposition is the basis
for a variety of video manipulation applications, such as realistic
recoloring or retexturing of objects. We present a novel variational
approach to tackle this underconstrained inverse problem at real-time
frame rates, which enables on-line processing of live video footage.
The problem of finding the intrinsic decomposition is formulated as
a mixed variational `2–`p-optimization problem based on an objec-
tive function that is specifically tailored for fast optimization. To this
end, we propose a novel combination of sophisticated local spatial
and global spatio-temporal priors resulting in temporally coherent
decompositions at real-time frame rates without the need for explicit
correspondence search. We tackle the resulting high-dimensional,
non-convex optimization problem via a novel data-parallel iteratively
reweighted least squares solver that runs on commodity graphics
hardware. Real-time performance is obtained by combining a local-
global solution strategy with hierarchical coarse-to-fine optimization.
Compelling real-time augmented reality applications, such as recol-
oring, material editing and retexturing, are demonstrated in a live
setup. Our qualitative and quantitative evaluation shows that we
obtain high-quality real-time decompositions even for challenging
sequences. Our method is able to outperform state-of-the-art ap-
proaches in terms of runtime and result quality – even without user
guidance such as scribbles.

Keywords: intrinsic decomposition, reflectance, shading, p-norm,
real time, data-parallel optimization, recoloring, retexturing

Concepts: •Computing methodologies → Computational pho-
tography; Mixed / augmented reality;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org. © 2016 Copyright held by
the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH 2016 Technical Paper, July 24–28, 2016, Anaheim, CA
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925907

1 Introduction

Separating a video stream into its reflectance and shading layers is a
fundamentally ambiguous and challenging inverse problem, but a
solution has many potential applications. The availability of such a
decomposition is for example the basis of a large variety of video
editing tasks such as realistic recoloring, relighting and texture edit-
ing. Having a fast real-time solution to this fundamental problem
has big ramifications – especially in the context of augmented re-
ality – since this allows to apply such modifications, in particular
photorealistic texture and appearance editing, directly to live video
footage.

First, let us consider the simpler problem of computing the decom-
position of a single input image. Given an image I (or single frame
of a video), we seek a decomposition at every pixel x, such that the
product of reflectance R(x)∈R3 and shading S(x)∈R is equal to
the corresponding input observation:

I(x) = R(x)× S(x). (1)

Note that the shading is modeled using the scalar quantity S(x),
based on the assumption of a white illuminant, as in previous work.
Recovering the reflectance and shading image from such input con-
straints is ill-posed, since this problem is severely under-constrained.
Equation 1 only provides three constraints for the four unknowns
that define the reflectance R(x) and shading S(x). This fundamen-
tal ambiguity is an inherent property of all intrinsic decomposition
problems. Current state-of-the-art approaches tackle this problem by
incorporating sophisticated local spatial priors that constrain the so-
lution to a suitable subspace. These priors are based on assumptions
about the typical variations encountered in reflectance and shading
images. A lot of approaches [Horn 1974, Tappen et al. 2005, Gehler
et al. 2011] exploit the smoothness and sparsity that is often encoun-
tered in shading and reflectance images, respectively. The reflectance
sparsity assumption is especially valid for most man-made objects
and scenes, since these are normally composed of a small number of
materials, but both assumptions might fail if more complex natural
scenes are encountered.

Decompositions of such complex natural scenes can still be obtained
based on more powerful discriminative priors learned from collec-
tions of training data [Barron and Malik 2015, Zhou et al. 2015].
While these approaches handle natural scenes well, they do not
easily generalize to types of scenes not contained in the training
data. Similarly, multi-view decomposition approaches cope with the
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complexity of natural scenes by exploiting multiple views of the
same scene [Laffont et al. 2013, Duchêne et al. 2015], but these are
not always available, and difficult to capture for video.

Recently, Lee et al. [2012] and Chen and Koltun [2013] proposed ap-
proaches that exploit simultaneously captured depth cues to resolve
the ambiguities in the intrinsic decomposition problem. While their
results are promising, depth information is often not easily available,
especially for legacy video footage or for a live stream captured by
a webcam that has to be processed at real-time frame rates.

Current state-of-the-art approaches for the intrinsic image [Shen
et al. 2011, Gehler et al. 2011, Zhao et al. 2012, Li and Brown 2014,
Bell et al. 2014, Barron and Malik 2015] or video decomposition
[Bonneel et al. 2014, Ye et al. 2014, Kong et al. 2014] problem
have prohibitively high runtimes of several minutes to hours per
frame. This makes the scene-specific parameters of these approaches
hard to tune given their slow computation times. Additionally, these
approaches are restricted to slow off-line scenarios, where prere-
corded data is available in advance. Therefore, it is not possible to
apply these techniques in the context of live applications, such as
augmented reality, that require real-time processing.

Recently, Bonneel et al. [2014] proposed the first interactive tech-
nique that decomposes a video frame in half a second. This technique
is unsuitable for the decomposition of live video streams, since it
requires a slow off-line pre-processing step to calculate the optical
flow of the sequence. Yet, for pre-recorded data, this method offers a
significant speed-up compared to previous methods. This impressive
improvement in speed now allows for interactive parameter tuning,
but still falls one order of magnitude short of the performance re-
quired for real-time augmented reality applications. In addition, the
method relies on user-provided input in the form of scribbles, which
are infeasible to provide in a real-time context.

In this paper, we propose the first approach for real-time intrinsic
video decomposition. Our approach obtains temporally coherent
decompositions at real-time frame rates without the need for explicit
correspondence search. We tackle the resulting variational optimiza-
tion problem using a specifically tailored data-parallel optimization
strategy. High-quality decompositions are obtained even for chal-
lenging real-world video sequences at the capturing rate of the input
device, without requiring any user input. Our main contributions are
as follows:

• The first real-time algorithm to decompose live video streams
into high-quality reflectance and shading layers.

• A novel formulation for the intrinsic video decomposition
problem that combines local spatial and global spatio-temporal
priors tailored to produce high-quality and temporally consis-
tent video decompositions in real time.

• A new data-parallel solver for mixed `2–`p-optimization prob-
lems based on iteratively reweighted least squares (IRLS).

Our approach does not require user scribbles, unlike many state-
of-the-art off-line approaches, yet it achieves comparable and even
better results. The possibilities opened up by our live intrinsic video
decomposition are demonstrated by several live video editing ap-
plications, including material editing, recoloring, retexturing and
stylization.

2 Related Work

We constrain our discussion of related work to intrinsic decomposi-
tion methods [Barrow and Tenenbaum 1978] computing reflectance
and shading layers. Many intrinsic image decomposition techniques
were proposed in the past, but only very few video techniques exist

that master the additional difficulty of ensuring temporally coherent
results. Our approach is the first to run at real-time frame rates.

Retinex and Local Priors Land and McCann [1971] suggested
the Retinex approach that locally classifies edges of a grayscale
image into shading or reflectance edges based on the assumption
that stronger edges correspond to reflectance and weaker to shading
variation. Many variants of similar and derived local edge cues have
since been used [Jiang et al. 2010], for instance with learned edge
classifiers [Bell and Freeman 2001, Tappen et al. 2005]. Retinex
assumptions are also often part of more complex non-local methods.
Bonneel et al. [2014] decompose edges into their contributing re-
flectance and shading components instead of simply labeling them.
They use local chromaticity cues to guide the separation, and en-
force sparsity on reflectance edges and smoothness on illumination
edges using a hybrid `2–`p-optimization strategy. We use similar
local terms, but perform the decomposition directly on image colors
instead of gradients, which avoids the integration of the gradient-
domain reflectance and shading images. More recently, Bi et al.
[2015] use a similar energy, with local color differences in Lab-
space used to inversely weigh the local sparsity term for reflectance
estimation. Methods based only on such local cues produce decent
results on simple scenes with a single segmented object, as shown
in Grosse et al.’s survey [2009], but produce inaccurate results on
many real-world images, as they only coarsely model the physics of
image formation and ignore the global structure of the scene. None
of the above approaches runs in real time.

Global Priors Retinex-based methods have been extended to in-
clude non-local cues to improve the decomposition across an entire
image [Gehler et al. 2011, Shen and Yeo 2011]. Shen et al. [2008]
and Zhao et al. [2012] show promising results for decomposing struc-
tured texture patterns by enforcing constant reflectance for pixels
with similar local texture, but the non-local search is computation-
ally expensive. Chang et al. [2014] present a probabilistic model for
intrinsic decomposition. Other non-local methods enforce a small
number of reflectance surfaces in the scene by clustering the re-
flectance image [Garces et al. 2012, Bi et al. 2015]. Such complex
clustering strategies are very time consuming and not real-time capa-
ble. Our approach includes non-local cues in a real-time capable way
using a histogram-based clustering approach. Zoran et al. [2015]
propose a framework to infer mid-level visual properties and apply
it to the intrinsic decomposition task. Other computationally expen-
sive global cues include creating pairwise pixel correspondences
across the entire image [Chen and Koltun 2013, Bell et al. 2014].
We propose similar correspondence constraints, which are real-time
capable, through a non-local sampling strategy. In combination with
our local sparsity term for reflectance, we are able to achieve globally
and temporally coherent decompositions.

Statistical and Learning-Based Techniques Statistics of real-
world geometry and illumination can be learned or modeled to help
resolve the inherent ambiguity in intrinsic decomposition [Barron
and Malik 2015]. Such approaches are powerful, but often reach
their limit on more complex scenes that fall outside of the used
training data. Discriminative techniques have also been used to solve
the Retinex problem by classifying edges as either a reflectance or
shading edge [Bell and Freeman 2001, Tappen et al. 2005]. Recently,
Zhou et al. [2015] learned the relative reflectance ordering of image
patches from a large annotated dataset to identify surfaces of similar
reflectance under different illumination conditions. In spite of such
diverse strategies, intrinsic decomposition remains a challenging,
ill-posed problem, especially on real-world scenes. Many recent
approaches thus resort to user input like scribbles to resolve ambi-
guities [Bousseau et al. 2009, Shen et al. 2011, Bonneel et al. 2014,
Ye et al. 2014]. Even without such user interaction, our approach
produces decomposition results, in real-time, that are on par with or
even better than results obtained with previous off-line approaches.



Figure 2: Overview of our proposed real-time intrinsic decomposition approach.

Multi-Image and Depth-Based Techniques The highly under-
constrained intrinsic decomposition problem benefits from addi-
tional information, such as per-pixel depth, temporal information
from time lapses, or geometry from multi-view images. Several tech-
niques rely on varying illumination over an image sequence of a
static scene, to isolate the temporally constant reflectance from time-
varying illumination effects [Weiss 2001, Matsushita et al. 2004,
Laffont et al. 2012, Hauagge et al. 2013, Laffont and Bazin 2015].
Geometry cues computed from multi-view imagery are often ex-
ploited to construct further priors. Kong et al. [2014] use sequences
captured with a moving light source, and use optical flow to find
temporal correspondences in dynamic scenes. Surface normals are
then used to improve the decompositions. Such approaches break
down when lighting is near-constant, as in many real-life scenarios.
Laffont et al. [2013] and Duchêne et al. [2015] use multi-view stereo
to reconstruct scene geometry and hence estimate environment maps
of the scene. Depth information has proven very useful in estimating
reflectance and shading, especially under a Lambertian reflectance
assumption. Given an RGB-D video stream, illumination estimation
and shape-from-shading refinement is feasible in real time [Wu et al.
2014]. Depth information has also been exploited to impose local
and global constraints on the shading layer [Lee et al. 2012, Barron
and Malik 2013, Chen and Koltun 2013, Hachama et al. 2015], for
example by exploiting local normal information. Although depth and
other geometric cues are very valuable, they require specific multi-
view capture, moving light sources or special camera hardware – all
of which are not available for live RGB video. We propose the first
approach for real-time, space-time coherent intrinsic decomposition
from just a single monocular RGB video.

Intrinsic Video Decomposition Techniques Most discussed
techniques are limited to decomposing a single image off-line and
yield unacceptable, temporally incoherent results when directly ap-
plied to video. Only few approaches explicitly tackle video. Shen
et al. [2014] perform intrinsic decomposition only for specific re-
gions in the video, their approach requires user input and has a slow
off-line runtime. Ye et al. [2014] propose a multi-pass optimization
strategy for intrinsic video decomposition that clusters reflectance
pixels and uses optical flow for correspondence across frames. Their
approach is fundamentally off-line as it takes more than a minute per
video frame. Bonneel et al. [2015] use the temporal regularity of the
input video as a guide to stabilize the shading and albedo layers com-
puted by intrinsic decomposition techniques. Bonneel et al. [2014]
suggest a fast and flexible method that uses both local and global
chromaticity cues. However, since the method operates on grayscale
images instead of RGB, the output reflectance image has the same
chromaticity as the input image, which is often wrong. Therefore,
the approach notably struggles if the assumptions of white light and
Lambertian surfaces are violated. In contrast, our method works
in the RGB space and is more resilient against violation of these
assumptions. The method of Bonneel et al. [2014] requires half a
second per frame and an additional slow off-line preprocessing step
to calculate optical flow. In contrast, our approach runs completely

in real time. We extend recent concepts for real-time non-linear
optimization on the GPU [Wu et al. 2014, Zollhöfer et al. 2014,
2015]. In particular, we propose a novel GPU-based optimizer to
explicitly handle `2–`p-optimization. Previous video techniques also
use extensive user input, whereas we obtain similar or even better
results in real time without any user interaction.

3 Overview

Given an arbitrary video stream as input, our proposed live intrinsic
video decomposition technique extracts the corresponding shading
and reflectance streams at real-time rates. Like previous decompo-
sition methods, we assume Lambertian reflectance in the scene, i.e.
the reflectance is equal to the albedo of the surface. Figure 2 shows
an overview of all building blocks of our approach. We propose a
novel mixed `2–`p-formulation (see Section 4) for the intrinsic video
decomposition problem that leads to decompositions that are both
spatially and temporally coherent without the need for an explicit
correspondence search. The resulting high-dimensional and non-
convex variational optimization problem is robustly and efficiently
optimized using a custom-tailored, fully data-parallel, iteratively
reweighted least squares (IRLS) solver (see Section 5). Leverag-
ing the computational power of modern graphics hardware, we can
compute decompositions at frame rate. The obtained results (see
Section 6) show that our approach outperforms the current state of
the art qualitatively and quantitatively in terms of accuracy, robust-
ness and runtime performance. We show the real-time capabilities of
the proposed approach in a live setup that demonstrates a variety of
compelling demo applications (see Section 7), ranging from recolor-
ing to material editing tasks. Finally, we discuss current theoretical
and technical limitations (Section 8) and conclude with an outlook
(Section 9).

4 Intrinsic Video Decomposition

Intrinsic decomposition problems are commonly tackled by transfer-
ring and solving them in the log-domain [e.g. Shen and Yeo 2011]:

i(x) = r(x) + s(x), (2)

where lower-case letters are the log-domain versions of their upper-
case counterparts. This explicitly linearizes the constraints and fa-
cilitates the use of simpler optimization strategies. Even in the
log-domain, the intrinsic decomposition problem is still under-
constrained, since all per-pixel decompositions are completely in-
dependent. Most existing intrinsic video decomposition techniques
rely on user scribbles to provide crucial constraints for solving the
heavily under-constrained intrinsic decomposition problem. How-
ever, user scribbles are not an option for on-line intrinsic video
decomposition approaches, such as ours, as such user input cannot
be provided at 30 Hz in a live-streaming setup. We extend previ-
ously used reflectance, shading and chromaticity priors to suit our
real-time setting. In addition, we propose new global space-time and



reflectance clustering priors designed with real-time computational
performance in mind, to solve the under-constrained decomposition
problem. Our approach is based on the decomposition energy

E(D) =
∑
x

[
Edata(x)+Epriors(x)+Enon-local(x)+Eclustering(x)

]
. (3)

All sub-energies are defined per pixel x. We minimize this energy
for every video frame to obtain the decomposition

D =
[
. . . , r(x)>, . . . , s(x), . . .

]> (4)

that stacks the unknown per-pixel reflectance and shading values
defined by the vector-valued (RGB) reflectance layer r and the
scalar shading layer s. All unknowns are defined in the log-domain.
We assume the image formation model in Equation 2 for defining
the decomposition problem. Next, we discuss the particular data
terms and prior constraints used in our novel decomposition energy
and describe how we efficiently solve the resulting mixed `2–`p-
optimization problem at real-time rates. To this end, we propose a
specifically tailored data-parallel solution strategy in Section 5.

4.1 Data Fitting Term

The output of our optimization is a decomposition of the input video
frame (in log-space) into a sum of reflectance and shading compo-
nents. We enforce this as a soft-constraint via the data fitting term
Edata. Similar to most previous intrinsic decomposition methods, we
assume monochromatic, white illumination; therefore the shading
image is scalar-valued. In the log-domain, we enforce the fitting
constraint per color channel, i.e. ic ≈ rc+s for c∈ {R,G,B}. To
make the solution more robust to deviations from perfectly white
illumination, we apply per-channel perceptual weights ωc to obtain
the final constraint:

Edata(x) = wdata · ωiw(x) ·
∑

c∈{R,G,B}

ωc · |ic(x)−rc(x)−s(x)|2, (5)

where {ωR, ωG, ωB}= {0.299, 0.587, 0.114} (ITU-R BT.601). In
addition, our data term is scaled by the data term weight wdata, and
the image intensity weight

ωiw(x) = 1− wintensity · (1− |I(x)|), (6)

which expresses the empirically confirmed observation that pixels
with a higher intensity |I(x)| provide more reliable decomposition
constraints, while low-intensity pixels need to be more strongly
regularized to better deal with noise in the input data. In particular
for commodity webcams, which have a low signal-to-noise ratio,
low intensity pixels need strong regularization. This is adjustable
via wintensity.

4.2 Local Prior Terms

We assume that illumination effects such as shading and shadows
only affect the intensity of a pixel, but not its chromaticity, c(x)=
I(x)/|I(x)|. Therefore, any large gradient in the chromaticity does
not originate in the shading image, but in the reflectance image.
This can be interpreted as an intensity-normalized version of Retinex
[Land and McCann 1971]. Based on a chromaticity similarity weight
ωcs(x,y), we selectively scale the reflectance and shading priors,
which are described next, to compute an optimal decomposition:

ωcs(x,y) = exp
(
−αcs · ‖c(x)− c(y)‖2

)
. (7)

Here, we use the empirically determined factor αcs =15 as it yields
the best decomposition results in our experiments. In contrast to
Bonneel et al. [2014], we use a smooth discriminator function instead
of a hard threshold on chromaticity difference.

Figure 3: Chromaticity shift: in practical conditions, especially in
dark regions (e.g. folds of the dress), chromaticity changes occur
due to indirect illumination effects and finite camera sensitivity.

Reflectance Sparsity We assume that the reflectance image r
consists of piecewise-constant regions. Such a sparse solution can be
obtained by minimizing the pth power of the `p-norm, with p∈ [0, 2),
of the local per-pixel reflectance gradients∇r(x). Smaller choices
of p yield sparser decompositions. We set p=0.8 in all our experi-
ments. However, as r is a 3-vector,∇r is a 3×2 matrix, consisting
of horizontal and vertical gradients for each color channel. To ensure
soft and edge-friendly piecewise constancy of the reflectance image,
we do not minimize the `p-matrix norm directly, but instead separate
the gradients along each dimension and minimize their magnitude
independently:

Ereflectance(x) = wreflectance ·
∑

y∈N(x)

ωcs(x,y)·‖r(x)−r(y)‖p2 . (8)

Here, N(x) is the 4-pixel neighborhood of pixel x, and the more
similar two pixels’ chromaticities, as measured by ωcs(x,y), the
lower the weight on the reflectance difference. The whole objective is
scaled by wreflectance. Note that we express this constraint directly on
color values, not on gradients [Bonneel et al. 2014], which benefits
real-time performance (see Section 6.5).

Shading Smoothness For purely diffuse surfaces, shading is
only a function of the shape of the object. Since objects in natural
scenes generally have smooth shapes, we expect the shading image
to also be smooth. In addition, neighboring pixels with different
chromaticities, as measured by 1−ωcs(x,y), indicate a reflectance
edge, where shading smoothness should be more strongly enforced:

Eshading(x) = wshading ·
∑

y∈N(x)

(1−ωcs(x,y))·|s(x)−s(y)|2 . (9)

Here, wshading is the weight of this prior constraint.

Chromaticity Prior As mentioned earlier, we assume that the
chromaticity of the input image is not altered by illumination effects
such as shading and shadows. In this case, the chromaticity of the
unknown reflectance image r should be the same as that of the input
image. We enforce this using the soft constraint

Echromaticity(x) = wchromaticity · ‖c(x)− cr(x)‖22 , (10)

where c is the chromaticity of the input video frame, and cr is the
chromaticity of the reflectance image r.

In a simplified image formation model that only considers di-
rect white illumination and infinite camera precision, chromaticity
changes solely occur due to reflectance changes. However, in the
real world (especially in low-intensity regions), indirect illumina-
tion effects and the camera’s finite sensitivity limit this assumption.
This leads to shifts in the captured chromaticities (see Figure 3). In
brighter regions, the chromaticity is still a good approximation of the
reflectance. Therefore, we combine the three priors using the image
intensity weight ωiw(x), to reduce the influence of the shading and
chromaticity priors for dark pixels, to obtain

Epriors(x)=Ereflectance(x)+ωiw(x)·
[
Eshading(x)+Echromaticity(x)

]
.

(11)



Figure 4: Spatio-temporal reflectance consistency prior: we apply global consistency constraints in the space (blue) and time (green) domains
based on random sampling. If sampled pixels have similar chromaticity, we constrain their reflectances to also be similar.

4.3 Spatio-Temporal Reflectance Consistency Prior

Many natural and man-made scenes contain multiple, identically
colored instances of an object, such as cushions on a sofa. Illu-
mination is also changing over time, causing pixels to increase or
decrease in brightness. In these scenarios, it is essential to ensure
spatio-temporally consistent reflectances. This is not handled by the
constraints described so far, which merely locally enforce piecewise
constant reflectance. To ensure spatially and temporally consistent re-
flectance, we propose a new global, sampling-based, spatio-temporal
reflectance consistency constraint, that does not rely on costly space-
time correspondence finding, such as optical flow. This allows for
real-time performance.

For each pixel x in the reflectance image, we connect it to Ns
randomly sampled pixels yi. Samples are chosen from reflectance
images of the current and previous frames ti, as illustrated in Fig-
ure 4. If the chromaticity of the current pixel is reasonably close
to that of the sampled pixel, we constrain their reflectances to be
similar:

Enon-local(x) = wnon-local ·
Ns∑
i=1

gi(x)·‖r(x)− rti(yi)‖22 (12)

gi(x) =

{
ωiw(x) if ‖c(x)− cti(yi)‖2 < τcc,
0 otherwise.

(13)

Here, τcc is a chromaticity consistency threshold. We randomly
sample Ns = 9 pixel locations from the current frame t as well
as the previous five keyframes (spaced five frames apart). Since
darker pixels suffer from shifted chromaticities, we again reduce
their contribution based on ωiw.

The proposed approach, although relying on random sampling, is
especially effective when combined with the reflectance sparsity
prior. It is very likely that distinct regions of same reflectance are
connected by at least a few samples, and the reflectance sparsity
prior then spreads the global reflectance consistency constraints to
other nearby pixel locations. By creating connections to previous
video frames, this term leads to temporally stable decompositions.
The number and spacing of the used frames is adjustable: a shorter
temporal window may for example be preferable in case of fast
motion or illumination changes. Spacing the frames further apart
makes our approach more resilient to slow illumination changes. We
use a default of five past keyframes spaced five frames apart which
proved sufficient for all our test sequences. Note that in contrast to
previous work [Bonneel et al. 2014, Kong et al. 2014, Ye et al. 2014],
we do not require time-consuming explicit correspondence finding
to obtain temporally coherent results.

4.4 Reflectance Clustering Prior

The reflectance sparsity and non-local consistency priors lead us
very close to the goal of a sparse distribution of reflectances, by
encouraging piecewise constancy and consistent colors for disjoint
objects of the same reflectance, respectively. However, there may

Figure 5: Reflectance Clustering: The reflectance layer is clustered
based on a weighted k-means strategy on the reflectance histogram.

still be remaining inconsistencies in actually uniform reflectance re-
gions and unwanted temporal changes within the same material. We
therefore introduce a per-pixel soft constraint for global reflectance
consistency that ensures the reflectance image to be close to the
desired result and temporally stable, even without costly spatial
correspondence finding. We achieve this by estimating a clustered
version of the reflectance image. We first compute a histogram of the
reflectance image and find major reflectance clusters. Each pixel’s
reflectance is then constrained to match the reflectance of its most
similar cluster. Specifically, we compute an RGB histogram of the
reflectance image with 303 uniformly spaced bins, where each bin
stores the number of pixels within it, as well as their mean color
(see Figure 5). We exponentially average histograms over time to
improve the temporal coherence of the reflectance clusters, which
we compute by performing weighted k-means clustering on the
reflectance histogram. The cluster centers are initialized with the pre-
vious frame’s clusters, which speeds up convergence, or randomly
in the case of the first frame. We also collapse duplicate reflectance
clusters with chromaticity differences below the chromaticity con-
sistency threshold τcc used before.

We then create a clustered reflectance image rcluster using the closest
reflectance cluster for each reflectance pixel r(x) in terms of `2
distance. This clustered reflectance image could be used directly as
the final reflectance image, but any errors in the clustering process
would become part of the final result. Instead, we use the clustered
reflectance image as a soft constraint that is most strongly applied to
dark pixels as these are most unreliable. The reason for this is what
we call chromaticity shift: large shading variations may cause a shift
in chromaticity in the darker regions of the same reflectance surface
because of inter-reflections and finite camera sensitivity. We resolve
this issue by constraining dark pixels more strongly to be similar to
their closest reflectance cluster:

Eclustering(x) = ωclustering(x) · ‖r(x)− rcluster(x)‖22 , (14)
ωclustering(x) = wclustering · exp (−αclustering · |I(x)|) , (15)

using the clustering prior weight wclustering and empirically deter-
mined soft function constant αclustering = 0.4. Using the clustered



reflectance image to define the decomposition energy is a chicken-
and-egg problem, as estimating the clustered image requires the re-
flectance to be available, whereas estimating the reflectance requires
the clustering. To solve this problem, we exploit our coarse-to-fine
optimization strategy (see Section 5.4). We perform the clustering
on the reflectance estimated on the second-finest level and use it for
regularizing the finest level result.

5 Real-Time Optimization

The intrinsic decomposition objective E(D) : R4N→R proposed in
Equation 3 is a mixed `2–`p-optimization problem in the unknown
parameter values D. Here, N=W×H is the resolution of the input
video stream. The parameter vector D holds the 4N unknown pixel
values that fully define the intrinsic decomposition, i.e. the per-pixel
log-space reflectance r(x)∈R3 and shading s(x)∈R. The optimal
decomposition D∗ is the minimizer of E(D):

D∗ = argmin
D

E(D). (16)

This high-dimensional, under-constrained optimization problem is
non-linear and non-convex due to the involved `p-optimization. In
addition, this optimization has a large number of unknowns even
for small video resolutions, e.g. about 2 million unknowns for a
resolution of 800×600 pixels, which have to be optimized under
our tight real-time constraint of 30 Hz. Previously, sparse gradi-
ent priors [Levin and Weiss 2007, Levin et al. 2007, Joshi et al.
2009, Bonneel et al. 2014] have been tackled on the CPU using
an iteratively reweighted least squares (IRLS) approach; but not at
real-time rates given millions of unknowns. We exploit the compu-
tational horsepower of the data-parallel GPU architecture to solve
such variational optimization problems at framerate. In contrast to
previous work on data-parallel optimization [Wu et al. 2014, Zoll-
höfer et al. 2014, 2015], which only deals with standard non-linear
least squares formulations, we propose a novel solution strategy for
general unconstrained `p-optimization problems. To this end, we
devise a custom-tailored data-parallel IRLS solver that allows to
solve for up to 2 million unknowns at real-time rates.

5.1 Data-Parallel IRLS Core Solver

IRLS is a widely used optimization strategy [Holland and Welsch
1977]; its key idea is to transform a general unconstrained optimiza-
tion problem to a sequence of reweighted subproblems:

{
D(k) = argmin

D
E(k)(D | D(k−1))}K

k=1
. (17)

The original energy E is successively reweighted based on the pre-
vious solution D(k−1) to obtain new energies E(k). Starting from
an initial estimate D(0), the optimum D∗ = D(K) of E is found
based on K such steps. For the first time, we integrate the IRLS
strategy into a data-parallel iterative GPU solver for handling the `p
term in our energy. As a starting point, let us consider a single scalar
`p-residual of the objective. Since we use the pth power of `p in our
energy, it can be written as:∣∣r(D(k))

∣∣p. (18)

Here, r(D(k)) ∈ R is a general scalar and linear residual. Now
let D(k−1) be the approximate solution computed in the previous
iteration step. Then, a suitable reweighting scheme is obtained by

approximately splitting Equation 18 into two components:∣∣r(D(k))
∣∣p ≈ ∣∣r(D(k−1))

∣∣p−2︸ ︷︷ ︸
c(D(k−1))

·
∣∣r(D(k))

∣∣2 (19)

=
(√

c
(
D(k−1)

)
· r(D(k))

)2
. (20)

This factorization is based on the assumption that parameters change
slowly D(k) ≈D(k−1). The reweighting factor c

(
D(k−1)

)
is con-

stant during one iteration step, since it only depends on the previous
solution. The remaining second factor is a quadratic function of the
parameters since the residuals r(D(k)) are linear. Note, reweighting
also applies to the case p=2, resulting in c

(
D(k−1)

)
=1. Thus, we

can write the energy E(k) using reweighting factors ck(D(k−1)):

E(k)(D | D(k−1)) =

M∑
k=1

(√
ck(D(k−1)) · rk(D)︸ ︷︷ ︸

r̂k(D|D(k−1))

)2
. (21)

The total number M =N(13+Ns) of residuals r̂k(D | D(k−1))
depends on the data fitting term (3N terms), shading smoothness
prior (N terms), reflectance sparsity prior (3N terms), chromatic-
ity prior (3N terms), spatio-temporal reflectance coherence prior
(NNs terms) and the reflectance clustering prior (3N terms). To
simplify notation further, we stack all M scalar residual terms
r̂k(D | D(k−1)) in a single vector:

F (k)(D | D(k−1)) =
[
r̂1(D | D(k−1)), . . . , r̂M (D | D(k−1))

]>
.

(22)
This vector can be interpreted as a high-dimensional vector field
F : RN → RM that allows to rewrite E(k)(D):

E(k)(D | D(k−1)) =
∥∥∥F (k)(D | D(k−1))

∥∥∥2 . (23)

Since all elements of F (k) are linear functions of the unknowns, the
resulting optimization problem is quadratic, hence convex:

D(k) = argmin
D

∥∥∥F (k)(D | D(k−1))∥∥∥2
2
. (24)

We find the global optimum of the sequential sub-problems by setting
the partial derivatives to zero. The resulting highly over-constrained
linear system (M � N) is solved in the least-squares sense. Previ-
ous work [Weber et al. 2013, Wu et al. 2014, Zollhöfer et al. 2014,
2015] demonstrated the feasibility of data-parallel preconditioned
conjugate gradient (PCG) for the fast solution of such problems. We
use a similar GPU-based PCG approach to exploit the sparsity pat-
tern of the system matrix. Entries of the system matrix are computed
on the fly (and only if they are required) during PCG iterations, and
are never explicitly stored. As preconditioner, we employ inverse
diagonal preconditioning. The proposed strategy is highly efficient
and already provides real-time performance for a moderate amount
of unknowns. However, since our objective has millions of unknown
parameters, real-time optimization is not directly feasible with the
proposed core solver. To alleviate this problem, we propose a local-
global optimization approach that exploits the regular grid structure
of the image domain to partition the problem into small local sub-
problems. Each small sub-problem can then be solved efficiently in
shared GPU memory based on the presented core solver.

5.2 Local–Global Optimization Approach

Instead of solving the global joint optimization problem directly,
we subdivide the domain into small square subdomains and locally



Figure 6: Subdomains of our local–global optimization approach.

perform the optimization on each of these. Afterwards, the updates
obtained in this local step are exchanged, and the whole procedure
is iterated. For a start, let us consider the energy without the global
reflectance consistency constraint. We describe a strategy to incorpo-
rate this energy term later in Section 5.3. The evaluation of all other
objectives requires locally at most a one-ring pixel neighborhood.
We solve each sub-problem independently by one thread block on
the GPU and aim to keep the complete state of the solver close to
the associated multiprocessor, i.e. in shared memory and registers.

In each subdomain, we first cache the input data and current decom-
position to shared memory. In this step, we include a one-ring bound-
ary. We enforce Neumann constraints on this boundary to decouple
the sub-problems. The size of the local subdomains is set based on
the available L1 cache on the used GPU. We use 16×16 subdomains,
see Figure 6. Including the boundary pixels, this leads to overlap-
ping 18×18 regions that are loaded to shared memory. The local
per-domain problem is solved via the proposed IRLS strategy. After
solving the local problems, the subdomain decomposition result is
written back to global memory to facilitate data exchange between
regions. For the 16×16 inner subregions, one thread per pixel writes
the obtained new shading and reflectance values to global memory.
Values on the boundary are not written back, as they are part of the
inner subregion of an adjacent subdomain. This can be interpreted
as a variant of the Schwarz Alternating Procedure [Zhao 1996] for
domain decomposition problems. Note that in our implementation,
IRLS steps and Schwarz iterations are directly interleaved. We write
to global memory out-of-place, leading to deterministic results (fully
Additive Schwarz), which are independent of GPU scheduling. This
is in contrast to Wu et al. [2014] and Zollhöfer et al. [2015], where
a blend between an Additive and Multiplicative strategy has been
proposed. We found that our approach leads to temporally more
coherent results if only a fixed limited number of iterations is per-
formed. Sub-domains are shifted virtually after each iteration step
based on a Halton sequence to improve convergence.

5.3 Adding the Spatio-Temporal Reflectance Prior

Up to now, we did not consider the spatio-temporal reflectance prior
in the optimization strategy. This energy term does not directly fit
the proposed local–global sub-domain optimization strategy due
to its global nature, since sample points are randomly distributed
in the video volume. This introduces a coupling between the local
subproblems. Note that the optimization strategy proposed by Wu
et al. [2014] and Zollhöfer et al. [2015] can not handle this situation.
We follow a two-fold strategy do deal with this problem. First, we
treat these connections similar to the boundary by imposing Neu-
mann constraints for values outside of the processed sub-domain.
This allows to cache these values dynamically to registers before
the local sub-domain optimization commences. Second, we assume
unidirectionality of the constraints, i.e. only the reflectance value at

the currently processed pixel r(x) in Equation 12 is an unknown and
the target rti(yi) is assumed to be constant. Informally speaking,
pixels only see their drawn samples, but do not know if they have
been sampled by others. Therefore, the partial derivatives do not
depend on the target, and a constant amount of Ns values per thread
has to be cached. We keep these values in registers. Cached values
are updated over the non-linear IRLS iterations. This decouples the
sub-domain systems from each other and allows for a data-parallel
optimization as proposed earlier.

5.4 Nested Hierarchical Optimization

For the solution strategy proposed so far, error reduction stalls after
the high-frequency error components have been resolved. Low fre-
quency errors are only slowly resolved, since the propagation of up-
dates over long spatial distances requires many iteration steps. This
is a common problem of all iterative solution strategies. To alleviate
this problem, we run the proposed iterative local–global optimiza-
tion approach in a nested coarse-to-fine loop based on a Gaussian
pyramid. Since low frequency errors are of higher frequency on the
coarser resolution levels, all frequency components of the error can
be efficiently handled, hence leading to fast convergence. We solve
the optimization on every level and use a prolongation operator to
obtain a suitable starting value for the next finer level. Prolongation
is based on bi-linear interpolation of pixel data. Currently, we use
a hierarchy with three to four levels depending on the input reso-
lution. This turned out to be sufficient for good convergence rates.
On the coarsest level, we perform a frame-by-frame initialization
based on the assumption that reflectance and shading have the same
magnitude. Therefore, we set r(x) = i(x)/2 and s(x) = |i(x)|/2.
We only apply the reflectance clustering prior (Section 4.4) on the
finest pyramid level, and use the reflectance image computed on the
second-finest pyramid level to compute the reflectance clusters.

6 Results

We tested our approach on several challenging real and syn-
thetic datasets to evaluate its robustness, accuracy and runtime
behavior in comparison to the current state of the art. Our test
datasets consist of some real sequences (GIRL1, TOY1, DOWN-
STAIRS1, OBJECTS1, HOUSE2, CART2) and some synthetic sequences
(SQUIRREL1, CATHEDRAL1, SANMIGUEL2) provided by existing in-
trinsic video decomposition techniques. In addition, we apply our
approach to several of our live video streams captured by a we-
bcam for demonstrating various applications. We perform both a
qualitative and quantitative analysis of our results in comparison to
the intrinsic video decomposition methods of Bonneel et al. [2014]
and Ye et al. [2014]. Our method deals better with illumination ef-
fects such as shadows and shading than previous approaches, while
being orders of magnitude faster. In the quantitative comparisons,
we consistently obtain smaller decomposition errors than current
state-of-the-art video techniques.

In most experiments, we used the following fixed set of parameters
to instantiate our intrinsic decomposition energy: wreflectance = 0.5,
wintensity = p = 0.8, wcs = 1, and wdata = wshading = wchromaticity =
wnon-local = wclustering = 10. Note that our approach works out of
the box for all sequences evaluated by us, with resolutions ranging
from 640×360 to 960×540, including the live video footage in
the same resolution range. Drastic deviation from this range may
require parameter adjustments. Since the intrinsic decomposition
problem is ambiguous, we globally scale our reflectance layer based
on a single scalar (the shading layer is scaled inversely) to match

1http://media.au.tsinghua.edu.cn/yegenzhi/IntrinsicVideo.htm
2http://liris.cnrs.fr/~nbonneel/intrinsic.htm

http://media.au.tsinghua.edu.cn/yegenzhi/IntrinsicVideo.htm
http://liris.cnrs.fr/~nbonneel/intrinsic.htm


Figure 7: State-of-the-art comparison to Bonneel et al. [2014] and Ye et al. [2014] on the GIRL sequence. Our approach obtains comparable
or even higher-quality decompositions than previous approaches (less shading in the reflectance layer), while being orders of magnitude faster
(10× faster than Bonneel et al. and 1800× faster than Ye et al.) and not requiring user input in the form of scribbles.

the perceived brightness of previous state-of-the-art approaches.
Note, the scaled results are still valid decompositions. We refer to
the accompanying video for further results on the complete video
sequences. The temporal consistency of our decomposition results
can best be judged from these.

6.1 Qualitative Evaluation

We start with a qualitative comparison to the state-of-the-art ap-
proaches of Bonneel et al. [2014] and Ye et al. [2014] in Figure 7.
Our approach obtains reflectance layers of higher quality, partic-
ularly in the more uniform regions (see the hat). The other two
approaches more strongly bake shading variation into the reflectance
map. We also separate the input (see creases of the shirt) better into
its reflectance and shading components. This is possible due to our
novel spatio-temporal prior. Note, the other methods require intricate
user interaction, in the form of constant reflectance scribbles in the
first frame of the video, to obtain reasonable decomposition results,
whereas our approach is fully automatic and orders of magnitude
faster (10× faster than Bonneel et al., 1800× faster than Ye et al.). In
addition, the method of Bonneel et al. [2014] operates on grayscale
images instead of RGB data. Therefore, the output reflectance has
the same chromaticity as the input. This leads to artifacts if the
assumption of white light or Lambertian surface is violated.

Our global spatio-temporal prior ensures that reflectance values of
spatially or temporally distant objects with the same appearance are
similar in the decomposition. This becomes especially apparent in
the TOY sequence (see Figure 8), which contains several toy blocks
with similar appearance. The previous state-of-the-art approaches
struggle with this challenging scenario. In particular, they are unable
to uniformly decompose the blue colored blocks and end up with a
lot of shading detail in the reflectance layer. Note again, our method
is orders of magnitude faster than these approaches and does not
require user input in the form of scribbles.

6.2 Quantitative Evaluation

We use established error metrics [Grosse et al. 2009] to compare our
results to ground truth data:

1. MSE (mean squared error) measures the average of the
squared per-pixel deviations from the ground truth. In case
of color images, we average over all channels.

2. LMSE (local mean squared error) measures the average MSE
over a set of overlapping patches. The intensity of each patch
is scaled by a single scalar value to minimize the per-patch
MSE value. The metric is normalized so that an estimate of all
zeros has the maximum possible score of 1. We use a patch
size of 10×10.

3. DSSIM (structural dissimilarity index) is an information theo-
retic metric that measures the perceived change in structural
information between two images.

We compute and state each metric separately for the reflectance and
shading images, and also report the average as final result.

Figure 9 compares our results on the synthetic SANMIGUEL se-
quence to the approach of Bonneel et al. [2014]. Our approach
achieve higher quality decompositions, especially in the foliage and
on the background walls. The complex illumination pattern on the
leaves is difficult to decompose with previous state-of-the-art ap-
proaches, even with user interaction in the form of scribbles. We
are able to obtain decompositions of better quality fully automati-
cally even in this challenging scenario. Note, our approach is also
an order of magnitude faster. Figure 10 shows the per-frame MSE,
LMSE and DSSIM results as plots for the complete sequence. We
obtain consistently lower decomposition errors in almost all frames
of the sequence. The increased temporal stability of our approach,
compared to Bonneel et al. [2014], can be seen in the smaller vari-
ance of the error plots. The errors over the complete sequence are
summarized in Table 1, separately for shading and reflectance layers,



Figure 8: State-of-the-art comparison to Bonneel et al. [2014] and Ye et al. [2014] on the TOY sequence. Our approach obtains decompositions
of higher quality than previous approaches (less shading in the reflectance layer, sharper shading layer, less artifacts), while being orders of
magnitude faster (10× faster than Bonneel et al., 200× faster than Ye et al.) and not requiring user input in the form of scribbles.

Table 1: Quantitative comparison on the SANMIGUEL sequence: our decompositions obtain a lower error (bold) than previous work.

MSE LMSE DSSIM
Approach shading reflectance mean shading reflectance mean shading reflectance mean
Bonneel et al. [2014] (no scribbles) 0.0063 0.0258 0.0161 0.1564 0.1332 0.1447 0.2794 0.3226 0.3011
Bonneel et al. [2014] (scribbles) 0.0030 0.0166 0.0097 0.0886 0.1029 0.0947 0.1753 0.2898 0.2302
Our approach 0.0028 0.0151 0.0089 0.0309 0.0622 0.0461 0.1304 0.2566 0.1915
Our approach (w/o non-local prior) 0.0027 0.0173 0.0099 0.0421 0.0961 0.0688 0.1367 0.2693 0.2014

and averaged, and also indicate the superior performance of our
approach, even without using user scribbles.

6.3 Evaluation on ‘Intrinsic Images in the Wild’ Dataset

We additionally evaluate our approach on the ‘Intrinsic Images in the
Wild’ benchmark dataset of Bell et al. [2014]. Towards this goal, we
disable the temporal consistency prior term in our formulation, de-
compose the 5,230 individual images in the dataset and evaluate the
weighted human disagreement rate (WHDR), which compares the
manual annotations on the images with the decomposed reflectance
images. We obtain a WHDR10% score of 31.4%. Note that our tech-
nique is not meant to compete with traditional intrinsic single-image
decomposition techniques, as we address a different set of challenges
in intrinsic decomposition of live videos.

6.4 Influence of the Different Energy Terms

Our intrinsic decomposition approach obtains high-quality results
due to our carefully crafted decomposition energy function. Next,
we evaluate the relative importance of the different objective terms.
Figure 11 shows the reflectance images for different instantiations of
our decomposition energy, where we successively disabled certain
components by setting the respective weight to zero (see also video).
The best decomposition results are obtained by our full combined
energy. The chromaticity prior helps to keep the output reflectance
close to the input’s chromaticity leading to more saturated results.
The clustering prior is particularly useful in decomposing the chal-
lenging dark shadow regions in the image accurately. Without it,
illumination effects such as shadows and shading become part of

Figure 12: Influence of different priors on the SANMIGUEL sequence.
The sampling-based global spatial prior constraint helps to remove
shading variations from the reflectance layer.

the reflectance layer. The spatio-temporal prior ensures the global
consistency of the reflectance layer, even for disconnected regions
of the same material. In addition, it leads to temporally coherent re-
sults. The added global spatial consistency can even better be judged
from the SANMIGUEL sequence (see Figure 12). Note that the back-
ground wall in the courtyard, the floor and the leaves, all incorrectly
contain illumination and shadows if this prior is not applied. The
lower error in the ground-truth comparison (see Table 1) also reflects
this difference in quality. Therefore, all proposed priors contribute
significantly to the accuracy of the obtained decomposition results.

6.5 Runtime and Convergence

Figure 13 shows the convergence behavior of our novel nested IRLS
approach. The staircase pattern corresponds to the number of hierar-
chy levels (5 in this case). For this experiment, we used 7 non-linear



Figure 9: Ground-truth comparison on the SANMIGUEL sequence. Our approach obtains decompositions that more closely match the ground
truth. Bonneel et al.’s result artificially blurs the shading layer and contains small-scale shading in the reflectance layer. Even user-provided
scribbles do not alleviate this issue. Our approach is also one order of magnitude faster and can be applied to live video data.

Figure 10: Quantitative evaluation: our approach obtains lower MSE, DSSIM and LMSE errors than the approach of Bonneel et al. [2014] on
the SANMIGUEL sequence, while also being one order of magnitude faster and not relying on user input in the form of scribbles.

Figure 11: Influence of energy terms: reflectance result on the CATHEDRAL sequence. The best reflectance image is obtained with our full
energy. Without the chromaticity prior, the output reflectance color deviates from the input. The clustering prior removes shading variation
from the reflectance layer (red circles). Without the spatio-temporal prior, the decomposition is temporally unstable (yellow circles).



Table 2: Runtime performance for different input resolutions.

Sequence Resolution Time
HOUSE 1024 × 576 36.0 ms
GIRL 960 × 540 31.8 ms
DOWNSTAIRS 960 × 540 31.5 ms
TOY 640 × 360 16.1 ms
SQUIRREL 854 × 480 26.0 ms
SANMIGUEL 1280 × 960 68.6 ms
Live 640 × 480 22.1 ms
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Figure 13: Convergence: The residual error is always decreasing.

IRLS iterations per level with 8 PCG steps each. As can be seen,
our IRLS approach converges on each hierarchy level in about 4
iteration steps. Due to the used hierarchy, global convergence is fast
and all error frequencies are efficiently resolved. Since convergence
on a single level is reached after only a few iteration steps, in the
following, we set the number of IRLS iterations to 4; all other set-
tings are kept unchanged. This is a good trade-off between accuracy
and runtime performance. We give the mean per-frame runtime of
our approach for seven sequences with different input resolutions
in Table 2. Runtime is essentially linear in the number of pixels
in the video, and we achieve frame rates of more than 30 Hz for
input resolutions up to 950×540. In particular, live sequences at
VGA resolution are processed in less than 23 ms, which guarantees
real-time feedback. All timings have been measured on a commodity
Nvidia GTX Titan graphics card.

7 Applications

Our approach, for the first time, enables high-quality intrinsic de-
compositions in real time. This real-time capability is the basis for a
large variety of video editing applications, which we showcase in a
live setup. Our live setup is based on a commodity webcam (Logitech
HD Pro C920), which captures RGB video at 30 Hz. We use a color
resolution of 640×480 for all applications. The camera’s exposure,
white balance and focal length were manually set to a fixed value.
The quality of our live decompositions and the live editing results
can best be judged from the accompanying video.

7.1 Dynamic Reflectance Recoloring

This demo showcases the realistic recoloring of different objects
in live video footage. For each captured frame, we first compute
the intrinsic decomposition and apply chromaticity keying to the re-
flectance layer to select a subregion for which a different reflectance
value is set. Note that in the recolored composite (see Figure 14),
shading variations are realistically preserved. The real-time setting
enables immediate visual feedback, even if parameters are changed.

Figure 14: Reflectance recoloring on the GIRL sequence. We re-
color the girl’s shirt in real time using our intrinsic decomposition
approach. Note that the shading detail is preserved.

Figure 15: Editing material appearances on the OBJECTS sequence.
The cushion looks like velvet (red circles), and the cloth is modified
to appear shinier (green circles). The blue curves show the tone
mapping applied to the corresponding regions of the shading layer
to achieve the effect in each case.

7.2 Editing Material Appearances

This application demonstrates the modification of material properties
other than reflectance at real-time rates; we borrow the term material
editing from Ye et al. [2014], who showed similar effects in an
off-line setup. We apply tone mapping to a selected region of the
shading layer that has been computed in real time. The tone mapping
function is provided interactively by the user based on a sparse set
of control points. Based on this, we can for example change the
appearance of different objects in live video footage (see Figure 15).
The cushion is modified to have a velvet surface, whereas in the
second image, the cloth is made to appear more shiny. Note, the
reflectance of the objects is not influenced by this operation, since
the editing is performed in the shading domain.

7.3 Realistic Texture Replacement

We demonstrate real-time illumination-aware retexturing of live
video footage. In contrast to the two previous examples, which ap-
plied a constant color or appearance change to a chroma-keyed
region, this demo requires temporal correspondences. To this end,
we use the feature-based PTAM [Klein and Murray 2007] tech-
nique which tracks the camera’s motion based on a set of sparse
feature points in real time. Retexturing is performed by applying a re-
flectance layer texture to the handled planar surfaces. Note however,
arbitrary objects can be handled easily if a corresponding proxy ge-



Figure 16: Realistic texture replacement: we add a virtual painting
(left), and apply a brick texture (right). The textures realistically
interact with the illumination (red circles). With a naïve texturing
approach, shadows are lost. See this result in motion in our video.

Figure 17: Realistic texture replacement: we add a virtual painting
to the wall. The textures realistically reflect the illumination change
(red circles) caused by dimming the lights. Note that a naïve texturing
approach leads to unrealistic results.

ometry is available. In Figure 16, we add a Van Gogh painting (“Girl
in White, 1890”) to the scene. Our intrinsic retexturing method adds
shadows and lighting, which are part of the scene, to the texture in
real time. This allows for photorealisitic results. The naïvely added
texture, i.e. replacing the texture in the non-decomposed RGB video,
does not interact with the illumination, hence making it appear syn-
thetic. We also retexture the notice board with a brick texture. In
Figure 17, we dim the light source. Our approach properly relights
the synthetic texture. Note, the virtual paintings and bricks are cor-
rectly and realistically interacting with the real-world illumination.
In contrast, naïve retexturing leads to unrealistic results. In Figure 18,
we add a leaf texture to the side of a carton. Note the different shad-
ing on the added decal, depending on which side of the box it is
placed. Please also refer to the accompanying video.

7.4 Live Video Abstraction & Stylization

Next, we demonstrate abstraction and artistic stylization of live
video footage. Abstraction of images and video has been shown to
be an important tool in recognition and memory tasks [Winnemöller
et al. 2006]. Our reflectance video stream does not contain shading

Figure 18: Realistic texture replacement: we add two virtual decals
to a box. Intrinsic texturing realistically interacts with the real-world
shading. Note that naïve texturing leads to unrealistic results.

Figure 19: Live video stylization using a cartoon-style effect.

information and hence already captures an abstract version of the
scene. By increasing the contrast of major edges of the shading layer,
and suppressing low-contrast regions, a nice cartoon-style effect
can be achieved. To this end, we apply a difference-of-gradient
(DoG) filter [Winnemöller et al. 2006] to the shading layer and
then recombine it with the reflectance layer (see Figure 19). The
spatial scale, sensitivity and sharpness of the resulting edges can
all be controlled interactively by the user. Unlike previous video
abstraction techniques, our method is directly applied to the shading
layer, hence enforcing only the shading edges, not edges between
albedo regions which are often also stylized in previous methods.

8 Discussion

We demonstrated the first approach for intrinsic decomposition of
live video streams at real-time framerates. While we achieve high-
quality results on par or surpassing the current state-of-the-art off-
line methods in terms of robustness, accuracy and runtime, we make
some simplifying assumptions to make this hard inverse problem
tractable. Note that these assumptions are common to almost all
state-of-the-art intrinsic decomposition approaches, even to the off-
line methods. In the following, we discuss the main assumptions:

Monochromatic Illumination: All illuminants are assumed to
emit pure white light, a reasonable assumption for many real-world
scenes. Therefore, a perceived change in chromaticity can be directly
attributed to a change in material reflectance.



Figure 20: Recoloring of highly textured objects: we obtain compa-
rable recoloring results to the approach of Bonneel et al. [2014] with
default parameters and no user interaction (bottom). With additional
scribble-based user interaction, Bonneel et al. obtain results with
fewer texture copy artifacts (top right). Note that our approach is
one order of magnitude faster and does not use any user input, since
this is infeasible in the proposed live video editing context.

Diffuse Reflectance: All objects in the scene are assumed to
have a purely diffuse reflectance. This is a soft assumption since
our method handles non-diffuse objects gracefully, as long as the
material is not highly specular.

Sparse Reflectance: We assume the scene to be comprised of a
relatively small number of uniformly colored surface patches. In
natural scenes with high-frequency texture or smooth color gradients,
this assumption might be violated. We show one such example in
the context of recoloring in Figure 20.

Direct Illumination: We only consider direct illumination effects.
Complex multi-bounce illumination such as caustics or color bleed-
ing are not explicitly handled and might be mistaken for reflectance
variation.

Despite these simplifying assumptions, our approach produces plau-
sible decomposition results at previously unseen frame rates and
without any user interaction.

9 Conclusion

We presented the first approach to compute intrinsic decomposi-
tions of monocular live video footage in real time. High-quality and
temporally coherent decompositions are obtained without the need
for an explicit correspondence search. Real-time optimization is
possible due to a carefully crafted data-parallel solver for general
`2–`p-optimization problems. We demonstrated the capabilities of
our approach on live video footage as well as on synthetic data. The
qualitative and quantitative evaluation shows that our approach is on
par with or even outperforms current state-of-the-art techniques in
terms of robustness, accuracy and runtime.

We believe that the real-time capabilities of our intrinsic decomposi-
tion approach will pave the way for many novel augmented reality
applications that build on top of the presented realistic recoloring,
relighting and texture editing functionality. In the future, we want to
relax some of the made assumption to make our approach applicable
to an even wider range of settings, such as colored multi-bounce
illumination, highly specular surfaces or textured objects. The in-

corporation of depth information into the optimization process will
help to resolve some of the inherent ambiguities of the intrinsic
decomposition problem, leading to even more accurate results.
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