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ABSTRACT: Reaction of [Ru(IPr)2(CO)H]BArF
4 with ZnEt2 

forms the heterobimetallic species [Ru(IPr)2(CO)ZnEt]BArF
4 (2) 

which features an unsupported Ru-Zn bond. 2 reacts with H2 to give 

[Ru(IPr)2(CO)(2-H2)(H)2ZnEt]BArF
4 (3) and [Ru(IPr)2(CO) 

(H)2ZnEt]BArF
4 (4). DFT calculations indicate that H2 activation at 

2 proceeds via oxidative cleavage at Ru with concomitant hydride 

transfer to Zn. 2 can also activate hydridic E-H bonds (E = B, Si) 

and computed mechanisms for the facile H/H exchange processes 

observed in 3 and 4 are presented. 

Metal-ligand cooperativity is a widely used strategy for the ac-

tivation and catalytic transformation of small molecules.1 Many 

such systems are predicated on transition metal-Lewis base (TM-

LB) combinations,2,3 as well as those featuring electronically flex-

ible ligand scaffolds, exemplified by Milstein’s (de)aromatization 

approach.4 More recently, TM-LA (LA = Lewis acid) cooperativ-

ity has (re)emerged5 with reports of H2 cleavage,6 the activation of 

C-H and more polar E-H bonds6a,6f,7 and, in some cases, involve-

ment in catalytic processes.6a,6b,7,8 To date such TM-LA coopera-

tivity has been dominated by cases where the LA is a B or Al cen-

ter that is brought into proximity with the TM via a constrained 

geometry ligand, typically a bi- or polydentate P- or N-based spe-

cies.6-9 Herein, we report on the preparation and reactivity of a 

novel TM-LA system, [Ru(IPr)2(CO)ZnEt]BArF
4
 (2)10 which fea-

tures a direct, unsupported Ru-Zn bond and is accessed via the 

simple addition of ZnEt2 to [Ru(IPr)2(CO)H]BArF
4
 (1).11 Complex 

2 can activate H2 with net addition across the Ru-Zn bond to give 

[Ru(IPr)2(CO)(2-H2)(H)2ZnEt]BArF
4 (3).12 The observation of 

facile intramolecular H/H exchange in 3, along with DFT calcula-

tions, highlight the ability of the TM-LA {RuZn} moiety to act as 

a flexible and reversible hydride shuttle.  

In line with the reported electrophilic reactivity of the hydride 

ligand in [Ru(IPr)2(CO)H]BArF
4 (1),11 addition of one equivalent 

of ZnEt2 to a fluorobenzene solution of this species gave the Ru-

Zn complex 2 (Scheme 1), which was isolated as a red solid  in 

76% yield. 1H NMR spectroscopy confirmed the absence of any 

hydride ligand in 2 and confirmed the presence of a single ZnEt 

group on the basis of the 8:3:2 ratio of iPr methine protons to low 

frequency signals at  0.73 (CH3) and  -0.11 (CH2). 

 

Scheme 1. Formation and reactivity of 2-4 (dipp = 2,6-diiso-

propylphenyl). BArF
4 anions not shown. 

 

Upon shaking a C6H5F solution of 2 under H2 (1 atm), there 

was an instantaneous color change (deep red to colorless) result-

ing from the formation of the novel dihydrogen dihydride com-

plex [Ru(IPr)2(CO)(2-H2)(H)2ZnEt]BArF
4 (3, Scheme 1). The 1H 

NMR spectrum of 3 exhibited two hydride resonances, a broad 

signal at  -5.33 and a sharp peak at  -12.13, in a relative ratio of 

3:1. Cooling to -28 C resolved the broad resonance into two sig-

nals (relative ratio 2:1) at -5.09 and -7.79 (with T1 values of 31 

and 72 ms respectively)13 assigned to Ru(2-H2) and Ru-H-Zn 

(trans to CO) respectively. Both signals remained broad, indica-

tive of exchange; this was confirmed by EXSY and magnetization 

transfer experiments (Figure S11). No exchange with the remain-

ing Ru-H-Zn trans to dihydrogen ( -12.13, T1 = 809 ms; T1(min) 

= 638 ms (CD2Cl2, 400 MHz, -41 C)) was found. However, upon 

exposure of 3 to 1 atm D2, 1H and 2H NMR spectra showed une-

quivocally that all three sites underwent a slower chemical ex-

change with deuterium incorporated into the Ru(2-H2) and at 

both Ru-H-Zn positions.  

The 2-H2 ligand in 3 proved hard to dissociate, with only ca. 

20% conversion to [Ru(IPr)2(CO)(H)2ZnEt]BArF
4 (4) apparent 

even after evaporating a C6H5F solution of 3 to complete dryness. 

In fact, full conversion to 4 required heating a solid sample of 3 at 

50 C under dynamic vacuum for 24 h. Subjecting solid 3 to vac-

uum/heat for further time (ca. 72 h) showed that all four hydride 

ligands could be removed, although reformation of 2 was also ac-

companied by additional, unidentified side products. Complex 4 

displayed a low frequency ( -27.06) Ru-H-Zn signal which now 

exchanged on the NMR timescale (magnetization transfer and 

EXSY measurements; Figure S12) with a second Ru-H-Zn reso-

nance at  -3.75. 



 

  
Figure 1. Molecular structures of the cations in 2, 3 and 4. Ther-

mal ellipsoids are shown at 30%. All non-hydride and non-agostic 

hydrogen atoms are omitted for clarity. Also shown are compari-

sons of the key experimental and (in italics) computed distances 

around the central {Ru-Zn} moiety, along with the accompanying 

NBO charges.    

 

The molecular structures of the cations in 2, 3 and 4 are shown 

in Figure 1, along with a comparison with computed data for the 

central {Ru(H)nZn} moieties in each case (n = 0, 4 and 2 respec-

tively). 2 exhibits a Ru-Zn distance of 2.4069(7) Å,14 and also fea-

tures two short RuH-C agostic interactions to one of the IPr lig-

ands (Ru(1)H(27A)-C(27) 2.13(3) Å, Ru(1)H(27C)-C(27) 

2.31(4) Å), similar to those seen previously in 1.11 In 3 and 4 the 

2-H2 and hydride hydrogens were included in the model, the lat-

ter being refined without restraint. Both these species have elon-

gated Ru-Zn distances (2.5125(3) Å and 2.4896(4) Å, respec-

tively) and have distinctly asymmetric {Ru(H)2Zn} moieties that 

reflect the relative trans influences of the ligands completing the 

coordination sphere. Thus, the bridging hydrides trans to CO in 3 

and 4 are approximately evenly shared between Ru and Zn, 

whereas the hydride trans to2-H2 in 3 is significantly closer to 

Ru. This asymmetry is even more marked for the hydride trans to 

the agostic interaction in 4.  

DFT calculations15 provide good absolute agreement for both 

the Ru-Zn distances as well as the various Ru-H and Zn-H dis-

tances in 2, 3 and 4, allowing for the inherent uncertainty in the H 

atom positions (see Figure 1, right hand side). NBO calculations 

characterize 2 as a Ru(0) species interacting with a cationic 

{ZnEt}+ moiety via Ru Zn -donation. In contrast, no signifi-

cant direct Ru-Zn interaction is seen in either 3 or 4 (see Support-

ing Information for full details and orbital plots). NPA charges 

were used to characterize the nature of the hydride ligands. These 

indicate that the more evenly shared hydrides, Hb (trans to CO in 

3 and 4), exhibit a significant negative charge (qH = -0.23 and -

0.26 respectively) while this reduces and becomes positive as the 

hydride moves closer to Ru (Hc: qH = -0.07 trans to 2-H2 in 3; qH 

= +0.05 trans to the agostic in 4). For comparison the terminal hy-

dride in 1 (which lies trans to a vacant site) has qH = +0.16. Hc in 

4 therefore more resembles a terminal Ru-hydride: indeed an At-

oms in Molecules study on 4 shows the absence of any ZnHc 

bond path (Figure S14).16 The {Ru(H)2Zn} moieties in these spe-

cies are therefore structurally flexible and able to access both 

bridging and terminal hydride character depending on the precise 

coordination environment.    

Although examples of {M(H)nZn} complexes exist for M = 

Ru,17 as well as for other late TMs,18 these all result from metal 

hydride precursors and, to the best of our knowledge, formation 

via bimetallic M-Zn cleavage of H2 has no precedent.19,20 We 

have therefore used DFT calculations to study the formation of 2 

as well as its onwards reactivity with H2 to 3 and 4.  Figure 2 indi-

cates that the initial addition of ZnEt2 to 1 forms an intermediate 

I(1-2)1 at -12.3 kcal/mol in which the {RuZn} moiety is bridged 

by both a hydride and an ethyl ligand; the latter also engages in a 

-agostic interaction with the Ru center. Ethyl group transfer onto 

Ru proceeds via TS(1-2)1 with a barrier of 11.1 kcal/mol and is 

induced by rotation of the {Ru(H)Zn} moiety such that the bridg-

ing hydride drops below the equatorial coordination plane. This 

allows the CO ligand to move trans to the developing Ru-Et lig-

and (I(1-2)2, G = -13.7 kcal/mol). The bridging hydride can now 

couple with the adjacent ethyl group via TS(1-2)2 at -6.9 kcal/mol 

leading, after release of ethane, to the formation of 2 at -30.4 

kcal/mol. In this case an alternative isomer of 2 devoid of agostic 

interactions is located, similar to the situation described previ-

ously for 1 for which several isomers were also found.11 

 

 

Figure 2. Computed reaction profile (free energy, kcal/mol) for 

the formation of 2 and C2H6 from 1 and ZnEt2; schematic struc-

tures show key distances (Å) within the equatorial plane; {Ru} = 

Ru(IPr)2
+. An ethane -complex, I(1-2)3, generated from TS(1-

2)2 is omitted for clarity. a non-agostic isomer of 2 located. 



 

Figure 3 shows one possible mechanism for the reaction of 2 

with H2 to give 3 and 4. Addition of two molecules of H2 to 2 

forms the bis-2-H2 intermediate I(2-3)1 at -32.1 kcal/mol. A very 

flat free energy surface then sees an essentially barrierless cleav-

age of the Hb-Hc ligand with net addition over the Ru-Zn bond to 

give I(2-3)2 at -34.8 kcal/mol. Rotation about the RuZn vector 

then allows transfer of Hb onto Zn to form 3 at -41.4 kcal/mol. H2 

loss from 3 is computed to be kinetically accessible (G‡ = 15.8 

kcal/mol), but endergonic, 4 (+ H2) lying 5 kcal/mol above 3. This 

is consistent with the reluctance of this species to lose H2 found 

experimentally. 

 

Figure 3. Computed reaction profile (free energy, kcal/mol) for 

the formation of 3 and 4 from 2; schematic structures show key 

distances (Å) in the equatorial plane, as well as the labelling 

scheme for the H atoms; {Ru} = Ru(IPr)2
+. Inset: geometry of H2 

activation transition state TS(2-3)1 (IPr ligands omitted).  

 

The computed structure of the key H2 activation transition state 

TS(2-3)1 (inset, Figure 3) exhibits an elongated Hb-Hc moiety 

(1.19 A cf. 0.91 A in I(2-3)1). At this point the ZnHc distance 

of 2.16 A implies little, if any, interaction with the Zn center and 

it is only after the cleavage that the Zn participates by accepting a 

hydride ligand. In addition, minimal polarization of the Hb-Hc 

bond is computed in the transition state (qHb = +0.05; qHc = +0.02). 

We therefore propose that H2 activation occurs via oxidative 

cleavage mediated by Ru, followed by hydride transfer to Zn. In 

support of Ru being the key player in the H2 cleavage, the activa-

tion of Ha-Ha trans to Zn in I(2-3)1 was also characterized: this 

proceeds via a structurally similar transition state at -28.6 

kcal/mol which leads to a Ru(2-H2)(H)2 complex in which the Zn 

is unable accept either hydride (Figure S17).  

The mechanisms of H/H exchange in 3 and 4 have also been 

modelled. For 3, exchange occurs both between the 2-H2 ligand 

and the cis bridging hydride (Ha/Hb exchange) as well as between 

the two chemically distinct bridging hydrides (Hb/Hc exchange). 

Hb/Hc exchange can proceed via the mechanism in Figure 3, with 

reversible formation of the bis-2-H2 complex I(2-3)1 and rota-

tion of the Hb-Hc ligand. The latter occurs via a transition state at -

28.3 kcal/mol, giving an overall exchange barrier of 13.1 

kcal/mol. For Ha/Hb exchange a -CAM process21 was character-

ized that sees formation of the Ha/(2-Ha-Hb) complex, I(3-3') 
(Figure 4a). Ha-Hb rotation and reversing the-CAM completes 

the exchange, the rotation transition state being the highest point 

in this process and equating to an overall barrier of 9.8 kcal/mol.  

The lower barrier for Ha/Hb exchange is consistent with the EXSY 

experiments that indicated that only that process proceeded on the 

NMR timescale.22 Hb/Hc exchange in 4 proceeds by a similar 

mechanism to that in 3 (Figure 4b). Thus initial rotation about the 

RuZn vector cleaves the Zn-Hb bond and forms I(4-4')1; Hc can 

then transfer onto Hb to form the 2-Hb-Hc complex I(4-4')2. H2 

rotation and reversing these processes complete the exchange. The 

highest transition states in this process are at -22.9 kcal/mol and 

correspond to an overall barrier of 13.5 kcal/mol. In principle, 

movement of the CO ligand from trans to Hb to trans to Hc would 

also render these two sites equivalent. However, this process has a 

barrier of 31.5 kcal/mol as it passes through a symmetrical Y-

shaped {RuCO(H)2} moiety, which is strongly disfavored for a d6 

configuration.23 

  

 

Figure 4. Computed mechanisms (free energy, kcal/mol) for (a) 

Ha/Hb in 3 and (b) Hb/Hc in 4;{Ru} = Ru(IPr)2
+. Transition state 

energies for each step are given in square brackets.  

 

To probe whether other E-H bonds could add across the Ru-Zn 

bond in 2, preliminary investigations with both protic and hydridic 

reagents have been undertaken. NH3 simply coordinated to form 

the ammonia complex [Ru(IPr)2(CO)(NH3)ZnEt]BArF
4
 (5; Figure 

S13). With HBcat and PhSiH3, room temperature dehydrogena-

tion took place to give 3 as the major ruthenium-containing prod-

uct of both reactions. Surprisingly, even a 1:1 ratio of 2:HBcat 

generated hydride signals characteristic of 3 suggesting that a 

strong driving force exists for formation of the Ru(H)2Zn moiety. 
11B NMR spectroscopy confirmed the formation of B2cat2 ( 31), 

but also showed a second major product at  22 which, by com-

parison to the literature, appears to be B2cat3.25 In the reaction of 2 

with PhSiH3, 29Si NMR spectroscopy showed that Ph3SiH and 

Ph2SiH2 were the major silicon containing reaction products, alt-

hough a number of other, lower intensity signals were also present 

which we believe arise from the presence of three reactive Si-H 

bonds in the starting material, as well as the need for SiH4 for-

mation for atom balance. There is a clear silane dependence to 

this chemistry since no reaction was seen between 2 and either 

Ru 



 

Ph2SiH2 or PhMe2SiH. Further studies are required to elucidate 

the pathways of the borane/silane dehydrogenation reactions. 

In conclusion, we have described the facile formation of the 

TM-LA heterobimetallic species, 2, featuring an unconstrained 

and unsupported Ru-Zn bond. This species is a rare example of an 

active TM-LA system derived from a non-group 13 element LA: 

2 reacts directly with H2 to form the {Ru(H)2Zn} species 3 and 

then 4. DFT calculations indicate that H2 activation proceeds via 

oxidative cleavage at Ru with the adjacent Zn acting as a (reversi-

ble) hydride acceptor. H/H exchange experiments and calculations 

on 3 and 4 show that intermediates with unsupported Ru-Zn 

bonds remain kinetic accessibility even after H2 addition. This, 

along with the observation of the activation of hydridic E-H bonds 

(E = B, Si), suggests that such unconstrained heterobimetallic 

TM-LA species may have potential applications in catalysis and 

this possibility is being pursued in our laboratories.  
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