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Monomeric and dimeric Al(III) Complexes for the production of 
polylactide  

Sarah M. Kirka,b, Helena C. Quiltera,b, Antoine Buchard,b Lynne H. Thomasb, Gabriele Kociok-Kohnb 
and Matthew D. Jonesb,*  

A series of monometallic and bimetallic Al(III) complexes with substituted naphthyl based Schiff base ligands have been 

prepared and characterised. When 1-aminonaphthalene based ligands were reacted with AlMe3 monometallic complexes 

were isolated, however, with 1,5 and 1,8- diaminonaphthalene based ligands bimetallic complexes were formed. In all cases 

4-coordinate tetrahedral Al(III) centres were observed in the solid state and in solution. There was little difference in rate of 

polymerisation of rac-lactide between the monometallic and bimetallic complexes based on 1,5-diaminonaphthalene. 

However, for the 1,8-diaminonaphthalene the complex was an order of magnitude faster than the monometallic and the 

analogous 1,5-system. Moreover, this complex was active at room temperature, which is rare for aluminium initiators, and 

PLA with a high degree (Pm = 0.82) of isotacticity was observed.  

Introduction 

Polylactide has been extensively researched in recent years. 

This is due to the fact that it is biodegradable, renewable and 

biocompatible.1 It has found many uses from high value 

biomedical applications (sutures and drug delivery vesicles) to 

commodity packaging materials. Polylactide (PLA) is prepared 

via ring opening polymerisation of the cyclic ester lactide (LA), 

the monomer is available in various stereoforms – meso, 

racemic or chirally pure.2 When rac-lactide (rac-LA) is 

polymerised either atactic, heterotactic or isotactic PLA can be 

prepared.3 The physical properties (melting temperature, Tg, 

rate of degradation) are intrinsically linked to the polymers 

microstructure.3 In the literature there are complexes based on 

group 4,4 zinc5, indium6, aluminium7, rare earth metals8 and 

groups 1-35a, 9 that are capable of imparting selectivity during 

the polymerisation. It is fair to say that aluminium initiators are 

amongst some of the successful in the literature, since the early 

work of Spassky7e, Chisholm7a, Feijen7g, 7h, Coates and Gibson7c, 

10 there have been a multitude of aluminium complexes with 

salan, salen and salalen ancillary ligands reported.7 Moreover it 

is also fair to say that there is still a significant degree of 

serendipity in choice of ligand-metal in terms of rate of 

polymerisation and stereocontrol observed in the resultant PLA. 

Currently, there has been interest in the preparation of 

multimetallic catalysts, with the hope there will be beneficial 

cooperativity between the metal centres and enhancement in 

the catalytic properties. There are only a limited number of 

dinuclear complexes for the polymerisation of cyclic esters.6c, 11 

For example, Carpentier has shown that for dinuclear 

aluminium systems based on biphenyl ligands the rate of 

polymerisation is almost an order of magnitude faster than the 

monometallic complex.12 This is believed to be due to the fact 

that in these examples the aluminium centres can potentially be 

close enough to cooperate (within 3.0 Å) and this potentially 

may facilitate a dual activation mechanisms. Further evidence 

for the existence of cooperation between aluminium centres 

has be demonstrated by Yao and co-workers.13 They prepared a 

series of Al-alkyl complexes of piperazidine ligands and 

observed a 2 – 8 times rate enhancement in polymerisation 

activity. Redshaw suggests that cooperative effects are present 

in aluminium complexes as long as they are not linked in an 

aluminoxane [Al-O-Al] and they suggest a favourable Al-Al 

distance of around 6 Å for -caprolactone polymerisation.14 

Chen has pioneered the use of bimetallic Al(III) complexes for 

the ROP of lactide and -caprolactone.15 Importantly they have 

shown that it is possible to induce stereoselectivity with such 

complexes.15a Very recently Mazzeo has highlighted the 

importance of cooperativity in the polymerisation of rac-LA 

initiated with Al(III) salen complexes with Al…Al distance the key 

parameter. They propose that this is due to synergic 

interactions during the alcoholysis and polymer growth steps.16 

In this paper we have prepared a series of dinuclear Al(III) 

complexes based on naphthyl derived ligands (varying the 

substitution) and compared these to mononuclear complexes in 

terms of their ability to control the polymerisation and kinetics.  

Experimental 

General Considerations 
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The preparation and characterisation of all metal complexes 

was carried out under inert argon atmosphere using standard 

Schlenk or glovebox techniques. All chemicals used were 

purchased from Aldrich and used as received except for rac-LA 

which was recrystallised from dry toluene and doubly sublimed 

prior to use. Caprolactone was dried by distilling over CaH2. Dry 

solvents used in handling metal complexes were obtained via 

SPS (solvent purification system). 1H and 13C{1H} NMR spectra 

were recorded on a Bruker 400 or 500 MHz instrument and 

referenced to residual solvent peaks. CDCl3/C6D6 were dried 

over CaH2 prior to use with metal complexes. Coupling 

constants are given in Hertz. CHN microanalysis was performed 

by Mr. Stephen Boyer of London Metropolitan University or 

Elemental microanalysis, Oakhampton UK. 

Synthesis of ligands 

In a typical experiment 1H2 was prepared by addition of 

salicylaldehyde (4.263 g, 34.9 mmol) to 1-aminonaphthalene (5 

g, 34.9 mmol) dissolved in methanol (30 ml). After stirring for 1 

hour, the precipitate was filtered, washed with cold methanol 

(3  10 ml) and dried to yield an orange solid (3.42 g, 13.8 mmol, 

40 %). 1H2  1H NMR (CDCl3): 7.01 (1H, td, J = 7.5, 1.0 Hz, CH), 7.14 

(1H, dd, J = 8.8, 0.5 Hz, CH), 7.20 (1H, dd, J = 7.3, 1.0 Hz, CH), 

7.42 - 7.49 (2H, m, CH), 7.52 (1H, dd, J = 8.3, 7.3 Hz, CH), 7.58 

(2H, dt, J = 9.5, 3.3 Hz, CH), 7.81 (1H, d, J = 8.3 Hz,  CH), 7.91 (1H, 

dt, J = 9.5, 3.5 Hz, CH), 8.25 - 8.35 (1H, m, CH), 8.71 (1H, s, N-CH) 

13.44 (br. s., 1H, OH). 13C{1H} NMR (CDCl3): 114.0 (Ar-H), 117.3 

(Ar-H), 119.2 (Ar-H), 119.5 (Ar), 123.2 (Ar-H), 125.9 (Ar-H), 126.5 

(Ar-H), 126.7 (Ar-H), 126.9 (Ar-H), 127.9 (Ar-H), 128.2 (Ar), 132.4 

(Ar-H), 133.4 (Ar-H), 133.9 (Ar), 146.2 (Ar-N), 161.2 (Ar-OH), 

163.6 (CH=N). m/z [C17H13NO + H]+ Calc: 248.1031 gmol-1 Found: 

248.1063 gmol-1. 

7H2 A solution of 1,8-diaminonapthalene (1.08 g, 6.85 mmol), 

3,5-di-tert-butyl-2-hydroxybenzaldehyde (3.85 g, 2.4 eq.) and 

formic acid (5 drops) in EtOH was heated to reflux for 48 h. On 

cooling to RT a yellow precipitate formed which was isolated by 

vacuum filtration and washed with cold EtOH. The product was 

taken up in CHCl3, dried over MgSO4 to remove traces of H2O 

and dried in vacuo to yield 7H2 as a deep yellow powder (0.96 g, 

1.62 mmol, 24%).  1H NMR (CDCl3): 1.01 ppm (18H, s, C(CH3)3), 

1.32 (18H, s, C(CH3)3), 6.98 (2H, dd, J = 7.3, 1.0 Hz, Ar), 7.29 (4H, 

s, Ar), 7.51 (2H, dd, J = 8.2, 7.3 Hz, Ar), 7.77 (2H, dd, J = 8.3, 1.0 

Hz, Ar), 8.66 (2H, s, N=CH), 13.25 (2H, s, OH). m/z calculated for 

[C40H50N2O2 + H]+: 591.9651, found 591.3950. 13C{1H} NMR 

(CDCl3): 29.1 ppm (C(CH3)3, .31.5 (C(CH3)3), 34.1 147.0, (C(CH3)3), 

34.7 (C(CH3)3), 117.2 (Ar), 119.0, 126.5, 126.7, 126.8, 127.9, 

136.4, 140.1, 158.6 (Ar-OH), 161.7 (CH=N). 

Synthesis of Complexes 

In a typical experiment Al(1)Me2 was prepared by the slow 

addition of trimethylaluminium solution (4.0 ml, 2M in hexane, 

8.0 mmol) to a solution of 1H2 (2 g, 8.09 mmol) in hexane (50 

ml). The solution was left to stand at room temperature 

overnight to yield a crop of yellow crystals. The resulting crystals 

were filtered and dried under vacuum to yield a yellow solid 

(1.20 g, 3.94 mmol, 49%). Al(1)Me2 1H NMR (400 MHz, C6D6)  

ppm -0.33 (6H, br. s., Al-(CH3)2), 6.48 - 6.53 (1H, m, Ar-H), 6.66 

(1H, dd, J = 7.9, 1.9 Hz, Ar-H), 7.01 (1H, dd, J=6.00, 1.00 Hz, Ar-

H), 7.05 - 7.10 (1H, m, Ar-H), 7.12 - 7.22 (2H, m, Ar-H), 7.43 (1H, 

s, CH=N), 7.46 (1H, d, J = 8.3 Hz, Ar-H), 7.52 - 7.56 (1H, m, Ar-H), 

7.58 (2H, d, J = 8.5 Hz, Ar-H), 7.64 (1H, dd, J = 8.3, 1.3 Hz, Ar-H). 
13C{1H} NMR (d8-Tol): - 9.1 (Al-(CH3)2), 117.5 (Ar-H), 119.1 (Ar), 

120.7 (Ar-H), 122.6 (Ar-H), 123.1 (Ar-H), 125.3 (Ar-H), 127.0 (Ar-

H), 127.2 (Ar-H), 128.1 (Ar-H), 128.6 (Ar-H), 134.8 (Ar-H), 135.6 

(Ar-H), 138.3 (Ar), 143.1 (Ar), 165.0 (Ar-N), 166.1 (Ar-O), 173.7 

(CH=N). Calc: C 75.23% H 5.98% N 4.62% Found: C 75.36% H 

5.88% N 4.80%. 

Al2(4)Me4 Yield: 0.33 g, 0.69 mmol (46 %) 1H NMR (C6D6): - 0.39 

(6H, br s, Al(CH3)2), - 0.27 (6H, br s, Al(CH3)2), 6.53 (2H, m, Ar-H), 

6.73 (2H, d, J = 7.2 Hz, Ar-H), 6.96 (2H, dd, J = 6.0 Hz, 1 Hz, Ar-

H), 7.01 - 7.10 (4H, m, Ar-H), 7.11 - 7.18 (2H, m, Ar-H), 7.26 (2H, 

br. s., Ar-H), 7.57 (1H, s, N=CH), 7.60 (1H, s, N=CH). 13C{1H} NMR 

(C6D6): - 8.7 (Al(CH3)2), 118.2 (Ar-H), 119.5 (Ar), 122.3 (Ar-H), 

123.1 (Ar-H), 123.6 (Ar-H), 127.0 (Ar-H), 128.2 (Ar-H) 128.3 (Ar-

H), 128.5 (Ar-H), 128.6 (Ar-H), 129.6 (Ar-H), 136.1 (Ar), 139.2 

(Ar), 143.8 (Ar-N), 166.5 (Ar-O), 174.3 (N=CH). Calc: C 70.28% H 

5.90% N 5.85% Found: C 70.14% H 5.78% N 5.69%.  

Al2(7)Me4 In this case 0.5 g of ligand was utilised. Yield: 0.27 g, 

0.38 mmol (45%) 1H NMR (C6D6): - 0.34 ppm (s, 6 H, Al-CH3), - 

0.29 (6H, s, Al-CH3), 1.31 (18H, br. s., C(CCH3)3), 1.32 (18H, s, 

C(CCH3)3), 6.92 (2H, d, J = 2.6 Hz, Ar-H), 7.03 - 7.11 (2H, m, Ar-

H), 7.44 (2H, s, CH=N), 7.49 (2H, d, J = 8.0 Hz, Ar-H), 7.57 (2H, d, 

J = 2.0 Hz, Ar-H), 7.74 (2H, d, J = 7.5 Hz, Ar-H). 13C{1H} NMR 

(C6D6): - 9.2 ppm (Al-CH3), - 6.9 (Al-CH3), 30.2 (C(CH3)3), 31.9 

(C(CH3)3), 34.7 (C(CH3)3), 35.6 (C(CH3)3), 119.7, 124.9, 126.0, 

126.5, 128.9, 129.7, 131.2, 134.5, 139.5, 140.8, 142.0, 163.6(Ar-

O), 175.4 (CH=N). Calc: C 75.18% H 8.60% N 3.99% Found: C 

74.78% H 8.49% N 3.65%. 

Crystallography 

All data were collected on a SuperNova, EOS detector 

diffractometer using radiation CuKα (λ= 1.54184 Å) or Mo-Kα 

(λ= 0.71073 Å) or a Nonius kappa diffractometer using Mo-Kα 

(λ= 0.71073 Å) all recorded at 150(2) K. All structures were 

solved by direct methods and refined on all F2 data using the 

SHELXL-2014 suite of programs. All hydrogen atoms were 

included in idealized positions and refined using the riding 

model, all refinement details are given in the .cif file. Data was 

straightforward except the following: For Al(3)Me2 it was 

necessary to account for twinning in the crystal by a 2-fold 

rotation about the reciprocal c axis ca. 44%; Al2(4)Me4 contains 

half a molecule of toluene in the asymmetric unit; Al2(5)Me4 

contains a molecule of toluene in the asymmetric unit; 

Al2(7)Me4 contains a molecule of toluene in the asymmetric unit 

and is twinned about the 1 -1 0 lattice direction at ca. 43%. 

Ring-opening polymerisation (ROP) studies 

For polymerisations the required monomer:Initiator:BnOH ratio 

was dissolved in toluene at 80 C (10 ml), in all cases 1.0 g of 

rac-LA were used. For co-polymerisations -caprolactone and 

rac-LA were added together in toluene at the appropriate ratio. 

After the reaction time the vessel was opened to air and 

methanol (1-2 drops) was added to quench the reaction and the 

resulting solid was dissolved in dichloromethane. The solvents 

were removed in vacuo and washed with copious amount of 

methanol to remove unreacted monomer. 1H NMR 

spectroscopy (CDCl3) and GPC (THF) were used to determine 

tacticity and molecular weights (Mn and Mw) of the polymers 
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produced; Pm (the probability of isotactic linkages) were 

determined by analysis of the methine region of the 

homonuclear decoupled 1H NMR spectra.5a GPC were recorded 

on a polymer labs GPC-50 instrument and referenced to 

polystyrene standards. Kinetic studies were carried out using a 

stock solution of initiator (3.47  10-5 mol Initiator and 3.47  10-

5 mol BnOH) were dissolved in 1.0 ml d8 toluene. For 100:1:1: to 

a solution of lactide (50 mg, 3.47  10-4  mol in 0.5 ml d8 toluene) 

in a Young’s NMR tube, stock solution (0.1 ml) was added and 

heated to 353 K inside a Bruker 400 MHz NMR instrument. For 

experiments which deviated from 100:1:1 appropriate stock 

solutions were prepared in all cases the overall volume of 

solvent was 0.6 ml. 1H NMR spectra were taken at regular 

intervals. The kapp was determined using a pseudo-first order 

rate kinetic plot. Some graphs have a y-intercept due to time 

between first sample acquired and sample preparation coupled 

with temperature equilibration in the NMR spectrometer.  

Results and Discussion 

The ligands were prepared in methanol/ethanol as shown in 

Figure 1 by the simple addition on the amine and substituted 

salicylaldehyde derivate. Typically the product precipitated 

from the solution and was isolated by vacuum filtration. Ligand 

7H2 required the addition of a small amount of formic acid as a 

catalyst to facilitate its preparation.17 The ligands were 

characterised via 1H, 13C{1H} and HR-ESI mass spectrometry and 

used without further purification. Ligand 6H2 was insoluble in 

common organic solvents and precluded the acquisition of 

meaningful analytical data, although the purity was confirmed 

by elemental analysis. These ligands all have a naphthyl 

backbone with either mono imino, 1,5- or 1,8- di-imino 

functionality. The Al(III) complexes were prepared by reacting 

1eq of AlMe3 with ligands 1H2-3H2, however for 4H2-7H2 2eq. of 

AlMe3 were used. Complexes Al(1/3)Me2 and Al2(4/5/7)Me4 

were further characterised in the solid state by X-ray 

crystallography, Figure 2 for Al(1)Me2 and Al2(4/7)Me4. 

Surprisingly, for 7H2 a bimetallic complex was isolated 

regardless of the stoichiometry of the reaction. In all cases the 

aluminium centres are in a tetrahedral environment and 

coordinated to the phenolate, imine and two alkyl moieties. The 

metric data for all complexes are in agreement with literature 

precedent of tetrahedral aluminium Schiff base complexes.18 A 

noteworthy observation of Al2(7)Me4 is if we look down the 

plane formed by the aromatic naphthyl rings then the 

aluminium centres orient themselves on opposite sides of this 

plane, this gives an Al(1)-Al(2) distance of ca. 5.4 Å. This is 

presumably necessary to minimise steric clashes between the 

tBu groups. For Al2(4)Me4 the corresponding Al…Al distance is 

9.0 Å. If there were free rotation around the NimineC-Cnaphth sp3 

hybridised bond then these distance reduce to ca. 3.5 Å for 

Al2(7)Me4 and 7.0 Å Al2(4)Me4 respectively. However, for 

Al2(7)Me4 DFT analysis indicates that it is unlikely that the Al…Al 

will ever get this short, with a  minimum accessible distance of 

4 Å under the polymerisation conditions, still significantly 

shorter that Al2(4)Me4. This allows for a comparison between 

the Al…Al distance and any potential cooperativity between 

metal centres to be investigated. The 1,5-substituted system is 

compared to the monometallic complexes and the 1,8-

substituted system. Given the simplicity of the ligands it is 

surprising how few crystallographically characterised examples 

exist with these ligand motifs in the literature. It is apparent 

from analysis of the 1H NMR spectra for the complexes that the 

solid state structures are maintained in solution, with discrete 

resonances observed for the imine and Al-Me moieties.  

 

Figure 1: Preparation of the ligands and complexes used in this study. 

 

 
Figure 2: Solid state structure of Al(1)Me2, Al2(4)Me4 and Al2(7)Me4 ellipsoids are 

shown at the 30% probability level. All hydrogen atoms have been removed for 

clarity. 
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TABLE 1 HERE (DOUBLE COLUMN) 

Please see separate file I cannot work out how to get a 

double page Table in!!! 

 

Al(1)Me2 was able to polymerise rac-LA in solution with the 

addition of BnOH co-initiator. MALDI-ToF analysis of the 

resulting polymer indicated that the BnO- and H- endgroups 

were present, which is expected from the coordination 

insertion mechanism. The repeat unit was 72 g/mol implying a 

degree of intermolecular transesterification. For Al(1)Me2 there 

was excellent control of the molecular weight on varying the 

addition of benzyl alcohol, indicative of a highly controlled 

system. The kinetics for Al(1)Me2 was studied at a fixed 

concentration of rac-LA of 0.58 moldm-3 (Table 1 entries 1-3 and 

5 and Figure 3), as expected as the concentration of catalyst and 

initiator reduce the apparent first order rate constant reduces. 

In all cases, as indicated by analysis of the 1H homonuclear 

decoupled NMR spectrum, atactic PLA was formed. Regardless 

of the ortho substituents screened atactic PLA was produced. 

Complex Al(2)Me2 was slower than Al(1)Me2, which is 

presumably related to the increased steric hindrance around 

the metal centre (entry 2 vs 8). Utilising the 1,5-

diaminonaphthyl bridged complexes Al2(4-6)Me4 the molecular 

weight was also controlled by the addition of BnOH and atactic 

PLA was again observed (entries 10-20). The importance of the 

addition of BnOH can be seen by comparison of entries 16-18 

with 13-15, with unpredictable molecular weight and low 

conversions achieved without the addition of BnOH. 

 

 
Figure 3: Kinetic plots at various [LA]:[Init]:[BnOH] ratios all at 80 C, init = Al(1)Me2. 

Equations of lines of best-fit (50:1:1) y = 0.0067x + 0.31 (R2 = 0.986); (100:1:1) y = 

0.0041x + 0.36 (R2 = 0.9867); (200:1:1) y = 0.0026x + 0.104 (R2 = 0.999); (400:1:1) y 

= 0.00075x + 0.04 (R2 = 0.998). 

 

Figure 4: Kinetic plots at various [LA]:[Init]:[BnOH] ratios all at 80 C, init = 

Al2(4)Me4. Equations of lines of best-fit (100:1:2) y = 0.0076x + 0.059 (R2 = 0.994); 

(200:1:2) y = 0.0038x + 0.144 (R2 = 0.991); (100:1:1) y = 0.0090x + 0.210 (R2 = 0.998); 

(200:1:1) y = 0.0034x + 0.07 (R2 = 0.994); (200:1:1) y = 0.0014x + 0.06 (R2 = 0.983). 

The rates of polymerisation of rac-LA were similar for 

complexes Al(1)Me2 and Al2(4)Me4, with little difference in the 

apparent rate constant for the polymerisation. For example, 

comparing the 50:1:1 (entry 1) with 100:1:2 (entry 10) {in this 

scenario there is the same concentration of Al-OBn initiating 

species} rate constants of 6.7  10-3 mins-1 vs. 8.3  10-3 mins-1 

were achieved. This is further exemplified if 100:1:1 (entry 2) for 

Al(1)Me2 is compared to 200:1:2 (entry 11) for Al2(4)Me4. 

Therefore, it is evident that there is no cooperative effect 

comparing the monometallic to the bimetallic derived from the 

1,5-naphthlene system, with the long Al…Al distance. The order 

of reaction with respect to catalyst has been studied for 

Al(1)Me2 and Al2(4)Me4 (see ESI figures 18-20) the 

polymerisation was observed to be first order with respect to 

catalyst. For the 1,8-naphthlene system only ligand 7H2 could 

be prepared in pure form for complexation. When reacted with 

AlMe3 the bimetallic complex was formed in high yield. 

Interestingly, this is in contrast to work of Gibson and co-

workers10 who report the preparation of a monometallic 

complex under analogous conditions, with this complex having 

a slight isotactic bias (Pm = 0.72). In our hands the bimetallic 

complex produced PLA with a higher isotactic enchainment with 

Pm  0.8 (entries 21 and 22). Al2(7)Me4 is significantly more 

active than the complexes based on 1,5-naphthlene backbone 

(entry 19 vs 21) and this complex is active at room temperature 

(entry 22) which is relatively unusual for aluminium complexes. 

Analysis of the microstructure of the PLA showed a small 

contribution from the sis tetrad and the sii, iis and isi are 

approximately 1:1:1 indicating that a chain end control 

mechanism is operative, which would lead to a stereoblock 

structure to the PLA.19 It is also interesting to note that L-AlMe2 

systems rarely afford PLA with any significant degree of 

tacticity.4f, 12, 18, 20 When the order with respect to Al2(7)Me4 was 

investigated at 100(200 or 400):1:2 (at constant [LA]) the order 

was observed to be less than 1 with respect to initiator. Such 

non-integer orders are rare but not uncommon.21 Moreover, to 

our surprise the rate was slower with 50:1:2 (ca. 12  10--3 min-
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1 at the same concentration of monomer). This illustrates a clear 

difference between the two sets of bimetallic complexes.   

Complexes Al2(4/7)Me4 were also trialled for the ROP of -

caprolactone with a Monomer:Init:BnOH ratio of 100:1:2 at 

80 C in toluene 20 mins was sufficient to achieve high 

conversion {Al2(4)Me4 99%, Mn = 8,800, PDI = 1.25 Al2(7)Me4 

99%, Mn = 11,000, PDI = 1.64). Al2(4)Me4 was also active at 40 C 

(C6D5CD3)}One  at the same ratio the apparent-first order rate 

constant was 0.025 min-1, an order of magnitude faster than the 

for the ROP of rac-LA. Due to the efficiency of Al2(4)Me4 for the 

ROP of both monomers attempts were made to copolymerise 

rac-LA with -caprolactone, Table 2. 

 

TABLE 2 HERE (DOUBLE COLUMN) 

Please see separate file I cannot work out how to get a 

double page Table in!!! 

 

From 1H NMR analysis it is evident that when LA and CL are co-

polymerised Al2(4)Me4 has preference for LA over CL, even 

though the homopolymerisation is significantly faster for CL 

than LA. One possible explanation might be that the rate of 

insertion of a CL unit into a growing LA-chain is slower than a LA 

into a growing CL-chain and the rate of initiation is faster for LA 

than CL, which may be related to the fact that LA has two 

coordinating ester groups whereas CL only has one. To 

investigate this further the co-polymerisation (50:50 and 75:25 

CL:LA) has been monitored via NMR spectroscopy, see ESI 

figures SI16 and SI17, using Al2(4)Me4 at 100:1:2 

(monomer:catalyst:BnOH). In both cases LA was polymerised 

faster than CL, even at the higher CL ratio, indicating a 

preference for LA over CL when both are present. For the 50:50 

isolated copolymers it is evident from analysis of the 1H NMR 

spectra there is a high level of hetero-binding in the polymers, 

indicating that they are not mixtures of homopolymers or block 

copolymers. It has been shown that it is possible to probe the 

microstructure of copolymers and to determine the average 

block length of each monomer by NMR spectroscopic 

methods.22 If a 50:50 ratio of each monomer was utilised then 

the average block length for each unit is ca. 2-3. This is indicative 

of random copolymers being produced, as an average block 

length of 2 is indicative of random copolymers.22-23 An 

explanation for this could be related to high levels of 

transesterification randomising monomers with the polymer. 

This is further exemplified by 90:10 LA:CL copolymerisation, 

which has a low level of CL-CL linkages. The same is seen for LA-

LA linkages when the ratio is reversed.   

Conclusions 

In conclusion a series of Al(III) complexes have been prepared 

and fully characterised. A comparison between mononuclear 

and dinuclear complexes has shown that when the 1,8-

naphthlene system was utilised isotactic PLA was achieved and 

dramatic enhancement in the rate of polymerisation of rac-LA 

was achieved. This is potentially related to the beneficial 

cooperativity between the two metal centres, which are 

significantly closer in this case. Work in on going 

(computational, further ligand variation) to probe the exact 

reason for this enhancement and the kinetic behaviour of 

Al2(7)Me4. Further, Al2(4)Me4 was utilised for the production of 

PLA-PCL copolymers with random co-polymers being produced 

as a consequence of intermolecular transesterification. 
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Table 1 Polymerisation data using complexes derived from ligands 1-7H2. 

Entry 

 

Initiator [LA]:[I]:BnOH Time/h Con./%a Mn
b PDIb Pm

b kapp (10-3) mins-1 c 

1 Al(1)Me2 50:1:1 3 94 9600 1.26 0.50 6.7 

2 Al(1)Me2 100:1:1 6 97 18650 1.19 0.50 4.1 

3 Al(1)Me2 200:1:1 22 96 37350 1.61 0.52 2.6 

4 Al(1)Me2 300:1:1 24 79 40500 1.21 0.50 - 

5 Al(1)Me2 400:1:1 48 97 90950 1.44 0.50 0.7 

6 Al(1)Me2 200:1:2 20 95 23650 1.37 0.52 - 

7 Al(1)Me2 200:1:4 20 95 12350 1.33 0.52 - 

8 Al(2)Me2 100:1:1 24 92 16800 1.48 0.56 0.6 

9 Al(3)Me2 100:1:1 24 98 18700 1.94 0.55 - 

10 Al2(4)Me4 100:1:2 2 97 6450 1.1 0.50 8.3 

11 Al2(4)Me4 200:1:2 24 98 11700 1.07 0.50 3.8 

12 Al2(4)Me4 400:1:2 24 25 5100 1.05 - - 

13 Al2(4)Me4 100:1:1 2 57 9100 1.08 0.53 9.0 

14 Al2(4)Me4 200:1:1 6 79 34350 1.15 0.49 3.3 

15 Al2(4)Me4 400:1:1 22 93 94750 1.45 0.49 1.4 

16 Al2(4)Me4 100:1:0 24 32 27600 1.20 0.53 - 

17 Al2(4)Me4 200:1:0 24 29 57100 1.12 0.51 - 

18 Al2(4)Me4 400:1:0 24 21 39650 1.16 0.53 - 

19 Al2(5)Me4 100:1:2 18 91 6550 1.2 0.50 1.0 

20 Al2(6)Me4 100:1:2 18 98 6500 1.25 0.50 - 

21 Al2(7)Me4 100:1:2 2 99 5250 1.16 0.75 33 

22 Al2(7)Me4
e 100:1:2 24 86 7000 1.01 0.82 - 

 

All polymerisations have been conducted in toluene at 80 C. a Determined from analysis of the 1H NMR spectrum. b As determined by GPC (THF), using 

polystyrene standards. c As determined from 1H{1H} NMR. d first order rate constant. e Polymerisation performed at 25 C. It is possible to apply a correction 

factor of 0.58 for the Mn values due to the use of polystyrene references. The calculated molecular weight can be determined by the following equation: (144  

LAeq)/BnOHeq + 108.  

 



 

8 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


