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We investigate the magnetic minibands of a heterostructure consisting of bilayer graphene (BLG) and hexagonal
boron nitride (hBN) by numerically diagonalizing a two-band Hamiltonian that describes electrons in BLG in
the presence of a moiré potential. Due to inversion-symmetry breaking characteristic for the moiré potential, the
valley symmetry of the spectrum is broken, but despite this, the zero-energy Landau level in BLG survives, albeit
with reduced degeneracy. In addition, we derive effective models for the low-energy features in the magnetic
minibands and demonstrate the appearance of secondary Dirac points in the valence band, which we confirm
by numerical simulations. Then, we analyze how single-particle gaps in the fractal energy spectrum produce a
sequence of incompressible states observable under a variation of carrier density and magnetic field.
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I. INTRODUCTION

Long-period moiré patterns are characteristic of well-
aligned graphene heterostructures with hBN. They offer an
experimentally-viable route [1–3] to observe fractal magnetic
miniband spectra generic for electrons in two-dimensional
superlattices in strong magnetic fields [4–6]. These fractal
miniband spectra, also known as Hofstadter’s butterflies [7],
reflect the fact that the translational symmetry of a lattice,
suppressed by the presence of a magnetic vector potential in
the electron’s Schrödinger equation, is restricted to magnetic
field values Bp/q = (p/q)φ0/S corresponding to a rational
fraction p/q of magnetic flux quantum φ0 = h/e per unit cell
area S of the lattice [4–6]. The generic features of fractal
magnetic miniband spectra have been observed [1,3,8–11] and
modeled [8,12–18] in monolayer graphene heterostructures
with hBN, where the properties of Dirac electrons at the
conduction/valence band edge allow for a straightforward
interpretation of experimental observations and have also been
studied in slightly misaligned pairs of graphene flakes [19,20].
Modeling of the fractal magnetic miniband spectra of a bilayer
graphene/hBN heterostructure is much more limited [15], even
though one of the first observations of this phenomena was in
this system [2].

In this paper, we study fractal magnetic minibands in bilayer
graphene (BLG) subject to a moiré superlattice perturbation
due to an hBN underlay. The low-energy Hofstadter butterfly
spectra of a BLG-hBN heterostructure is dominated by bands
related to the degenerate “zero-energy” Landau level (LL)
states n = 0 and n = 1 of unperturbed BLG [21]. We use a
symmetry-based approach to model the influence of hBN on
electrons in BLG, and we show that the spectra in BLG-hBN
is a superposition of two very different miniband spectra
associated with electrons in opposite valleys (Brillouin zone
corners) of BLG’s band structure: The miniband spectrum
in one valley is only weakly broadened by the superlattice
potential and incorporates one unperturbed n = 0 LL, while
the miniband spectrum in the other valley is widely broadened.
This valley asymmetry arises from spatial inversion symmetry

breaking produced by the fact that the moiré perturbation
only directly affects one of the two BLG layers. Since the
zero energy LL states reside on different layers in opposite
valleys, in one valley they are strongly influenced by the moiré
perturbation, but in the other valley they are not.

These qualitative features agree with the results of the tight-
binding model of Moon and Koshino [15]. Rather than rely on
a specific microscopic model for the superlattice perturbations,
of which there are several [17], we explore the full space of
symmetry-allowed superlattice perturbation. Hence, for zero-
magnetic field, we find that the Dirac point at the conduction-
valence band edge can be either gapless or gapped, and that
a secondary Dirac point can appear in the valence band of
BLG-hBN. In strong magnetic fields, we find a large variety
of forms for the magnetic minibands.

In addition, we characterize different types of moiré
superlattice perturbations including the possibilities that the
perturbation creates potential asymmetry between the carbon
atoms in BLG or introduces a spatial modulation of the
nearest-neighbor carbon-carbon hopping amplitude. Hence,
we find that the Dirac point at the conduction-valence band
edge can be either gapless or gapped, and that a secondary
Dirac point can appear in the valence band of BLG-hBN.

Our model Hamiltonian is presented in Sec. II and its
numerical diagonalization in the presence of a magnetic field,
including methodology, results, and discussion, is described in
Sec. III, where we also derive simple effective Hamiltonians
to describe low-energy features in the magnetic minibands
and, also, an effective Hamiltonian to describe the secondary
Dirac point. In Sec. IV, we show how gaps in the fractal
energy spectrum are manifest as observable incompressible
states under a variation of carrier density and magnetic field.

II. MOIRÉ SUPERLATTICE HAMILTONIAN

A. Four band model

To describe the sublattice (A/B) and bottom/top (1/2) layer
composition of electron states in Bernal-stacked BLG on a
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hBN underlay, we write down their Hamiltonian [21] as a 4×4
matrix,

Ĥξ =
(

v p̂ · σ + M̂ξ γ1(ξσ1 − iσ2)/2
(γ1(ξσ1 − iσ2)/2)† v p̂ · σ

)

M̂ξ = vbu0f+ + ξvbσ3u3f− + ξvσ · [lz×∇(u1f−)]. (1)

Here, we use the basis of Bloch functions (φA1 ,φB1 ,φA2 ,φB2 )
for valley K (ξ = 1), (φB1, − φA1 ,φB2 , − φA2 ) for valley K ′
(ξ = −1), and the 2×2 Pauli matrices σ1,2,3 act in the space
of sublattice components. The term v p̂ · σ on the diagonal
takes into account the electrons’ Dirac spectrum in each
layer where v � 108 cm s−1 [22] is the Dirac velocity, p̂ =
−i∇ + eA, [∇×A]z = −B, σ = (σx,σy), and � = 1, while
γ1 � 0.4 eV [23] is the interlayer hopping between A2 and B1

sublattices.
The term M̂ξ in Eq. (1) accounts for the moiré superlattice

perturbation produced by the hBN substrate [12,13] and is
applied only to the layer of the bilayer which is closest
to the hBN (layer ‘1’) [24]. Within the term M̂ξ , the
functions f± = ∑

m(±1)m+ 1
2 eibm·r , with m = 0,1, . . . ,5, are

written using the shortest nonzero Bragg vectors of the moiré
superlattice bm = R̂mπ/3[1 − (1 + δ)−1 R̂θ ](0, 4π√

3l
), where R̂ϕ

describes anticlockwise rotation by angle ϕ, δ ≈ 1.8% takes
into account the relative lattice mismatch between graphene
and hBN [25], θ is the misalignment angle between the two
hexagonal lattices, and l = 2.46 Å is the lattice constant of
graphene. For θ � 1, b = |bm| ≈ 4π√

3l

√
δ2 + θ2 so that the

energy scale vb obtains its minimum value of vb ≈ 0.35 eV
at θ = 0. The strength of the various terms included in M̂ξ

are controlled by separate dimensionless parameters, ui=0,3,1,
which describe in turn an electrostatic potential which does
not distinguish between the two carbon sublattices (u0), a
sublattice-asymmetric part of the potential (u3), and a spatial
modulation of the nearest-neighbor carbon-carbon hopping
amplitude (u1).

B. Two band model

One of the most interesting features of electrons in BLG
at strong magnetic fields is the degeneracy of two orbital
LLs, with n = 0 and n = 1, which appear at ε = 0, the
edge between the valence and conduction band. The mixing
of these degenerate LLs by the moiré superlattice potential
determines the main features of the lower-energy part of the
magnetic miniband spectrum, shown in Fig. 1 for several
different choices of moiré perturbation parameters ui . These
low-energy electron states in BLG can be described [21] using
a simplified two-band Hamiltonian, which can be obtained
from Eq. (1) by a Schrieffer-Wolf projection onto the basis of
Bloch states residing on A1 and B2 sublattices. For a BLG-hBN
heterostructure, such a projection results in [24]

H̃ξ = −ξ
v2

γ1

(
0 (π̂ †)2

π̂2 0

)
+ M̃ξ ,

M̃1 =
⎛
⎝ vbg+(r) bv2

γ1
h∗

+(r)π̂ †

bv2

γ1
π̂h+(r) v3b

γ 2
1

π̂g−(r)π̂ †

⎞
⎠,

M̃ -1 =
⎛
⎝ v3b

γ 2
1

π̂ †g−(r)π̂ bv2

γ1
π̂ †h−(r)

bv2

γ1
h∗

−(r)π̂ vbg+(r)

⎞
⎠,

g±(r) =
∑
m

eibm.r (u0 ± iu3(−1)m),

h±(r) = ±iu1

∑
m

(−1)meibm.r
(
bx

m ± iby
m

)/
b. (2)

Hamiltonian H̃ξ is written in the basis of the Bloch states
(φA1 ,φB2 ) for the K valley and (φB2 , − φA1 ) for the K ′ valley
using π̂ = p̂x + i p̂y , and bm = (bx

m,b
y
m). This Hamiltonian

is valid for energies |ε| � γ1, corresponding to the range of
densities |ρ| � 1013 cm2. For the θ = 0 heterostructure, this
can be written |ε| � 1.1vb and |ρS| � 19 where S is the area
of the moiré superlattice unit cell.

Examples of the zero magnetic field K-valley band struc-
ture of moiré perturbed BLG with θ = 0 are displayed in
the left panels of Fig. 1. These spectra were calculated
by numerical diagonalization of the Heisenberg matrix con-
structed from Hamiltonian (2) in a basis of unperturbed plane
wave states. The corresponding dispersion in the K ′ valley is
obtained using the relation, εK ′(k) = εK (−k), which follows
from the time-reversal symmetry of Hamiltonians (1) and (2)
for B = 0.

Each panel in Fig. 1 corresponds to a different set of moiré
perturbation parameters {u0,u1,u3}. The choice of parameters
used in the top panel corresponds to the predictions of a
pair of microscopic models, one based on hopping between
graphene carbon atoms and hBN atoms, the other on scattering
of graphene electrons by the quadrupole electric moments
of nitrogen atoms. Interestingly, these two models predict
the same relative values for the moiré potential parameters
[12],

ui=0,1,3 = V {1/2,−δ/
√

δ2 + θ2,−
√

3/2}, (3)

where V depends upon the specific microscopic parameters
used to describe the hBN underlay. Here we take V = 0.063,
chosen to make the moiré perturbation strong enough that
an almost gapless secondary Dirac point (sDP) is produced
between the red and blue minibands in the valence band of
the upper left panel of Fig. 1. Signatures of this feature were
observed experimentally in Ref. [2].

The other panels in Fig. 1 illustrate the influence of each
ui parameter taken individually, and they exemplify three
additional scenarios: for u0,1,3 = {0.15,0,0}, the original Dirac
point is gapped and there is no sDP (in the two valence bands
closest to zero energy); for u0,1,3 = {0,0.15,0}, the original
Dirac point and the sDP are both gapless (and there is a sDP
in the conduction band); for u0,1,3 = {0,0,0.15}, the original
Dirac point is gapless and there is no sDP.

In principle Hamiltonians (1) and (2) should include
the small skew interlayer hopping, γ3 ∼ γ0/10. For zero
magnetic field, this leads to a trigonal warping of the band
structure whose small effect on the miniband edges was
studied in Ref. [24]. While for finite magnetic fields, the
affect of γ3 is expected to be small for magnetic fields
B � 1T [21]. Also, using a single sided back gate to dope
the heterostructure will produce a perpendicular electric field
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FIG. 1. The B = 0 minibands for the labeled superlattice perturbation parameters and θ = 0 (left panels), and the bandwidths of the
magnetic minibands, shown separately for the K ′ and K valleys, for the same superlattice parameters (central panels). A red line is used to
indicate the unperturbed zero energy Landau level in the K ′ valley.

which will reduce/enhance the gap in the zero-energy Dirac
point created by the moiré perturbation but have negligible
effect on the band edges [24].

III. THE BLG-HBN HETEROSTRUCTURE
IN A MAGNETIC FIELD STUDIED USING

THE TWO BAND MODEL

A. Methodology

Here we describe the numerical diagonalization of
Hamiltonian (2) in the presence of a magnetic field. To
simplify this calculation, we take account of the hexagonal

symmetry of the moiré pattern and use a nonorthog-
onal coordinate system [13] r = (x1a1 + x2a2)/a, where
a1 = 4πb1×l̂z/(

√
3b2) and a2 = 4π l̂z×b5/(

√
3b2) are direct

moiré lattice vectors and a = |a1|. In this basis the Lan-
dau gauge has the form A = Bx1(a1 − 2a2)/(

√
3a) which

leads to

π̂ = −2√
3

[∂x1τ + (∂x2 − i
√

3eBx1/2)τ ∗],

where τ = ei2π/3, and e is the electron charge. For the
wave-vector space, this determines k = k1k1 + k2k2 with
k1 = 2b5/(

√
3b) and k2 = 2b1/(

√
3b). Hence, we employ the
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basis set of magnetic oscillator functions,

ϕn(k2) =
√

3eik2x2e
− z2

2 − iz2

2
√

3√
n!2(n+1)λB

√
π
Hn(z),

z =
√

3x1

2λB

− k2λB, λB = 1/
√

|eB|, (4)

π̂ϕn(k2) = −τλ−1
B

√
2nϕn−1(k2),

where Hn(z) are the Hermite polynomials. For free electrons
in BLG, the LL spectrum contains two degenerate states
at ε = 0, and pairs of conduction/valence band states at
εα
n�2 = α

√
n(n − 1)/mλ2

B , α = ±1,

ψ0
n=0,1(k2) = 1√

L
(ϕn(k2),0)T , (5)

ψα
|n|�2(k2) = 1√

2L

(
ϕn(k2)

−ατϕn-2(k2)

)
. (6)

In general, the magnetic vector potential A(x1) breaks the
symmetry of the Hamiltonian with respect to translations of
the moiré superlattice. However, for magnetic flux φ = SB =
p

q
φ0 where p and q are co-prime natural numbers, translational

symmetry is restored. Because of this, we consider a unit cell
of the magnetic superlattice that is q times larger than the unit
cell of the moiré superlattice in both directions (hence its area
is q2 times larger) [4,13]. The magnetic translational group
G = {�X ≡ eieBm1qa

√
3x2/2TX ,X = m1qa1 + m2qa2}, where

TX describes geometrical translations and m1 and m2 are
integers, commutes with Hamiltonian (2) and is isomorphic
to the group of geometrical translation, so that its eigenstates
form a plane wave basis �X |nα

jt (k)〉 = eik·X |nα
jt (k)〉. Bloch

functions |nα
jt (k)〉 exist in the magnetic Brillouin zone which

is q2 times smaller than that of the moiré superlattice [4] and
in which magnetic minibands are q-fold degenerate. For states
with momentum k within this magnetic Brillouin zone,

∣∣nα
jt (k)

〉 = 1√
N

N/2∑
s=-N/2

e-ik1qasψα
n

(
k2 +

√
3

2 b
[
ps + j + t

p

q

])
,

(7)

where N → ∞, and j = 0, . . . ,p − 1 indexes the magnetic
subbands, and t = 0, . . . ,q − 1 indexes the above mentioned
q-fold degeneracy. Without loss of generality, we set t = 0
and omit it, using the notation |nα

j (k)〉, from now on. In
order to obtain the energy dispersion, we calculate the matrix
elements of the perturbation, 〈nα

j (k)|H̃B
ξ |ñα̃

j̃
(k̃)〉, in this basis

and diagonalize the resulting matrix [13].

B. Results and discussion

The main panels of Fig. 1 show the magnetic spectrum of
the BLG-hBN heterostructure for the four choices of moiré
perturbation described above. For small flux, the magnetic
miniband spectra can be traced to the sequence of LLs for
moiré perturbed BLG. Near zero energy, the gap at the
original Dirac point is seen in the magnetic spectra of the
top two panels. The presence or absence of a secondary
Dirac point (depending on the particular parameter set) is also

clearly reflected in the magnetic spectra at small flux at the
corresponding energy. At a higher flux, the LLs broaden and
split, forming a fractal pattern, with the most striking features
around zero energy.

For all parameter sets, the valley symmetry of the spectrum,
preserved in the absence of a magnetic field, is lifted. This
is because the moiré perturbation only affects the layer of
BLG that is adjacent to the hBN and, thus, it breaks inversion
symmetry. In conjunction with time-inversion symmetry
breaking by a magnetic field, this allows the energy spectra for
electrons in valleys K and K ′ to be different [15]. In particular,
note that, in the absence of the perturbation, the distribution
of the wave function among the layers is, for a given LL,
exactly inverted in the two valleys, Eqs. (5) and (6). The
moiré potential affects only the wave function component in
the layer adjacent to hBN, hence breaking the layer symmetry
and leading to valley-asymmetric spectra with a gap.

Importantly, the spectrum in the valley for which the wave
function sits on the layer further from the substrate contains
a zero-energy LL completely decoupled from the rest of the
spectrum (shown as a red line in the K ′ valley in Fig. 1). The
spinor structure Eq. (5) of the two zero-energy states, n = 0,1,
for unperturbed electrons shows that the states in valley K (K ′)
are localized on the bottom (top) graphene layer only [21].
Since the moiré perturbation does not directly influence the
top layer, it does not couple the n = 0 state in the K ′ valley to
any other state and, thus, the n = 0 state in this valley always
persists. This coexistence of a zero-energy LL and a fractal
spectrum of magnetic subbands creates a unique opportunity
to observe the interplay between electron-electron interaction
and Hofstadter’s quantization [10,11,26].

Each of the panels in Fig. 1 display further features of in-
terest. For the parameter set u0,1,3 = {0.032,−0.063,−0.055}
(upper panel), the B = 0 miniband spectrum displays a
slightly gapped sDP found in the first valence miniband,
which produces a sequence of LL including tilted zeroth
LLs, at the corresponding energy and weak magnetic fields
(ε ≈ −0.22 vb φ/φ0 � 0.2). We shall discuss the sDP further
in Sec. III D (a similar feature is present in the lower middle
panel). For potential modulation taken in isolation, u0,1,3 =
{0.15,0,0}, the band structure obeys sixfold rotation symmetry
in each valley (left upper middle panel), in contrast to all
other band structure images which only display symmetry
under threefold rotation. For the spatial modulation of the
carbon-carbon hopping amplitude, u0,1,3 = {0,0.15,0} (lower
middle panels), the spectrum at both zero magnetic field
and finite magnetic field obeys electron-hole symmetry, and
the zeroth LL and first LL of the original Dirac point are
completely degenerate in both valleys (discussed in Sec. III C).
For the sublattice-asymmetric potential, u0,1,3 = {0,0,0.15}
(lower panel), the bands at zero magnetic field are symmetric
under the operation which combines electron-hole reflection
and a rotation by π/3, which is reflected in the electron-hole
symmetry of the magnetic miniband widths in a magnetic
field. Additionally for this perturbation, we find that the
magnetic miniband structure around ε = 0 can form gapless
linear or quadratic Dirac points, which produce sequences of
LLs in the magnetic miniband spectrum, best visible around
φ/φ0 = 2 in the K ′ valley and φ/φ0 = 1 in the K valley
(also see Sec. III C).

045442-4



ZERO-ENERGY MODES AND VALLEY ASYMMETRY IN THE . . . PHYSICAL REVIEW B 94, 045442 (2016)

FIG. 2. The full (kx,ky) dispersion of magnetic minibands ob-
tained by either diagonalizing effective Hamiltonians (8)-(9) (yellow),
or the full numerical diagonalization of Hamiltonian (2) (turquoise).

C. Effective model of low energy features
in the magnetic minibands

The widest magnetic minibands in Fig. 1 occur for the
simple fractions φ/φ0 = 1/q and φ/φ0 = 1/(N + 1/2), with
integer N . Moreover, the surrounding magnetic spectrum at
small deviations of the flux, δφ, is grouped around the LLs
of these wide magnetic bands [27]. For example for u0,1,3 =
{0.032,−0.063,−0.055} and φ/φ0 = 2, a pair of magnetic
minibands in the K valley form a weakly gapped quadratic
Dirac point [lower two turquoise bands in Fig. 2(a)]. These
produce the LL-like features, including a “zero-energy” LL,
for surrounding flux values (clearly seen around φ/φ0 ≈ 2,
ε ≈ −0.05vb in the upper panel of Fig. 2 for the K valley).

Here we produce simple analytical descriptions of the
magnetic minibands around zero energy by truncating the
basis of Bloch functions Eq. (7) to the zeroth and first LL
only. At a simple fraction φ/φ0 = 1/q this yields the effective
Hamiltonians,

HK ′ = 0 ⊕ vbDω(u0f0 − u3f1) ,

HK = vbDu0

(
2f0

√
2bl0f

∗
2√

2bl0f2 (2 − bl0)f0

)

+ vbDu3

(
2f1

√
2bl0f

∗
3√

2bl0f3 (2 − bl0)f1

)
,

f0 = c1 + c2 + (−1)qc12, f1 = −s1 + s2 + (−1)qs12,

f2 = τ ∗s1 − s2 − τ (−1)qs12, f3 = τ ∗c1 + c2 + τ (−1)qc12.

(8)

Here HK/K ′ is used for the K/K ′ valley and written using
the basis (|00

0,0〉,|10
0,0〉). Also l0 = (4π/

√
3b)(φ0/φ), ω =

(
√

3b2v2/4πγ 2
1 )(φ/φ0), c1 = cos(l0k1), c2 = cos(l0k2), c12 =

cos(l0(k1 − k2)), s1 = sin(l0k1), s2 = sin(l0k2), and s12 =
sin(l0(k1 − k2)). The factor D = exp[−(π/

√
3)(φ0/φ)] leads

to rapid broadening for φ < φ0 which slows down for φ > φ0.
In HK ′ the symbol ⊕ denotes a direct sum, where the state
|00

0,0〉 is decoupled from the rest of the spectrum.
Similarly, for simple fractions φ/φ0 = 1/(N + 1/2), with

integer N , the spectrum around zero energy may be described
by effective Hamiltonians

H̃K ′ = 02,2 ⊕ vbDω(u0M1 − u3M2) ,

H̃K = vbDu0

(
2M1

√
2bl0M

†
3√

2bl0M3 (2 − bl0)M1

)

+ vbDu3

(
2M2

√
2bl0M

†
4√

2bl0M4 (2 − bl0)M2

)
, (9)

where the 2×2 block matrices are

M1 =
(

c2 e-il0k1 [c1 − ic12]
eil0k1 [c1 + ic12] −c2

)
,

M2 =
(

s2 −e-il0k1 [s1 + is12]
−eil0k1 [s1 − is12] −s2

)
,

M3 =
( −s2 e-il0k1 [τ ∗s1 − iτ s12]

eil0k1 [τ ∗s1 + iτ s12] s2

)
,

M4 =
(

c2 e-il0k1 [τ ∗c1 + iτc12]
eil0k1 [τ ∗c1 − iτc12] −c2

)
.

Here we use the basis |00
0,0〉,|00

1,0〉,|10
0,0〉,|10

1,0〉 and 02,2 is the
2×2 zero matrix.

Figure 2 shows the excellent agreement between the
result of diagonalizing effective Hamiltonians (8)-(9) (yellow),
with the fully numerical diagonalization of Hamiltonian (2)
(turquoise), for the various choices of magnetic field, val-
ley, and superlattice parameters ui indicated on the figure.
The computed dispersion surfaces display a wide array of
possible forms, including the possibility of gapless linear
or quadratic Dirac points for the superlattice perturbation
ui=0,1,3 = {0,0,0.15}vb. These features are found either in the
K ′ valley whenever p in φ/φ0 = p/q is even [Fig. 2(c)], or in
the K valley whenever p in φ/φ0 = p/q is odd [Fig. 2(d)].

For the perturbation with ui=0,1,3 = {0,0.15,0}vb two zero-
energy LLs of Hamiltonian (2) remain unperturbed (lower
middle panel in Fig. 1), which is reflected in the fact that
all matrix elements in Hamiltonians (8)-(9) vanish. In this
case, Hamiltonian (2) obeys the “electron-hole” symmetry
σz H̃ξ σz = −H̃ξ , which implies that its matrix elements
must obey 〈nα

j (k)|H̃ξ |ñα

j̃
(k)〉 = −〈n-α

j (k)|H̃ξ |ñ-α
j̃

(k)〉. Conse-
quently, the resulting Heisenberg matrix has at least 2p + 1
linearly dependent rows, resulting in zero-energy eigenvalues
which are 2p-fold degenerate. As the u1 only perturbation can
be considered to be a periodic pseudo-magnetic field [12], it
could alternatively be created using an Abrikosov lattice, i.e.,
a vortex structure generated from a type-II superconductor in
a magnetic field. Such a system is also expected to possess
degenerate zero energy eigenvalues [28].
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D. Effective models for the secondary Dirac points

Here we give an analytical description of the almost gapless
sDP found at the corner superlattice Brillouin zone in the
valence band in the top row of Fig. 1. To do this, we note
that zone folding using Bragg vectors bm brings together
three degenerate plane wave states |ζκ〉, |ζ (κ + b2)〉, and
|ζ (κ + b1)〉 to each of the two inequivalent corners of the
moiré Brillouin zone where ζ = ±1, κ = (b4 + b5)/3, and

|ζ p〉 = 1√
2

(
1

−αe2iϕ

)
eiζ p.r , (10)

with ϕ the polar angle of momentum ζ p, and α = ±1 the
band index. Using k · p theory, the vicinity of each moiré

Brillouin zone corner can then be described using an effective
Hamiltonian acting on a three component vector of smoothly
varying envelope functions, written in a basis of the standing
wave states,

�1 = 1√
3

(|ζκ〉 + |ζ (κ + b2)〉 + |ζ (κ + b1)〉),

�2 = 1√
3

(eiπ |ζκ〉 + e-i π
3 |ζ (κ + b2)〉 + ei π

3 |ζ (κ + b1)〉),

�3 = 1√
3

(e-iπ |ζκ〉 + ei π
3 |ζ (κ + b2)〉 + e-i π

3 |ζ (κ + b1)〉).

(11)

Using basis (11) the k · p Hamiltonian for the K valley is
diagonal exactly at the Brillouin zone corner,

ĤK (ζ, p,B) =
⎛
⎝ε̂0 + ε1 ṽπ̂ † ṽπ̂

ṽπ̂ ε̂0 + ε2 −ṽπ̂ †

ṽπ̂ † −ṽπ̂ ε̂0 + ε3

⎞
⎠ + ṽ

⎛
⎜⎝

0 −(η1 + η2 + η3)π̂ † (η2 − η3)π̂

−(η1 + η2 + η3)π̂ 0 −(η1 + 2η3)π̂ †

(η2 − η3)π̂ † −(η1 + 2η3)π̂ 0

⎞
⎟⎠;

ε1 = 2�W, ε2 = −�W +
√

3�W, ε3 = −�W −
√

3�W,

W ≈ vb

2
(u0 + iζu3) + v3b3

6γ 2
1

e
2iπ

3 (u0 − iζu3) + αζv2b2

√
3γ1

e
-2iπ

3 u1, ε̂0 = αv2b2

3γ1
+ αv2

γ1
p̂2, ṽ = ζα

bv2

√
3γ1

,

η3 = 1

2

√
3ζμ1, η1 = vb(

√
3ζμ3 + μ0)

2γ1
, η2 = vb(μ0 − √

3ζμ3)

2γ1
, (12)

where � and � denote the real and imaginary parts. The
corresponding Hamiltonian for the K ′ valley is obtained using
time reversal symmetry, ĤK (ζ, p,B)=Ĥ

∗
K ′ (−ζ,− p,−B).

Figure 3 shows the LL spectra of Hamiltonian (12) using
blue(red) dots for the −κ(κ) corner, where the signature of

FIG. 3. The Landau level spectra of the valence band sec-
ondary Dirac point (sDP), the perturbation u0,1,3 = {0.032, −0.063,

−0.055}, obtained from either Hamiltonian (12) for the κ ′ and κ

corners (red and blue dots) or Hamiltonian (2) (black dots). The
gray solid lines are the Landau levels of the effective Hamiltonian,
Eq. (13), using fitted parameters E0 = −0.22vb, �κ = −0.0057vb,
ṽ = 0.38v, M̄ = −0.97ev/b, and M̃ = −1.45ev/b.

an almost gapless sDP is evident at ε ≈ −0.22vb for the
−κ corner. To calculate this spectra, we diagonalized the
Heisenberg matrix of Hamiltonian (12) in a basis consisting
of the products of magnetic oscillator functions (4) with
the standing waves states (11), ϕn(k2)�i , where we take
i = 1,2,3, and n = 0 · · · nmax, where nmax is sufficiently large
that the resulting spectrum converges. Any eigenstates with
a large weight on high-index magnetic oscillator functions,
ϕn(k2) with n � (bλB)2, are discarded because they violate
the k · p approximation used to construct Hamiltonian (12).
Also, to improve the comparison of its LL spectra with
that of Hamiltonian (2), we calculate the moiré perturbation
correction to the band-edge energies, ε1,2,3, using a higher
order of perturbation theory than is explicit in Eq. (12).

The result of numerical diagonalization of the two band
Hamiltonian (2) is displayed using black dots in Fig. 3. The
two spectra agree well, confirming that Eq. (12) is a good
description of the sDP. Moreover, we can diagonalize Hamil-
tonian (12) for arbitrarily small magnetic fields, where the
size of the Heisenberg matrix of magnetic Bloch functions (7)
needed to diagonalize Hamiltonian (2) becomes prohibitively
large.

The energy of the“zeroth” LL originating from the sDP
in Fig. 3 depends on the magnetic field, due to a nonzero
magnetic momentum generated from the influence of a third
band [residing mainly on �3 for Hamiltonian (12)] that mixes
with the LLs of the first two bands. For the parameter set
u0,1,3 = {0.032,−0.063,−0.055}, this third band is separated
by a large gap from the sDP, which permits the approximate
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two band description for the sDP,

Ĥ
eff
sDP = E0 + �κ

2
σ3 + ṽ p̂ · σ − (M̄ + M̃σ3)B, (13)

where the parameters for the energy shift E0, gap �κ , effective
velocity ṽ, and magnetic momentums M and M̃ can be fitted to
the result of numerically diagonalizing Eq. (2). Such a fitting
is illustrated in Fig. 3 using the gray lines and produces the
best accuracy for low indexed LLs.

IV. MAGNETIC MINIBAND SPECTRUM AND
COMPRESSIBILITY OF 2D ELECTRON LIQUID

IN BLG-HBN HETEROSTRUCTURES

Figure 4 shows the maps of incompressible states for each
parameter set in Fig. 1, created by filling the corresponding
magnetic miniband spectrum with electrons. A larger gap is
depicted with a darker color, resulting in lines, the gradient of
which corresponds to the filling factor, ν = φ/(ρSφ0). For the
regions shown in white, the gap is negligibly small as a result of
incomplete filling of a magnetic miniband, each of which can
accommodate a density δρ = 1/(πpλ2

B) of electrons (includ-
ing spin degeneracy). In contrast, the unperturbed zero-energy
LL present in the K ′ valley accommodates electron density
of δρ0 = 1/(πλ2

B), creating a large gapless region portrayed
in gray. Because of its large electron capacity at exactly zero
energy, the presence of this zero-energy mode should be clearly
visible in capacitance measurements. Electron-hole symmetry
is displayed in the plots for u0,1,3 = {0,0.15,0} (lower left),
and u0,1,3 = {0,0,0.15} (lower right), whereas it is absent in
the upper two plots.

Some of the largest gaps in the magnetic spectrum plots
(Fig. 1) occur between the LLs of the original zero-energy
Dirac point, which are depicted in Fig. 4 as dark lines
fanning out from ρ = 0, B = 0. For an unperturbed graphene
bilayer these lines would have gradients ν = ±4,±8,±12.
For superlattice perturbed BLG the possible gap at zero energy
(upper two panels of Fig. 1) produces the additional filling
factor lines with ν = 0 (traced to ρ = 0, B = 0 in the upper
two panels of Fig. 4), while the broadening of LLs into
magnetic minibands and the lifting of valley degeneracy can
result in the closing of gaps away from ρ = 0, B = 0.

Further sequences of gaps are traced to LLs formed around
the B = 0 miniband edges and in particular the secondary
Dirac points present for some realizations of the moiré
superlattice. For example, the ν = ±2 filling factor lines traced
to ρS = −4, B = 0 in the upper panel of Fig. 4 are produced
by gaps around the LLs of the valence band secondary Dirac
point in the upper panel of Fig. 1. However, the differing
magnetic moments for the two valleys mean that gaps in one
valley become obscured by bands in the other so that the filling
factor lines disappear after φ/φ0 ∼ 0.25.

Other gaps are formed around the weakly broadened
LLs traced to wide magnetic minibands in small deviations
of the magnetic flux (φ = pφ/q + δφ). Such LLs produce
sequences of gaps with the gradient changing by �ν = 2q

FIG. 4. The evolution of energy gaps in the magnetic miniband
spectrum as a function of density and magnetic flux, calculated for the
same parameters as Fig. 1. Larger gaps are shown using a darker color,
white represents a vanishing gap, and gray represents the particular
gapless states associated with the zero-energy LL.
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each time a LL is crossed (the factor 2 counts spin degeneracy).
For example, the gaps fanning out from ρS = −6, φ/φ0 = 2
in the upper panel of Fig. 4 are formed around the LLs of
the lower two magnetic bands displayed in Fig. 2(a) (also see
upper panel of Fig. 1).

Many of the largest gaps in the magnetic spectrum plots
(Fig. 1) occur between the zeroth and first LLs of Dirac points
(whether original or secondary). In the map of incompressible
states, these large gaps are manifest as a solid blue line, which
intersect the B = 0 axis at a density ρS = 4m, where m = 0
for the main Dirac point or m = ±1 for an sDP at the edge of
the first conduction/valence miniband. For example, there is a
(gapped) sDP in the valence band of the magnetic spectrum
for the moiré perturbation u0,1,3 = {0.032,−0.063,−0.055}
(upper panel in Fig. 1). In the upper panel of Fig. 4, the gap
between the two zeroth LLs of this sDP is represented as a blue
vertical line, which starts from (ρS = −4, B = 0), whereas the
two gaps between the zeroth and first LLs are shown as two
tilted blue lines, with gradients of ±2.

V. CONCLUSIONS

In summary, we have shown that the presence of the
hBN substrate lifts the valley degeneracy of bilayer graphene,
producing different magnetic Hofstadter’s butterflies in each
valley. The zero-energy Landau level located on the layer fur-

thest from the hBN substrate remains unaffected by the moiré
perturbation, which makes the BLG/hBN spectrum unique in
comparison to other known magnetic spectra, for which all
Landau levels split into subbands. We investigated the influ-
ence of different possible characteristics of moiré perturbation
including an electrostatic potential which does not distinguish
between the two carbon sublattices, a sublattice-asymmetric
part of the potential, and a spatial modulation of the nearest-
neighbor carbon-carbon hopping amplitude, and we identified
how they give rise to different features in the electronic spectra
including gapped or overlapping bands, or bands connected by
a secondary Dirac point. In addition to determining the fractal
electronic spectra by numerical diagonalization of a model
Hamiltonian, we also derived simple effective Hamiltonians to
describe low-energy features in the magnetic minibands and
to describe the secondary Dirac point. Finally, we showed how
gaps in the fractal energy spectrum lead to the formation of
incompressible states that may be observed under a variation
of carrier density and magnetic field.
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