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Abstract: Electrical Capacitance Tomography (ECT) is an imaging technology used to 

reconstruct the permittivity distribution within the sensing region. So far ECT was primarly 

used to image non-conductive media only. This is because if the conductivity of the imaged 

object is high, the capacitance measuring circuit will be almost shortened by the conductivity 

path and a clear image cannot be produced using the standard image reconstruction 

approaches. This paper tackles the problem of imaging metalic samples using conventional 

ECT systems by investigating  the two main aspects of image reconstruction algorithms, namely 

the forward problem and the inverse problem. For the forward problem, two different methods 

to model the region of high conductivity in ECT is presented. On the other hand, for the inverse 

problem, three different algorithms to reconstruct the high contrast images are examined. The 

first two methods which are linear single step Tikhonov method and iterative Total Variation 

regularization method use two sets of ECT data to reconstruct the image in time difference 

mode. The third method, namely Level Set method, uses absulute ECT measurments and was 

developed using matalic forward model. The results indicate that the applications of 

conventional ECT systems can be extended to metal samples using the suggested algorithms 

and forward model, especially using level-set algorithm to find the boundary of the metal.  

Keywords: Electrical Capacitance Tomography, metal sample, high conductivity, forward 

model, Total Variation, Level Set  

1 INTRODUCTION 

Electrical Capacitance Tomography (ECT) is a method used for imaging the cross-section of 

an object. It measures the external capacitance of the bounded object in order to determine the 

internal permittivity distribution, which is then used to obtain an image of the object’s interior. 

The first ECT system was developed in the 80s [1] and since then it has been constantly 

enhanced and modified to be adapted in modern applications [2-13]. However, there are some 

challenges that make image reconstruction using ECT system a challenge such as the soft field 

effect where the inhomogeneous generated electric field lines in the region of interest tend to 

spread and become dependent on the physical electrical properties of the material of interest 

(the permittivity). Thus, no distinct border between the pixels can be obtained. The soft field 

effect triggers more challenges to ECT such as ill-conditioning in which a small error in the 

input (capacitance measurements) can result in much larger errors in the solution (permittivity 

distribution), which leads to unstable solutions. Furthermore, the system is underdetermined as 

the number of variables in the system model (number of pixels) is greater than the number of 

equations (number of capacitance measurements). This is because the system hardware is 

limited to a certain number of electrodes, and thus limited number of independent 

measurements, which are much less than the number of pixels used to reconstruct the image. 

In addition, the relationship between the measured capacitance and the permittivity distribution 

is considered nonlinear. However, a linearized model is often used instead. Furthermore, since 

the physical properties of an object depend on both permittivity and conductivity, ECT systems 

are mainly used to image non-conductive media. This is because the conductivity of the 

material will have a great effect on the capacitance measurement sensor. Only when the 
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conductivity of the imaged object is very low, its effect on the ECT system can be ignored. 

However, if the conductivity of the imaged object is high, the capacitance measuring circuit 

will be almost shortened by the conductivity path and a clear image cannot be produced using 

the standard image reconstruction approaches.  This limitation stands on the way of ECT to be 

of more use in the process or medical industries as most of the media encountered are 

conductive. However, ECT systems have other advantages that made this new technology more 

promising for many industrial applications such as being cost effective, non-hazardous, non-

invasive, non-intrusive and fast. 

This paper challenges the above-mentioned limitations by attempting to adapt conventional 

ECT systems to image metallic objects (i.e highly conductive) with high resolution. Different 

from dielectric specimen whose conductivity is negligibly low, metallic material normally is 

of high conductivity (𝛿 > 108 S/m). Any electric field applied through a conductor will force 

the inner free charges to move until the net electric field is zero inside the conductor, i.e., the 

electric potential is the same on any point of the conductor. In ECT, the electrostatic 

equilibrium on metallic materials will create an increment on the measured capacitances. 

Therefore, in [14] a new application of ECT on metallic sample imaging is developed. This 

paper sets out to allow a better understanding of how metallic samples could be imaged using 

conventional ECT device and how state of the art algorithms could enhance this application. It 

has been proposed that ECT could potentially monitor liquid metal flow in metallurgy process. 

From the literature, three reportedly powerful techniques suggested high potential in solving 

our problem (i.e imaging metallic samples using ECT) namely Total Variation regularization 

[30] and Level Set method [26] and the most commonly used Tikhonov method. 

Total variation regularisation was first introduced by [15] and since then it has been mainly 

applied to digital image processing for noise removal [15] and to solve the compressed 

sensing problem (aka sparse sensing) in different applications [29]. Total variation assumes 

that the unknown object is piecewise constant, which allows suppressing noise while 

maintaining sharp edges in the reconstructed image. Total variation has been also used to 

regularize the inverse problem in different tomographic applications [22]. The split Bregman 

formulation has been shown to efficiently solve the constrained total variation problem [22-

23].  

The level set method was first developed in the 1980s by Osher and Setain for modelling the 

front propagation of surfaces under curvature [16]. Santosa [17] then was able to adapt the 

concept of level set to solve inverse problems using two computational approaches. The first 

approach is based on a nonlinear time-dependent partial differential equation (i.e Hamilton-

Jacobi equation). The second approach uses optimization to produce a sequence of level set 

functions that minimize the residual. Other studies were conducted using different types of 

level set techniques for electrical and electromagnetic tomographic shape reconstruction [18, 

19]. 

This paper is divided as follows: section 2 introduces and discusses the forward model of the 

ECT system along with the two suggested forward models for metal imaging. Section 3 

introduces the inverse problem solutions. Section 4 shows and compares the experimental 

results while section 5 gives a discussion about the results. 
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2 THE FORWARD PROBLEM MODELLING 

2.1 Traditional ECT Forward Model 

The ECT mathematical system model can be treated as an electrostatic field problem and hence 

can be modelled by Poisson’s equation (a Laplace’s equation with no free charge) as follow 

𝛁. ( 𝜺 (𝒙, 𝒚)𝜺𝒐 𝛁𝝓(𝒙, 𝒚)) = 𝟎 (1) 

where 휀𝑜 is permittivity of the free space and 휀 (𝑥, 𝑦) is the relative permittivity distribution 

and 𝜙(𝑥, 𝑦) is the 2-dimensional functions of the electrical potential distributions. The 

problem can be discretised by using the Finite Element Method (FEM), such that the mutual 

capacitance 𝐶𝑖𝑗 for n-electrode capacitance system (when electrode 𝑖 is the source and 

electrode 𝑗 is the detector) can be found by 

𝑪𝒊𝒋 = −
𝜺𝒐

𝑽𝒊𝒋
∫ 𝜺 (𝒙, 𝒚) 𝛁𝝓𝒊(𝒙, 𝒚). �̂�

𝚪𝒋
𝒅𝚪𝒋       𝒇𝒐𝒓 (

𝒊 = 𝟏, … , 𝑵 − 𝟏
𝒋 = 𝒊 + 𝟏, … , 𝑵

) (2) 

where 𝜙𝑖 is the electrical potential distribution when electrode 𝑖 is excited, γ𝑗 is the surface of 

the receiving electrode and �̂�  is a unit vector normal to 𝚪𝒋 which is the surface of the receiving 

electrodes. For a 𝑁-electrode ECT system, 𝑀 =
𝑁(𝑁−1)

2
 independent measurements can be 

obtained. 

2.2 Forward modelling for metal samples  

Since a source electrode is energised, the free charges inside the metal start moving by the 

force of electric field. The metal will reach the electrostatic equilibrium in a very short time 

(~10-19s [20]), so the physics of electrostatics used in the ECT forward model can cover the 

features of metal inside the sensor. Within the metal region, the voltage is the same everywhere: 
𝝓𝒑 = 𝝓𝒒  𝑓𝑜𝑟  𝑝, 𝑞 ∈ ω𝑚𝑒𝑡𝑎𝑙 (3) 

𝑝, 𝑞  are any two points on the region of metal, ω𝑚𝑒𝑡𝑎𝑙 . From equation (2), the measured 

capacitance is the surface integration of electric displacement of the sensing electrode. The 

metal performs like a void of electric field/displacement, shortening the distance between the 

source and detector electrodes, i.e., the capacitance will be increased. 
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(a)  (b)  

Figure 1. One dimensional analysis of the same capacitances from two different inclusions 

between a 1d ECT sensor (i.e., a pair of electrodes): (a) a metallic sample of the size 𝑫; (b) a 

dielectric sample of the permittivity of 𝜺𝒙 and size of 𝑫𝒙.  

In [14],  the authors proposed a 1-dimensional (1D) ECT model (shown in Figure 1) to 

demonstrate the increase in capacitance by introducing a dielectric illusion of permittivity of 

휀𝑥 = 𝑘. 휀0, where 𝑘 is its relative permittivity. To match the capacitance of the metal standing 

between the two electrodes, the illusion must be of the size of 𝐷𝑥 =
𝑘

𝑘−1
. 𝐷, where 𝐷 is the size 

of the metal [14]. The 1d analysis implies that the metal in ECT can be potentially imaged as 

a dielectric sample. To make the size of the dielectric illusion close to the metal, 
𝑘

𝑘−1
 must be 

close to 1, i.e.,𝑘 is a big value. In this paper extends this ECT metallic evaluation model from 

1D to 2-dimensional (2D). To validate the implication above, a squared metal of the side length 

of 0.6 unit length (the external radius of the insulation wall is 1 unit length) is presented as 

shown in Figure 2. 

 
Figure 2. A square metallic sample in a 2D ECT sensor with 12 electrodes. 

In first test, i.e., equal potential (EP) model, every point on the region of metal is set as the 

equal potential which follows the real scenario within the sensor. Then in second test, i.e., high 

permittivity (HP) model, the metal is replaced by dielectric material: its relative permittivity is 

set to 𝑘  =1000, so the dimension is almost the same as the metal, due to 
𝑘

𝑘−1
=1.001. The 

simulation results based on fem is presented in Figure 3 
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 When electrode 12 is excited, the two sets of electric potential distribution, 𝜙𝑒𝑝 

and 𝜙ℎ𝑝, from ep and hp models are plotted in (a) and (c).  

 By energising the electrodes in turn, the two sets of 66 mutual capacitances, 𝐶𝑒𝑝 and 

𝐶ℎ𝑝, are obtained and plotted as (b) and (d).  

In Figure 3(e), the colour bar indicates that the difference between potential distributions of 

these two models, 𝜙𝑒𝑝 − 𝜙ℎ𝑝 is very small, as the scale of capacitance is modelled as 10-11 

while the scale of the error is 10-16 . this has been clarified. The points of minimum (blue) and 

maximum (red) electrical potential locate on the two edges of metal facing and far from the 

energised electrode 12. This shows that the electrical potential on the high permittivity region 

is decreasing but in very small rate, while it is no potential change on that region in EP model. 

In Figure 3(f), the difference in the mutual capacitances,  𝐶𝑒𝑝 − 𝐶ℎ𝑝  is 5 orders less of 

magnitude than the 𝐶𝑒𝑝 , which is at noise level for a real measurement. This means the 

capacitance measurements cannot tell the difference between the metal and the dielectric of 

high permittivity of the same size.  

ECT imaging is to reconstruct the permittivity distribution within the sensing region, the 

mutual capacitances is the key input for the process of inverse solver. However, it is not the 

permittivity of the metallic material under test changes the capacitance measurement, but the 

electrostatic equilibrium contributes to the change, due to high conductivity. The HP model is 

approximate model to compensate the zero electric field on that region of metal, meanwhile 

this approximation convert the problem of imaging metal to dielectric of high permittivity. 

Therefore, applying the inverse solvers for high contrast problems will result in a promising 

reconstruction for the metallic material. To bridge the changes in permittivity distribution and 

the changes in capacitance measurements, a sensitivity matrix,  𝐽  is built in following equation 

[21] 

𝑱 =
𝝏𝑪𝒊𝒋

𝝏𝓔(𝒙, 𝒚)
= − ∫ 𝛁𝝓𝒊(𝒙, 𝒚) ∙ 𝛁𝝓𝒋(𝒙, 𝒚)𝒅𝛀

𝛀

 (4) 
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 Electric potential distribution  

(electrode 12 is energised) 

Mutual capacitances 
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(c) 𝝓𝒉𝒑 

 
(d)  𝑪𝒉𝒑 
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(e) 𝝓𝒆𝒑 − 𝝓𝒉𝒑 

 
(f) 𝑪𝒆𝒑 − 𝑪𝒉𝒑 

Figure 3. Electric potential distribution of a square metal in ECT (marked by the white dashed 

lines) and mutual capacitances. 

3 THE INVERSION METHODS 

3.1 Regularization methods for linear measurements 

The image reconstruction in ECT is an inverse problem, which is an ill-posed, ill-conditioned 

and nonlinear problem. Therefore, approximation methods based on linearization are usually 

used for ECT to solve the inverse problem. A possible general formulation for the regularized 
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inverse problem in the form of unconstrained optimization problem is to find the permittivity 

changes, ∆휀, to minimize the following function: 

‖𝑱∆𝜺 − 𝒎‖𝟐
𝟐 + 𝜸𝑹𝒆𝒈(∆𝜺) (5) 

where 𝑚 = 𝐶 − 𝐶0, is the capacitance change between measurement of test, 𝐶, and a 

background measurement, 𝐶0,  𝛾 is the regularisation factor, and  𝑅𝑒𝑔(∆휀) is the stabilizing 

function commonly selected as 

𝑹𝒆𝒈(∆𝜺) = ‖𝑳𝒌(∆𝜺 − ∆𝜺̅̅̅̅ )‖𝒏 
𝒏                          ∞ ≥ 𝒏 ≥ 𝟏 (6) 

where 𝐿𝑘  is the regularisation matrix, which can be any kind of lowpass filters, such as 

weighted Fourier operator, a derivative operator of order k, a wavelet transform or a finite 

difference operator of the kth derivative in which its dimensions depends on the order of 

derivative and the boundary conditions.  ∆휀 is the estimated solution of permittivity change 

from the same reference point. 

3.1.1 Tikhonov regularization (single-step linear method) 

One of the most commonly used regularization methods for linear ill-posed inverse problems 

is the Tikhonov regularization, which has been efficiently applied in numerous fields, with 

satisfactory numerical performances. As mentioned before, if a problem is ill-posed and ill-

conditioned, like the sensitivity matrix J, the solution will be non-unique and the computing 

algorithm will most probably be mathematically unstable, and hence it requires to be 

regularized before numerical treatment. Tikhonov regularization tries to balance the stability 

of the solution with its accuracy. 

In equation (6) if n=2, and 𝐿𝑘 is a finite difference operator with 𝑘 ≥ 0, then the regularization 

is called Tikhonov regularization and is given by 

𝑹𝒆𝒈(∆𝜺)𝑻𝑲 = ‖𝑳𝒌(∆𝜺 −  ∆𝜺̅̅̅̅ )‖𝟐 
𝟐  (7) 

Consequently, the regularized solution ∆휀̂ using tikhonov regularization is found by 

minimizing the objective functional 

𝒂𝒓𝒈 𝒎𝒊𝒏
∆𝝐

𝒈(∆𝜺) = ‖𝑱∆𝜺 − 𝒎‖𝟐
𝟐 +  𝜸 ‖𝑳𝒌(∆𝜺 − ∆𝜺̅̅̅̅ )‖𝟐 

𝟐  (8) 

By solving the unconstrained optimization problem (8), an explicit solution, denoted by ∆휀̂, is 

given by: 

∆�̂� = (𝑱𝑻𝑱 +  𝜸 𝑳𝑻𝑳)−𝟏𝑱𝑻𝒎 (9) 

 

However, it was reported that Tikhonov regularisation does not permit sharp edges when 𝑘 >
0 and only results in smooth edges and oscillations. Therefore, the simplest yet most used form 

of Tikhonov regularisation is the standard Tikhonov regularisation, which takes  ∆휀̅̅ ̅ = 0 in 

equation (6) and k=0, giving 𝐿0 = 𝐼, where 𝐼 is the identity matrix. A Laplacian operator is 

used for regularization matrix L in this study. 

 

3.1.2 Total Variation (TV) (iterative linear method) 

In equation (6) if ∆휀̅̅ ̅ = 0, n=1, and 𝐿𝑘 is usually a discrete gradient with 𝑘 = 1, then the 

regularisation is called total variation regularisation and is given by: 
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𝑅𝑒𝑔(∆휀)𝑇𝑉 = ‖∇(∆휀)‖1  (10) 

Equation (10) is equivalent of taking the integral of the absolute gradient of ∆휀 over the entire 

sensing domain 𝛀: 

𝑹𝒆𝒈(∆𝜺)𝑻𝑽 =  ∫ |𝛁(∆𝜺)| 𝒅𝛀
𝛀

 (11) 

When ∆휀̅̅ ̅ = 0, n=1. 

This regularisation technique has advantages over other smoothing techniques such as 

Tikhonov regularisation, Gaussian smoothing or median filtering, which reduce noise but also 

smoothen the edges since they cannot reconstruct the jump changes in permittivity at interfaces. 

By contrast, total variation regularisation removes noise, even in low signal to noise ratios, 

while keeping important detail such as edges especially when jump changes in permittivity are 

present. Also, since TV regularisation takes advantage of the sparse structure of the sensitivity 

matrix, it is considered faster and consumes less amount of memory than standard dense-matrix 

based algorithms. On the other hand, TV is only capable of restoring functions that are 

piecewise constant. Moreover, not all underdetermined systems of linear equations have a 

sparse solution, and therefore total variation cannot be applied for any type of underdetermined 

linear systems. 

 

There are different varieties for TV algorithms and in this study we use a split bregman TV. 

Applying the 𝑙1 − 𝑛𝑜𝑟𝑚 regularisation method means adding a penalty total variation 

regularisation term 𝐺𝑇𝑉  (∆휀) to equation (5) 

 
𝑮𝑻𝑽 (∆𝜺)  = 𝜶‖∆𝜺‖𝟏 (12) 

 

Where 𝛼 is the regularisation parameter and ‖∙‖1 is the 𝑙1 − 𝑛𝑜𝑟𝑚. The iterative method is 

based on the bregman distance [15]. For a given convex function 𝐶 (𝑥), the bregman distance 

between 𝑎 and 𝑏 can be defined as 
𝐷𝐹 (𝑎, 𝑏) = 𝐶 (𝑎) − 𝐶 (𝑏)− < 𝑠, 𝑎 − 𝑏 > (13) 

 

Where 𝑠 is the sub gradient of 𝐶 at 𝑏, and <, > denotes the scalar product.  

Assuming ∆휀 is the optimal solution and ∆휀𝑘 is the iterative solution, and then minimizing the 

bregman distance between ∆휀 and ∆휀𝑘  can be used to find the optimal solution. Setting 

𝐶 (𝑥) = 𝑅 (𝑥) be the total variation function in this case. The definition of total variation 

regularisation is as follows: given a differentiable function 𝑓 defined on a bounded domain 𝛀, 

the total variation 

𝑹(𝒇) = ∫ |𝛁𝒇 (𝒙)|𝒅𝒙 = ‖𝛁𝒇‖𝟏
𝛀

 (14) 

 

Where ‖∇𝑓‖1 is the 𝑙1 − 𝑛𝑜𝑟𝑚 of the gradient of 𝑓 and can be calculated as the sum of the 

absolute values over the domain of the function 𝑓. 

Then the Bregman iterative algorithm can be expressed as following 

∆𝜺𝒌+𝟏 = 𝐌𝐢𝐧 𝑫𝑹 (∆𝜺, ∆𝜺𝒌) +
𝝀

𝟐
‖𝑱∆𝜺 − 𝒎‖𝟐 (15) 
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Where 𝝀 is the regularisation parameter. After integrating equation (14) and (15), the sub 

gradient of the total variation function at the (𝑘 + 1) 𝑡ℎ-iteration  

 

𝑠𝑘+1 = 𝑠𝑘 − 𝜆𝐽𝑇(𝐽∆휀𝑘+1 − 𝑚) (16) 

 

Equation (15) and (16) are the basic formulation of Bregman iterative algorithm and they can 

be simplified to [11]  

∆휀𝑘+1 = Argmin{ 𝑅 (∆휀) +
𝜆

2
‖𝐽∆휀 − (𝑚)𝑘‖

2

} (17) 

 

(𝑚)𝑘+1 = (𝑚)𝑘 + 𝑚 − 𝐽∆휀𝑘+1 (18) 

 

The Bregman iterative algorithm has several advantages over traditional penalty function. For 

example, the Bregman iteration converges very quickly when applied to some functions, 

especially for problems involving 𝑙1 − 𝑛𝑜𝑟𝑚. Based on the bregman iterative algorithm, split 

bregman methods can extend the utility of the bregman iteration to the minimizations of more 

general 𝑙1 − 𝑛𝑜𝑟𝑚 regularisation. 

 

The split Bregman iteration method is introduced as follows: an auxiliary variable 𝑑 which 

aims to be optimised to represent (𝑑 =  ∆휀) can be used to transfer equation (5) to a 

constrained optimization problem 

𝒙𝜶 = 𝒂𝒓𝒈𝒎𝒊𝒏∆𝜺

𝟏

𝟐
‖𝑱∆𝜺 − 𝒎‖𝟐 + 𝜶‖𝒅‖𝟏 (19) 

 

To solve this problem, the corresponding unconstrained optimization problem of equation 

(19)[16] is  

𝑥𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜀

1

2
‖𝐽∆휀 − 𝑚‖2 + 𝛼‖𝑑‖1 +

𝛽

2
‖𝑑 − ∆휀‖2 (20) 

 

Where 𝛽 > 0 is the split parameter. After applying the bregman iteration method that shown 

in equation (17) and (18), the solution of equation (20) can be obtained as following 

(∆휀𝑘+1, 𝑑𝑘+1) = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜀,𝑑

1

2
‖𝐽∆휀 − 𝑚‖2 + 𝛼‖𝑑‖1 +

𝛽

2
‖𝑑 − ∆휀 − 𝑏𝑑

𝑘‖
2

 (21) 

 

𝑏𝑑
𝑘+1 = 𝑏𝑑

𝑘 + ∆휀𝑘+1 − 𝑑𝑘+1 (22) 

 

Then minimizing equation (21) and (22) can be achieved by minimizing ∆휀 and 𝑑 separately 

as following [22-24]: 

 ∆휀𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜀
1

2
‖𝐽∆휀 − 𝑚‖2 +

𝛽

2
‖𝑑 − ∆휀 − 𝑏𝑑

𝑘‖
2
 

 𝑑𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑑𝛼‖𝑑‖1 +
𝛽

2
‖𝑑 − ∆휀𝑘+1 − 𝑏𝑑

𝑘‖
2
 

 𝑏𝑑
𝑘+1 = 𝑏𝑑

𝑘 + ∆휀𝑘+1 − 𝑑𝑘+1 

 

3.2 Level Set method (nonlinear method) 

Instead of finding the internal permittivity value ℰ𝑖𝑛𝑡  of an inclusion, the level set technique is 

capable of representing boundaries of different inclusions by the zero level set of a predefined 

“level set function” 𝜓 which can be one or higher dimensional function. Through updating this 

level set function the reconstructed shapes can move accordingly towards to correct shape. For 
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a 2-dimentional problem, suppose 𝐷 is the inclusion of interest. Subsequently the boundary of 

the inclusion 𝜕𝐷 will be the interface between the two materials and is represented by the zero 

level set of the function 𝜓 as 

𝝏𝑫 = {𝒓 ∶  𝝍(𝒓) = 𝟎} (23) 

Therefore, the permittivity at each point, 휀 (𝑟) can be represented in terms of the level set 

function as 

𝜺 (𝒓) = {
𝓔𝒊𝒏𝒕 

𝓔𝒆𝒙𝒕

𝒇𝒐𝒓 {𝒓 ∶  𝝍(𝒓) < 𝟎}

𝒇𝒐𝒓 {𝒓 ∶  𝝍(𝒓) > 𝟎}
 (24) 

Consequently, the capacitance data can be defined as a function of the level set function 𝐶 =
𝐹 (𝜓(휀 (𝑟))). 

At the first iteration, the level set function 𝜓 is given as a priori assumption and in later 

iterations it is updated in such a way that reduces a given cost function in order to move the 

boundaries towards the correct solution. The initial guess of 𝜓 can be any kind of function, 

though the distance function 𝜓𝑘 = −𝑑𝑖𝑠𝑡(𝜕𝐷) is commonly used. A circular inclusion was 

chosen to be the initial guess for the level set function. Different optimization techniques can 

be used in order to find the updates of the level set function 𝜓. A modified optimization 

approach based on the gauss-newton method was selected to derive the updates of 𝜓  by 

minimizing the following objective functional 𝑔(휀) 

 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝝍

𝒈(𝝍) = ‖𝑭(𝝍(𝜺 (𝒓))) − 𝑪‖𝟐
𝟐 +  𝜸𝑹𝒆𝒈(𝝍(𝜺 (𝒓)) (25) 

The argument in the above generalized equation can be fixed according to the requirements of 

the solution. 𝛾 >0 is the regularization parameter, which can be tuned using different 

mathematical techniques and 𝑅𝑒𝑔(𝜓(휀 (𝑟)) is the regularization term, which is an arbitrary 

functional that can take different forms depending on the regularization method applied [25-

27]. A good advantage of the level set method is that the regularization term does not have 

much effect on the problem, which makes it better posed. By using a modified gauss-newton 

approach for minimizing 𝑔(𝜓)in (25)(25), the following equation is derived for the level set 

evolution: 

𝝍 (𝜺)𝒌+𝟏 = 𝝍 (𝜺)𝒌 + 𝝃𝒌(𝑩𝑻,𝒌𝑩𝒌+𝛾𝒌𝑳𝑻𝑳)−𝟏𝑩𝑻,𝒌(𝑭(𝝍 (𝜺)𝒌) − 𝑪) (26) 

With 𝐵 = 𝑆𝐾 and  𝐾 = 𝑐𝜒  

In (26), 𝜉 is the step size parameter which is the magnitude of change in shape per iteration. In 

this paper both 𝜉 and 𝛾 were chosen empirically and were held constant for all iterations. B is 

the narrowband Jacobian matrix of only those few elements adjoining 𝜕𝐷 . Here  𝑆  is the 

sensitivity matrix for all the elements of the FEM mesh. 𝐾  is the discretised form of 휀 =
𝜑 (𝜓(𝑟)), which comprises the indicator function 𝜒 of a small narrowband of half width an 

FEM element centred at 𝜕𝐷 and a normalization constant 𝑐. Lastly, L is the regularization 

matrix, in this case   𝐿𝑇𝐿 = 𝐼 is used. 

4 EXPERIMENTAL RESULTS 

Figure 4 illustrates a typical ECT system, which consists mainly of three subsystems; the 

capacitance sensor, data acquisition unit and computer unit. Our capacitance measurement unit 

is PTL300E, which is a commercial product from process tomography LTD [28]. The signal 

frequency of the measurement system is 1.25 MHz, i.e., the period of switching is 0.8μs. This 

means that it provides enough time for the conductor to reach the electrostatic equilibrium [20]. 

The effective range of capacitance measurement is from 0.1 ff to 2.0 pf. The sensor consists of 

12 electrodes. Figure 5 shows the cross-section of the 12-electrode ECT sensor used in our 
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experiment. The internal radius of the tank is R1=9.5cm the external is R2=10cm. Each 

electrode in the width of 4.5cm is evenly distributed on the periphery. 

 

 

  

Figure 4. A typical ECT system 
Figure 5. A cross-sectional view of the 12-

electrode ECT sensor 

 

Two types of sample are used in this experiment: sample 1 is a rectangular metal of size 8.2cm 

x7.5cm while sample 2 is a circular pipe with an external diameter of 6.3cm. In test 1 and 2 the 

rectangular metal is placed in the centre while in test 3, 4 and 5,  one then two then three pipes 

are used respectevly.  The proposed  TV and LS algorithms are applied to reconstruct the 

images and the results are shown in Figure 6 along with the traditional Tikhonov regularization 

image reconstruction.  
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 (a) (b) (c) (d) 

 

 
Figure 6.  Reconstructed images: (a) the experimental setup, (b) the reconstructed shape using the 

standard Tikhonov regularization method, (c) the reconstructed shape using Linear Total Variation 

method, (d) the reconstructed shape using Level Set method. 

The level set algorithm is nonlinear algorithm and in every iteration the Jacobian matrix is 

recalculated. Although the linear methods are working fine the updating sensitivity maps will 

make the reconstruction near to the reality of the fact that the inversion is highly nonlinear here. 

The sensitivity with metallic sample included shows an expected area of zero sensitivity within 

the metal sample, and higher value of the capacitance changes due to short circuit effect of the 

space taken by metal and hence larger capacitance values. 
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Figure 7. Sensitivity map for two opposite electrodes, left: free space, right: metal 

sample of figure 6.2 included in forward model. 

 

 

 

5 DISCUSSIONS  

The objective of this study is to demonstrate the possibility to adopt conventional ECT systems 

to image conductive materials such as metal. Initially the ECT forward model was verified, 

concluding a very large permittivity can be used to represent the metallic samples. From Figure 

6, it can be seen that this objective can be better achieved by the level set method using the 

suggested metallic forward model based on high permittivity, which preserves the edges of 

images better than the TV or Tikhonov regularization methods.  In terms of resolving different 

objects within the reconstructed images, LS method also was the most effective, although TV 

showed good results too compared to the traditional Tikhonov regularization method. 

Regularization parameter of 1e-5 was selected for all Tikhonov results, all three parameters in 

Bregman method was chosen to be 1 and number of iterations to 10, and in level set method 

the number of iterations was 12 and regularization parameter 1e-5.  Tikhonov results depend 

directly on the choice of regularization parameter, while both TV and LS method are more 

robust against these parameters. Although LS method depends on the choice of permittivity 

values for the background and inclusion, this is not a problem for metallic sample imaging as 

any high permittivity value will be a good representation of metallic samples (e.g 4 or above).  

The computational time for a single step Tikhonov algorithm is 1.1 sec, while iterative TV has 

computational time of 2.1 sec for 10 iterations and nonlinear level set method took 5.3 sec for 

12 nonlinear iterations. These are all done in a mesh of 2064 elements. The computational time 

is indicated for comparison purpose, for real time imaging this can be optimised. 

In the level set method, the high-contrast inclusions are incorporated explicitly in the level set 

model without them dominating the entire domain. This makes the level set method more 

suitable for high-contrast image reconstruction with sharp boundaries than traditional 

regularization-based methods, which have the limitation of over-smoothing the reconstructed 

image particularly when a high-contrast inclusion is present. Furthermore, LS method can 

recover the geometry of the unknown interface despite any previous knowledge except for the 

permittivity value of the metal, which can be any arbitrary high value. This can be seen from 

our choice of the initial guess (i.e a circle in the centre of the domain), which does not nearly 

represent the true shape. Still, an accurate image was retrieved even though the initial guess 

was far away from the true shape. 

Another advantage of the suggested level set method is its ability to improve the computational 

cost and the condition number of the discrete inverse problem by reducing the number of 

unknowns compared to other traditional pixel based image reconstruction methods. This can 
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be observed from equation (26) where the inverse problem is solved by using a narrow-band 

method in which only the adjacent pixels are inverted. Furthermore, since the level set method 

requires only absolute ECT data without any reference data, it is considered more robust for 

real-life applications. Based on the proposed forward model there is an infinite large change in 

permittivity, which is a suitable scenario for a binary reconstruction such as level set. Also, 

since TV method showed promising results as well, perhaps curved based regularization could 

be investigated in future enabling better shape recovery in level set reconstruction.  

6 CONCLUSIONS 

In this paper, ECT was used for metallic sample imaging. Due to the electrostatic equilibrium 

of metallic materials within static electric field, the capacitance measurements are increased. 

The proposed HP model of the metal for the forward problem approximates the existence of 

metal and compensates for the measurements very well. Furthermore, the efficiency of non-

iterative linear methods (i.e Tikhonov regularization), TV regularization with linear 

measurements and iterative nonlinear methods (i.e LS) for the image reconstruction is 

investigated. The results demonstrated that both TV and LS methods could be adapted to image 

conductive inclusions such as metal with good resolution. Nevertheless, the produced images 

using LS method could identify sharp interfaces and distinguish multiple metal objects better.  

For the high-contrast inherence of the metal imaging in ECT, level-set algorithm has a very 

suitable application by binarizing the sensing region: set a single high value on the estimated 

region of metal inclusions and a single low value on the background area. Thus, it distinguishes 

multiple metallic objects clearly. For most ECT applications, the recovery of the shape of the 

inclusion is more important than the recovery of the permittivity values of the enclosed 

materials. For such applications, the Level set method can be employed successfully to produce 

good images. However, the time spent for iterative calculation is longer than a single-step 

algorithm, such as Tikhonov regularization.  

The experimental results showed that ECT can image metal as the same as the dielectric 

samples. This indicates that the application of conventional ECT can be extended to metal 

samples, especially using level-set algorithms to find the boundary of the metal. The proposed 

algorithms shows great potential for imaging metal using conventional ECT system, however, 

they are open for enhancement and further development. For instance, the level set method can 

be used to image objects with more than two different conductivity or be used to image 

situations with non-closure interface. Also, since both LS and TV showed great potential for 

metal imaging using traditional ECT, TV can be incorporated in LS as regularization for further 

enhancement.  
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