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Demographic noise can reverse the direction of deterministic selection
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Deterministic evolutionary theory robustly predicts that populations displaying altruistic behav-
iors will be driven to extinction by mutant cheats that absorb common benefits but do not themselves
contribute. Here we show that when demographic stochasticity is accounted for, selection can in
fact act in the reverse direction to that predicted deterministically, instead favoring cooperative
behaviors that appreciably increase the carrying capacity of the population. Populations that exist
in larger numbers experience a selective advantage by being more stochastically robust to invasions
than smaller populations, and this advantage can persist even in the presence of reproductive costs.
We investigate this general effect in the specific context of public goods production and find condi-
tions for stochastic selection reversal leading to the success of public good producers. This insight,
developed here analytically, is missed by both the deterministic analysis as well as standard game
theoretic models that enforce a fixed population size. The effect is found to be amplified by space; in
this scenario we find that selection reversal occurs within biologically reasonable parameter regimes
for microbial populations. Beyond the public good problem, we formulate a general mathematical
framework for models that may exhibit stochastic selection reversal. In this context, we describe a
stochastic analogue to r −K theory, by which small populations can evolve to higher densities in
the absence of disturbance.

Over the past century, mathematical biology has pro-
vided a framework with which to begin to understand
the complexities of evolution. Historically, development
has focused on deterministic models [1]. However, when
it comes to questions of invasion and migration in eco-
logical systems, it is widely acknowledged that stochas-
tic effects may be paramount, since the incoming num-
ber of individuals is typically small. The importance of
demographic (intrinsic) noise has long been argued in
population genetics; it is the driver of genetic drift and
can undermine the effect of selection in small popula-
tions [2, 3]. This concept has also found favor in game
theoretic models of evolution which seek to understand
how apparently altruistic traits can invade and establish
in populations [4]. However, the last decade has seen an
increase in the awareness of some of the more exotic and
counter-intuitive aspects of demographic noise: it has the
capacity to induce cycling of species [5], pattern forma-
tion [6, 7], speciation [8] and spontaneous organization
in systems that do not display such behavior determinis-
tically.

Here we explore the impact of demographic noise on
the direction of selection in interactions between mul-
tiple phenotypes or species. Historically, a key obsta-
cle to progress in this area has been the analytical in-
tractability of multidimensional stochastic models. This
is particularly apparent when trying to investigate prob-
lems related to invasion, where systems are typically far
from equilibrium. A promising avenue of analysis has re-
cently become apparent however through stochastic fast-
variable elimination [9, 10]. If a system consists of pro-
cesses that act over very different timescales, it is often
possible to eliminate fast-modes, assumed to equilibrate
quickly in the multidimensional model, and obtain a re-

duced dimensional description that is amenable to analy-
sis [11]. This approach has been employed multiple times
over the last decade to study a stochastic formulation of
the classical Lotka-Volterra competition model for two
competing phenotypes/species. In [9, 10, 12–14], such
models were analyzed under the assumption that the dy-
namics regulating the total population size (birth, death
and competition) occurred on a much faster timescale
than the change in population composition. In particu-
lar [9, 10, 12, 13] have shown that it is possible for sys-
tems that appear neutral in a deterministic setting to
become non-neutral once stochasticity is included. If the
two phenotypes have equal deterministic fitness, but one
is subject to a larger amount of demographic noise than
the other, then the effect of this noise alone can induce a
selective drift in favor of the phenotype experiencing less
noise. This stems from the fact that it is easier to invade
a noisy population than a stable one; furthermore, the
direction of this induced selection can vary with the sys-
tem’s state [15]. The idea has been further generalized
mathematically in [16].

Here we will show more generally that not only can
stochasticity break deterministic neutrality, but that it
has the capacity to reverse the direction of selection pre-
dicted deterministically. Thus while in a deterministic
setting a certain phenotype will always reach fixation
(and is resistant to invasions), in a stochastic setting its
counterpart can in fact be more likely to invade and fixate
(and less susceptible to invasions). These results gener-
alize recent work on modified Moran and Wright-Fisher
type models [17, 18] to a large class of models consisting
of two phenotypes interacting with their environment.
We begin with the analysis of a prototypical public good
model, which is used to illustrate our analysis. We find
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that stochastic selection reversal can alleviate the public
good production dilemma. We further show how space
can amplify this phenomenon, allowing the reversal of se-
lection to emerge over a greater parameter range. Finally,
we extend the ideas to a more general model framework,
and explore the types of system in which we expect this
behavior to be relevant. In particular we discuss the sim-
ilarities with r −K selection theory [19].

I. PUBLIC GOOD MODEL

It is generally accepted that random events play a
strong role in the evolution of cooperative behavior,
which is deterministically selected against [4]. The
standard formulation of evolutionary game theory in-
volves setting the problem in terms of a modified Moran
model [20, 21]. The Moran model is a population genetic
model first developed as an abstract illustration of the ef-
fect of genetic drift in a haploid population of two pheno-
types; an individual is picked to reproduce with a proba-
bility proportional to their fitness, whilst simultaneously
a second individual is chosen randomly to die [22]. Cou-
pling birth and death events keeps the population size
fixed, which increases the tractability of the system.

The specification of fixed population size is however
restrictive and can be problematic. Most prominently, a
phenotype with increased fitness can be no more abun-
dant in isolation than its ailing counterpart. Additional
difficulties are encountered if one attempts to use sim-
ple game-theoretic models to quantitatively understand
more complex experimental data. While, for example, as-
suming some arbitrary non-linearity in the model’s game
payoff matrix may enable experimental findings to be el-
egantly recapitulated, it is more difficult to justify the
origin of these assumptions on a mechanistic level [23].
In light of such issues, it has been suggested that a more
ecologically grounded take on the dynamics of coopera-
tion might be preferable [24, 25], one in which the pop-
ulation size is not fixed and that is sufficiently detailed
that mechanistic (rather than phenomenological) param-
eters can be inferred experimentally. In the following,
we take such an approach. We begin by considering a
prototypical model of public good production and con-
sumption.

In our model, we consider a phenotype X having the
ability to produce a public good Q that catalyzes its
growth. We wish to capture the stochastic dynamics of
the system. To this end we assume that the system is
described by a set of probability transition rates, which
describe the probability per unit time of each reaction
occurring:

X
bx
−−→←−−
κ/R2

X +X , X +Q
r/R2

−−−→ X +X +Q ,

X
px−→ X +Q , Q

δ−→ ∅ . (1)

In the absence of the public good, the producer pheno-

type X reproduces at a baseline birthrate bx. The pheno-
types encounter each other and the public good at a rate
R−2; the quantity R2 can be interpreted as a measure
of the area (or volume) to which the system is confined.
Death of the phenotype occurs solely due to crowding
effects at rate κ, multiplied by the encounter rate. Phe-
notypes encounter and utilize the public good at a rate
r/R2. We study the case where this reaction is catalytic
(i.e. the public good is conserved) and leads to a pheno-
type reproduction. Examples of catalytic (reusable) pub-
lic goods are the enzyme invertase produced by the yeast
Saccharomyces cerevisiae [26] or the siderophore pyover-
dine produced by the bacterium Pseudomonas aerugi-
nosa [27]. The total rate at which the phenotype repro-
duces is thus increased in the presence of the public good.
The public good itself is produced by the producer phe-
notype at a rate px and decays at a rate δ. Note that
as well as controlling the spatial scale of the well-mixed
system, the magnitude of R will also control the typical
number of individuals in the system, since larger R (more
space) allows the population to grow to greater numbers.
We next introduce a mutant phenotype Y that does not
produce the public good; (i.e. py = 0) consequently, it
has a different baseline birth rate by which we expect to
be at least as high as that of the producer, due to the
non-producers’ reduced metabolic expenditure. Its in-
teractions with the public good are otherwise similar to
those of X (see Eq. (1)).

The state of the system is specified by the discrete
variables nx, ny and nq, the number of each pheno-
type and public good respectively. For the system de-
scribed, we wish to know the probability of being in any
given state at any given time. To answer this, we set
up an infinite set of partial difference equations (one for
each unique state (nx, ny, nq)) that measures the flow
of probability between neighboring states (controlled by
the transitions Eq. (1)). These equations govern the time-
evolution of a probability density function P (nx, ny, nq, t)
(see Eq. (A2)). Such a model is sometimes termed a mi-
croscopic description [28], since it takes account of the dy-
namics of discrete interactions between the system vari-
ables.

Although the probabilistic model is straightforward
to formalize, it is difficult to solve in its entirety. We
apply an approximation that makes the model more
tractable, while maintaining the system’s probabilistic
nature. Such approximations, which assume that the sys-
tem under consideration has a large but finite number of
individuals, are well practiced and understood [28] and
are analogous to the diffusion approximation [22] of pop-
ulation genetics. Assuming that R is large, but finite,
(which implies a large number of individuals in the sys-
tem), we transform the system into the approximately
continuous variables (x, y, q) = (nx, ny, nq)/R

2 and ex-
pand the partial difference equations in 1/R2. This al-
lows us to to express the infinite set of partial differ-
ence equations as a single partial differential equation in
four continuous variables, (x, y, q, t). However, since the
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PDE results from a Taylor expansion, it has infinite or-
der. Truncating the expression after the first term (at
order R−2), one obtains a deterministic approximation
of the dynamics (valid for R → ∞, or equivalently for
infinite population sizes). Since we aim to make the sys-
tem tractable but still retain some stochastic element to
the dynamics, we truncate the expansion after the second
term (at order R−4, see Eq. (A4)). The resulting model
can be conveniently expressed as a set of Itō stochastic
differential equations (SDEs):

ẋ = x [bx + rq − κ(x+ y)] +R−1ηx(t) ,

ẏ = y [by + rq − κ(x+ y)] +R−1ηy(t) , (2)

q̇ = pxx− δq +R−1ηq(t) .

The ηi(t) represent Gaussian white noise terms whose
correlations depend on the state of the system (the noise
is multiplicative). Importantly, because Eq. (2) has been
developed as a rigorous approximation of the underly-
ing stochastic model, Eq. (1), the precise functional form
of the noise can be determined explicitly, rather than
posited on an ad-hoc basis (see Appendix A). Setting
R → ∞, the population size increases with the interac-
tion scale and one recovers the deterministic limit. Since
Eq. (2) is a course-grained approximation of the under-
lying microscopic model but retains an inherent stochas-
ticity, it is often referred to as the mesoscopic limit [29].

First we analyze the dynamics of Eq. (2) in the deter-
ministic, R → ∞ limit. There exist three fixed points,
or equilibria. The first, at the origin, is always unstable.
The remaining fixed points occur when the system only
contains a single phenotype: the producer fixed point,
(x, y, q) = (Kx, 0, pxKx/δ) and the non-producer fixed
point, (x, y, q) = (0,Ky, 0). Thus Kx and Ky are mea-
sures of the phenotypes’ frequency (carrying capacity) in
isolation, with precise forms

Kx =
bxδ

κδ − pxr
, Ky =

by
κ
. (3)

If by > bx then the non-producer fixed point is always
stable while the producer fixed point is always unstable.
However, the non-producer fixed point is only globally
attracting if κδ > rpx. If this condition is not met then
there exist initial conditions for which the producers pro-
duce and process the public good faster than they die
and faster than the public good degrades, resulting in
unbounded exponential growth of the system. This bio-
logically unrealistic behavior comes from the fact that we
have assumed for simplicity that the public good uptake
does not saturate. Since this behavior is unrealistic, we
will work in the regime κδ > rpx for the remainder of
the paper. Finally, we are interested in systems where
the size of the producer population in isolation is larger
than that of the non-producer, Kx > Ky; this is true if
the condition bx > by(1−rpx/δκ) holds. Thus, determin-
istically, a non-producing mutant will always take over a
producer population and, due to the absence of the public
good, it will yield a smaller population at equilibrium.

This deterministic analysis predicts, unsurprisingly,
that a population composed entirely of non-producers is
the only stable state. We next explore the behavior of
the system in Eq. (1) when demographic stochasticity is
considered.

A. Mesoscopic selection reversal

Due to noise, a stochastic system will not be positioned
precisely on deterministic fixed points, but rather it will
fluctuate around them. In the above system, these fluc-
tuations will occur along the y-axis for the non-producer
fixed point while in the absence of non-producers they
will occur in the (x, q) plane for the producer fixed point.
We can define Nx = R2Kx and Ny = R2Ky to be the
mean number of the phenotypes X and Y in isolation in
the respective stationary states. We assume that the non-
producing phenotype has a greater per-capita birth rate
than the producer phenotype, i.e. by > bx, and we intro-
duce a single non-producing mutant into a producer pop-
ulation. While the deterministic theory predicts that the
non-producer should sweep through the population until
it reaches fixation, in the stochastic setting fixation of the
non-producer is by no means guaranteed: there is a high
probability that the single mutant might be lost due to
demographic noise. However, since the non-producer is
deterministically selected for, we might expect the prob-
ability of a non-producer mutant invading and fixating
in a resident producer population to be greater than the
probability of a producer mutant invading and fixating
in a resident non-producer population. We will explore
this question below.

In order to make analytic predictions about the
stochastic model, we need to reduce the complexity of the
system. This can be done if we employ methods based on
the elimination of fast variables [30] to obtain an effec-
tive one-dimensional description of the system dynamics.
To this end, we begin by assuming that the public good
production and decay, px and δ, and the phenotypes’ re-
production and death, bx, by, and κ, occur on a much
faster timescale than the rate of change of population
composition, which is governed by the difference in birth
rates, bx − by. Essentially this assumes that the cost
of public good production is marginal. In the case of
S. cerevisiae, this assumption is supported by empirical
work (see Table S.2). In order to mathematically investi-
gate this timescale-separation we define

bx = b(1− ε) , by = b , (4)

where the parameter ε represents the metabolic cost that
X pays for producing the public good. The parameter
ε now controls the rate of change of population com-
position, and if 1 >> ε, we have our desired timescale
separation in the deterministic system. Because the pa-
rameters Kx, Ky, Nx and Ny depend on ε, we will find

it convenient to define their values when ε = 0 as K
(0)
x ,
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FIG. 1. System dynamics in the phenotype plane. Determin-
istic trajectories shown as gray arrows. Panel (a): Trajecto-
ries rapidly collapse to a SM (black dashed line), before slowly
moving to the non-producing Y fixed-point. Stochastic tra-
jectories (histogram overlaid in orange) remain in the region
of the SM but may fluctuate away from it. Panel (b): Illus-
tration of the origin of noise-induced selection. The orange
ellipse depicts the standard deviation of Gaussian fluctuations
originating at its center. Fluctuations (black dashed arrows)
to points α are equally likely, however when projected back to
the CM (black dashed line) to points β, a bias for producingX
phenotype is observed. Parameters used are px = 9.5× 10−4,
ε = 0.08 in panel (a), ε = 0 in panel (b) and the remaining
parameters are given in Table S.2.

K
(0)
y , N

(0)
x and N

(0)
y respectively. In order to maintain

our assumption that the composition of the phenotype
population changes slowly in the stochastic system, we
additionally require that the noise is small. However
this assumption has already been implicitly made in the
derivation of Eq. (2), where it was assumed that R is
large, and thus R−1, the prefactor for the noise terms, is
small. In order to formalize this, we will find it conve-
nient to assume R−2 ≈ O (ε).

Under the above assumptions, the system features a
separation of timescales. Next, we take advantage of this
to reduce the complexity of the system. Deterministi-
cally, the existence of a set of fast timescales suggests
the existence of a lower-dimensional subspace, the slow
manifold (SM), shown in Fig. 1(a), to which the system
quickly relaxes, and along which it slowly moves, until
it reaches the system’s stable fixed point. This behavior
can be exploited if we assume that the system reaches the
SM instantaneously. We can then describe the dynamics
of the entire system in this lower dimensional space, and
thus reduce the number of variables in our description of
the deterministic system. However, we are interested in
the stochastic dynamics.

The stochastic trajectories initially collapse to the re-
gion around the SM, about which they are confined, but
along which they can move freely until one of the pheno-
types fixates (see Fig. 1(a)). Fluctuations that take the
system off the SM are quickly quashed back to another
point on the SM; however the average position on the
SM to which a fluctuation returns is not necessarily the
same as that from which the fluctuation originated. A

crucial element of the dynamics in this stochastic setting
is that the form of the noise, combined with that of the
trajectories back to the SM, can induce a bias in the dy-
namics along the SM (see Fig. 1(b)). This is the origin
of the stochastic selection reversal that we will explore.
In order to capture this behavior while simultaneously
removing the fast timescales in the stochastic system, we
map all fluctuations off the SM along deterministic tra-
jectories back to the SM [30]. This essentially assumes
that any noisy event that takes the system off the SM is
instantaneously projected back to another point on the
SM.

For clarity, we briefly describe the dynamics when ε =
0. In this case the birth rates of phenotypes X and Y
are identical. Instead of the two non-zero fixed points,
Kx and Ky, found above, the deterministic system now
has a line of fixed points, referred to as a center manifold
(CM) [31]. The CM is identical to the SM in the limit
ε→ 0. It is given by

y =
K

(0)
y

K
(0)
x

(
K(0)
x − x

)
, q =

px
δ
x , (5)

and shown graphically in Fig. 1(b). The separation of
timescales in the system is now at its most pronounced,
since there are strictly no deterministic dynamics along
the CM following the fast transient to the CM. However
the stochastic system still features dynamics along the
CM. Applying the procedure outlined in [30] we arrive
at a description of the stochastic dynamics in a single
variable, the frequency of producers along the CM;

ẋ =
b

R2
x

(
1− x

K
(0)
x

)
F(x) +

1

R
ζ(t) , (6)

where

F(x) = 2

(
K

(0)
x −K(0)

y

(K
(0)
x K

(0)
y )2

)[
K(0)
x K(0)

y +
(
K(0)
x −K(0)

y

)
x
]
.

Here ζ(t) is a Gaussian white noise term with a correla-
tion structure given in Eq. (B10). Together with Eq. (5),
Eq. (6) approximates the dynamics of the entire system.
Note that while Eq. (6) predicts a noise-induced direc-
tional drift along the CM (controlled by F(x)), a de-
terministic analysis predicts no dynamics, since the CM
is by definition a line of fixed points. This directional
drift along the CM results from the projection bias illus-

trated in Fig. 1(b). If px > 0, then K
(0)
x > K

(0)
y , and so

F(x) > 0; thus the public good production by phenotype
X induces a selective pressure that selects for X along
the center manifold.

The origin of the term F(x) in Eq. (6) can be under-
stood more fully by exploring its implications for the
invasion probabilities of X and Y , denoted φx and φy.
These can be straightforwardly calculated since the sys-
tem is one-dimensional (see Appendix C). We find

φx =
1

Ny
, and φy =

1

Nx
, (7)
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FIG. 2. Stochasticity can render non-producers more sus-
ceptible to invasion by producers than vice versa. Plots of
the difference in invasion probabilities between producers X
and non-producers Y as a function of the cost to birth for
production, ε, and good production rate px. The remaining
parameters are taken from Table S.2. Left: analytic results for
a single small patch (see Eq. (9)). The critical cost ε for selec-
tion reversal, Eq. (9), is shown here as the black dashed line.
Right; results from Gillespie simulations [46] of the stochastic
process Eq. (1), averaged over 2000 runs.

where φx > φy so long as px > 0 (see Eq. (3)). The
term F(x) can thus be interpreted as resulting from the
stochastic advantage the producers have at the popu-
lation level from reaching higher carrying capacities in
isolation, which makes them more stochastically robust
to invasion attempts. This result is independent of the
spatial scale R (and therefore population size) so long as
R is finite.

If ε 6= 0, the system does not collapse to the CM, but
rather to the SM. At leading order in ε, the equation
for the SM is given by Eq. (5). Upon removing the fast
dynamics, the effective dynamics of x can now be shown
to take the form (see Eq. (B14))

ẋ = bx

(
1− x

K
(0)
x

)(
1

R2
F(x)− ε

)
+

1

R
ζ(t) , (8)

where ζ(t) and F(x) are the same as in Eq. (6). The
SDE now consists of two components. The deterministic
contribution, governed by ε, exerts a selective pressure
against phenotype X, due to its reduced birth rate. The
stochastic term, F(x) exerts a pressure in favor of pheno-
type X, resulting, as in the case ε = 0 discussed above,
from the producers stochastic robustness to invasions.

Thus, when ε > 0, a trade-off emerges in the stochastic
system between the stochastic advantage to public good
production (due to increased population sizes) and the
deterministic cost producers pay (in terms of birth rates).
If the birth costs are not too high, producers will be se-
lected for, which constitutes a reversal in the direction
of selection from the deterministic prediction. Specifi-

cally, we can calculate the condition on the metabolic
cost that ensures that the producers are fitter than the
non-producers (i.e. φx > φy):

ε <
κ

bR2
log

[
δκ

δκ− pxr

]
. (9)

Whereas for no metabolic cost producers consistently
have a stochastic advantage regardless of typical popula-
tion size (see Eq. (7)), for non-zero production costs, the
population must be sufficiently small that stochastic ef-
fects, governed by R−2, are dominant. Fig. 2 shows that
the theory predicts well the trade-off in the underlying
stochastic model (1).

We have shown that stochastic selection reversal is
more prevalent when R is not large. Meanwhile our an-
alytic results results have been obtained under the as-
sumption that R is large, which allowed us to utilize the
diffusion approximation leading to Eq. (2) and aided the
timescale elimination procedure that yielded Eq. (8). We
therefore expect that although stochastic selection rever-
sal will become more prominent as R is reduced, the
quality of our analytic predictions may suffer. Despite
this caveat, it is the small R regime that is interesting
to us. Small values of R are associated with small pop-
ulation sizes. While it is conceivable that populations of
macro-organisms may consist of a small number of in-
dividuals, this limit is not so pertinent to the study of
micro-organisms. In the next section however, we will
show that by incorporating space, the constraint of small
population size can be relaxed.

II. SPATIAL AMPLIFICATION

In this section we consider a metapopulation on a grid:
each subpopulation (patch) has a small size so that de-
mographic noise continues to be relevant locally, but the
number of subpopulations is large so that the overall pop-
ulation in the system is large. This method of incor-
porating demographic stochasticity into spatial systems
has proved to be successful in the modeling of microbial
populations [7]. We consider a grid of C patches. The
dynamics within each patch are given by the transitions
in Eq. (1), and coupled to the surrounding patches by the
movement of the phenotypes and public good. A patch
will produce migrants at a rate proportional to its den-
sity. Producers X and non-producers Y disperse with
a probability rate m to a surrounding region, while the
public good diffuses into neighboring regions at a rate
D. Once again the diffusion approximation can be ap-
plied to obtain a set of SDEs approximating the system
dynamics;

dxij
dτ

= xij (bx + rqij − κ(xij + yij)) +m (Lx)ij +
ηxij(t)

R
,

dyij
dτ

= yij (by + rqij − κ(xij + yij)) +m (Ly)ij +
ηyij(t)

R
,

dqij
dτ

= pxxij − δq +D (Lq)ij +
ηqij(t)

R
, (10)
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FIG. 3. Left panel: analytic results show that space amplifies
stochastic selection reversal in the low dispersal, zero diffusion
limit. The critical maximum cost ε for selection reversal (see
Eq. (15)) is plotted as black dashed line. Right panel: sim-
ulation results are shown for varied m and D, averaged over
2000 runs. Panel (a) gives results which in the low dispersal,
zero diffusion limit (m = 3.7 × 10−8, D = 0), which match
our theoretical predictions. Panel (b) gives the result with a
set of biologically plausible parameters (m = 3.7× 10−7 and
D = 2.2×10−5 derived in Table S.2). Panel (c) gives results in
a system with high dispersal (m = 3.7×10−5, D = 2.2×10−5),
while panel (d) shows the case of a system with high diffusion
(m = 3.7×10−7 and D = 2.2×10−3). The number of patches
is given by C = 16 and the remaining parameters are listed
in Table S.2.

where ij is the patch on row i and column j. The op-
erator L is the discrete Laplacian operator (Lx)ij =
−4xij + x(i−1)j + x(i+1)j + xi(j−1) + xi(j+1). If by > bx,
the deterministic dynamics predict that the producers
will always go extinct.

First we will discuss some important limit case behav-
ior for this system. In the limit of large dispersal rate m
and diffusion rate D, the stochastic system behaves like
a well-mixed population with a spatial scale cR2 (i.e. the
spatial structure is lost). In this case, as the size of the
spatial system is increased, the effective population size
also increases, and as a consequence selection reversal for
producing phenotypes becomes less likely (see Eq. (9)).

We next consider the low-dispersal, zero diffusion
limit. For sufficiently low dispersal, any incoming mu-
tant will first either fixate or go to extinction locally be-
fore any further dispersal event occurs. Since each dis-
persal/invasion/extinction event resolves quickly, at the
population level, the system behaves like a Moran pro-
cess on a graph [4], with each node representing a patch.
The ‘fitness’ of a patch is the probability that it produces
a migrant, and that that migrant successfully invades a
homogeneous patch of the opposite type, following the
approach used in [17]. Denoting the ‘fitness’ of producing
and non-producing patches by Wx and Wy respectively,

we have

Wx = mNxφx , Wy = mNyφy , (11)

where Ni (i = x, y) is the mean carrying capacity of phe-
notype i in a homogeneous patch, and φi are the invasion
probabilities of a type i mutant in a type j 6= i patch.
The fixation probabilities of a homogeneous patch in a
population of the opposite phenotype can now be calcu-
lated using standard results [4]. Let ρi (i = x, y) denote
the probability that type i takes over the metapopulation
when starting from one patch of type i in a population
otherwise comprised entirely of patches of the opposite
phenotype. Then

ρi =
1− r−1

i

1− r−Ci
, for i = x, y and rx =

Wx

Wy
, ry =

Wy

Wx
.

(12)
If we start from a single invading mutant, the probabil-
ity that it takes over the entire population (i.e. invasion
probability) is the product between the probability that
it takes over its home patch φi, and the probability that
the newly invaded home patch fixates into the metapop-
ulation, ρi:

Πx = φxρx , Πy = φyρy . (13)

In the infinite patch limit (C → ∞), ρx and ρy depend
on rx, the patch fitness ratio defined in Eq. (12). If rx >
1, ρx → 1 − r−1

x and ρy → 0, whereas if rx < 1 the
converse is true. This means that, in the infinite patch,
low dispersal, zero diffusion limit, the condition for the
stochastic reversal of selection is weakened from φx > φy
to

Nxφx > Nyφy . (14)

Spatial structure therefore has the ability to enhance the
stochastic reversal observed in the small well-mixed sys-
tem. An approximate analytic form for the above condi-
tion can be obtained in terms of the original parameters;

ε < 2
κ

bR2
log

[
δκ

δκ− pxr

]
. (15)

Once again, our analytical results are well supported
by simulations (see Fig. 3). The critical production rate
for the invasion probability of producers to exceed that
of non-producers has been decreased, as predicted by
Eqs. (9) and (15). Producers can therefore withstand
higher production costs in spatially structured environ-
ments.

It is important to note that while Eq. (14) depends on
the mean number of producers and non-producers on a
homogeneous patch (Nx and Ny), it is independent of
the number of individuals in the entire metapopulation
in the large C limit. The interaction between these two
spatial scales leads to results that can appear counter-
intuitive. Demographic noise, as we have discussed, leads
to producing patches being ‘more fit’ at the patch level
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FIG. 4. Demographic stochasticity at the local ‘patch’ scale
profoundly alters the system dynamics at the population
level. Results are obtained from stochastic and deterministic
(R→∞) simulations of Eq. (10) with a grid of C = 100×100
patches, px = 1 × 10−4, ε = 0.02, m = 3.7 × 10−5 and the
remaining parameters taken from Table S.2. Initial conditions
are a single producer and non-producer on each patch. The
initial (fast) transient collapse to the SM occurs occurs in the
shaded gray region. Following this, the deterministic system
slowly moves along the slow manifold until the non-producers
fixate, whereas in the stochastic system, the producers expe-
rience a selective pressure in their favor. For dynamics at the
patch level, see Supplementary Information movie S1.

(see Eq. (11)). However, when a large number of patches
is considered, the demographic noise at the metapopu-
lation level is reduced. This leads to the system follow-
ing trajectories that appear deterministic at the level of
the metapopulation, even though the path they follow
is entirely the result of demographic stochasticity at the
within-patch level (see Fig. 4). The movie S1 (see Ap-
pendix H) displays the individual dynamics of the patches
that comprise the trajectory illustrated in Fig. 4.

Away from the small dispersal, zero diffusion limit, the
dramatic selection reversal predicted by the analytical re-
sults is clearly weakened (see Fig. 3). Though selection
reversal is still found across a range of m and D values,
if either dispersal or diffusion are too high, the selection
reversal breaks down. It is therefore important to under-
stand what order of magnitude estimates for the values
of m and D may be biologically reasonable.

A. Insights from S. cerevisiae

In the following section, we will attempt to contextual-
ize our model with reference to a S. cerevisiae yeast sys-
tem, which has been previously identified as a biological
example of a population that features public good pro-
ducers and non-producers. The model we have presented
is general and therefore it could not capture the full bi-
ological detail of this particular system. For instance, it
has been noted that some degree of privatization of the

public good occurs in even the well-mixed experimental
system [23], a behavior we do not consider in our model.
However, setting our model in this context can provide
some insight into the scenarios in which we might expect
stochastic selection reversal to be a biologically relevant
phenomenon.

An S. cerevisiae yeast cell metabolizes simple sugars,
such as glucose, in order to function. However, when
simple sugars are scarce, the yeast can produce inver-
tase, an enzyme that breaks down complex sugars, such
as sucrose, to release glucose [32]. Invertase is produced
at a metabolic cost and, since digestion of sucrose oc-
curs extracellularly, most of the benefits of its production
are shared by the population. Specifically in the case of
S. cerevisiae, SUC2, the wild-type strain, produces inver-
tase, while the lab cultured mutant suc2 does not [33]. In
terms of our model parameters, the baseline birth rates,
bx and by, represent respectively SUC2 and suc2 repro-
duction in the absence of invertase. This could be un-
derstood as arising from yeast directly metabolizing su-
crose (a less energetically beneficial metabolic route [32])
or as the result of some extrinsically imposed low glu-
cose concentration in the system. The rate r would then
represent the additional birth rate in the presence of in-
vertase. The form of our specified reactions (see Eq. (1)),
assumes that the presence of invertase leads directly to a
yeast reproduction event. In reality invertase must break
down the sucrose into glucose, and then slowly absorb the
glucose. We are therefore essentially assuming that the
sucrose is abundant, its breakdown by invertase instan-
taneous, and the glucose absorption rapid and occurring
in discrete packets, with each packet absorbed leading to
a reproduction event.

In the well-mixed system, our analytic predictions in-
dicate that stochastic selection reversal can occur only if
the population is very small. Since this is an unrealistic
assumption in the case of yeast cultures, we would pre-
dict that non-producers should come to dominate a well-
mixed population. In a spatially structured population
however, this constraint is relaxed since it only requires
small interaction regions. For S. cerevisiae, we can obtain
order of magnitude estimates for the majority of param-
eters in our model, including public good diffusion (see
Appendix G). Using these estimates together with our
analytic results for the spatial public goods system, we
find that stochastic selection reversal could feasibly be
an important phenomenon for promoting the evolution
of microbial public goods production in spatial settings
(see Fig. 3, Panel b). Given this, we now consider the
results of a spatial experiment on S. cerevisiae, and ask
how its results might be interpreted in light of the in-
sights developed with our simple model.

In [33], SUC2 and suc2 were experimentally competed
on an agar plate. It was found that non-producing suc2
could not invade from rare (1% of initial yeast popula-
tion), and in fact decreased in frequency, becoming un-
detectable at long times (around 800 generations). This
suggests that in a spatial setting, invertase producing
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FIG. 5. Plots of the pairwise invariability scenarios possi-
ble for non-producing, producing and hyper-producing phe-
notypes. Arrows point away from the dominant phenotype in
a pair, which is defined as that with a larger invasion prob-
ability (Fig. S3). Non-transitive dynamics are not possible.
It is possible however for an optimal intermediate good pro-
duction rate to emerge (cyan and blue regions), if ap < ab.
In this scenario the hyper-producer receives diminishing good
production as a function of cost to birth rate compared to
the producer. Left panels, ab = 1.3 and ap = 1.5. Right
panels, ab = 3 and ap = 1.5. Remaining parameters given in
Table S.2.

SUC2 yeast are robust to invasions, which is in quali-
tative agreement with our theoretical predictions. The
experiments yielded an additional result, the appearance
of a hyper-producing mutant. This hyper-producing phe-
notype produced invertase at approximately 1.5 times the
rate of standard producers and existed at higher densi-
ties. The hyper-producer appeared to evolve naturally
and establish robust colonies during the competition ex-
periments between non-producers and producers. How-
ever, when separate competition experiments were con-
ducted between the hyper-producers and the producers,
the hyper-producers failed to demonstrate any apprecia-
ble fitness advantage over the producers. This potentially
suggests an optimal invertase production rate, whereby
the hyper-producers managed to establish and grow dur-
ing the SUC2-suc2 competition experiments by exploit-
ing non-producing regions due to a relative fitness advan-
tage, but could not invade regions of space occupied by
producers. Interestingly, our model also predicts that an
intermediate optimal production rate may exist, depend-
ing on how the cost of production scales with the pro-
duction rate. Suppose a hyper-producer, U , produces at
a rate pu = appx, paying a metabolic cost abε to its birth
rate, such that bu = b(1 − abε). The pairwise invasion
probabilities of each phenotype can then be calculated
(see Supplementary Information, Section S.4). We define
the fitter phenotype in a pair as that with the larger

invasion probability. The potential fitness rankings are
investigated in Fig. 5 as a function of px and ε, (which
we recall also alter pu and bu). We draw particular at-
tention to the right panels, in which ab > ap. In this sce-
nario, the hyper-producers pay a disproportionate cost
for their increased production rate compared to the pro-
ducers. This can be interpreted as diminishing returns
for production. In this case, there exist regions where
the producer is the optimal phenotype (regions (a) and
(b), in blue and cyan respectively). Specifically, scenario
(a) displays a similar behavior to that observed in [33],
in which producers win out over both non-producers and
hyper-producers, but hyper-producers are more likely to
invade non-producing populations.

III. GENERALITY OF RESULTS

We have shown that demographic stochasticity can re-
verse the direction of selection in a public good model.
In this section we will show that the mechanism responsi-
ble for this phenomenon is by no means particular to this
model. We consider a general scenario, with a phenotype
X1, which is at the focus of our study, and a number of
discrete ecosystem constituents, Ei. In the public good
model for instance, we would label the public good itself
as an ecosystem constituent, however more generally this
could be a food source, a predator or anything else that
interacts with the phenotypes. The state of the ecosys-
tem influences the birth and death of the phenotype and
in turn the presence of the phenotype influences the state
of the ecosystem, altering the abundances of the con-
stituents. We assume that the system lies at a unique,
stable stationary state, precluding the possibility of peri-
odic behavior. Suppose that a new phenotype, X2, arises.
We assume that the second phenotype is only slightly
better at exploiting the ecosystem than X1, though its
influence on the ecosystem may be very different. For
instance, in the public goods model, non-producers have
a small birth-rate advantage over producers, but do not
produce the public good. Which phenotype is more likely
to invade and fixate in a resident population of the op-
posite type?

The stochastic model for this system can be con-
structed in a similar manner to the public good model;
the dynamics are described by a set of probability tran-
sition rates (analogous to Eq. (1)). We restrict the
transitions by specifying that although the two pheno-
types compete, there is no reaction that instantaneously
changes both of their numbers in the population. This
final condition simply means that they should not, for in-
stance, be able to mutate from one type to another during
their lifetime, or to prey on each other. A parameter R is
introduced, to once again govern the typical scale of the
system. The model is analyzed in the mesoscopic limit,
by introducing (x1, x2, e) = (nx1, nx2,ne)/R

2 and apply-
ing the diffusion approximation. For large but finite R,
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the mesoscopic description takes the form

ẋ1 = x1F
(0)(x, e)− εx1F

(ε)(x, e) +R−1η1(t) ,

ẋ2 = x2F
(0)(x, e) +R−1η2(t) , (16)

ėi = Fi(x, e) +R−1βi(t) , ∀ i = 3, . . . J ,

where ε is small and governs selective pressure against
X1. The assumption that there is no reaction that in-
stantaneously changes the number of both phenotypes
ensures that the correlation structure of the noise terms
takes the form

〈η1(t)η1(t′)〉 = δ(t− t′)x1H
(0)(x, e) ,

〈η2(t)η2(t′)〉 = δ(t− t′)x2H
(0)(x, e) , 〈η1(t)η2(t′)〉 = 0 ,

with ε taken to be of order R−2. This assumption,
made here to isolate the effect of varying carrying ca-
pacity from any other intraspecies dynamics, means that
while the magnitude of fluctuations in the number of
both phenotypes is dependent on the state of the system,
(x, e), the fluctuations themselves are not correlated with
each other. Restrictions on the microscopic model that
yield the above SDE description are addressed more thor-
oughly in Appendix E. The form of Eq. (16) makes the
nature of the system we describe more clear; it consists
of two competing phenotypes, which reproduce accord-
ing to replicator dynamics [1] with equal fitness at leading
order in ε.

In the special case ε = 0, both phenotypes are equally
fit, regardless of their influence on the ecosystem vari-
ables ei. The degeneracy of the dynamics in x1 and x2

ensures the existence of a deterministic CM. We assume
that the structure of F (0)(x) and Fi(x) is such that the
CM is one-dimensional (there are no further degenerate
ecosystem variables) and that it is the only stable state
in the interior region xi > 0. A separation of timescales
is present if the system collapses to the CM much faster
than the stochastic dynamics. In practical terms, the
timescale of collapse can be inferred as the inverse of the
non-zero eigenvalues of the system, linearised about the
CM [34], while the timescale of fluctuations will be of
order R−2 [35]. When ε > 0, the timescale elimination
procedure can still be applied if ε ≈ O

(
R−2

)
. The effec-

tive one-dimensional description of the system now takes
the form

ẋ1 = −εD(x1) +R−2 S(x1) +R−1ζ(t) , (17)

where the term D(x1) is the deterministic contribution
to the effective dynamics and S(x1) is the stochastic
contribution, while ζ(t) is an effective noise term. The
form these functions take is dependent on F (0)(x, e),
F (ε)(x, e) and Fi(x, e), as well as the noise correlation
structure, H(0)(x, e); however it is independent of the
structure of the demographic noise acting on the ecosys-
tem variables (see Eqs. (E30), (E19) and (E20)).

The core assumption we have made to derive Eq. (17) is
essentially that the system’s ecological processes act on a
faster timescale than its evolutionary processes. Even in

this general setting, insights about the system’s stochas-
tic dynamics can still be drawn (see Appendix E). If
ε = 0, the fixation probability of phenotype X1 is in-
dependent of the initial conditions of the ecosystem vari-
ables e. In fact it is equal to the initial fraction of X1

in the population, n10/(n10 + n20). The invasion proba-
bility of mutant X1 phenotype fixating in a resident X2

population however depends on the stationary state of
the X2 population; this defines the initial invasion con-
ditions (the denominator for the fixation probability of
X1). Denoting byN1 andN2 the average numbers of phe-
notypes X1 and X2 in their respective stationary states,
we find φ1 = 1/N2 and φ2 = 1/N1, generalizing Eq. (7).
Therefore, for ε = 0 the phenotype that exists at higher
densities is more likely to invade and fixate than its com-
petitor, a consequence of its robustness to invasions. This
result holds for any choice of finite R. In an ensemble of
disconnected populations subject to repeated invasions,
we would observe the emergence of high density pheno-
types if this phenotype does not carry a cost. While this
seems like a reasonable and indeed natural conclusion, it
is one entirely absent from the deterministic analysis.

If ε > 0, general results for the phenotype fixation
probabilities cannot be obtained. However, if N1 > N2,
in the limit ε → 0 we have shown that φ1 > φ2. From
this, it can be inferred that the term S(x1) is positive on
average along the slow manifold (see Eq. (E26)). There-
fore, if phenotype X1 exists at higher densities in isola-
tion than phenotype X2, there will exist a stochastically-
induced pressure favoring the invasion of phenotype X1.
Meanwhile, by construction we expect the form of D(x1)
to be positive, since phenotype X1 exploits the ecosys-
tem environment less effectively than phenotype X2.
There is therefore a trade-off for competing phenotypes
between increasing their phenotype population density
and increasing their per capita growth rate. Note that
the noise-induced selection function S(x1) need not be
strictly positive; indeed it may become negative along
regions of the SM. This potentially allows for stochasti-
cally induced ‘fixed points’ along the SM, around which
the system might remain for unusually large periods of
time. This may provide a theoretical understanding of
the coexistence behavior observed in [36].

The term S(x1) is moderated by factor R−2 (see
Eq. (8)), or more physically, the typical size of the popu-
lation. The stochastically induced selection for the high-
density phenotype therefore becomes weaker as typical
system sizes increase. The trade-off will be most crucial
in small populations, or as illustrated in the public good
model, systems with a spatial component. If the phe-
notypes and ecosystem variables move sufficiently slowly
in space, the results of Eqs. (13) and (14) can be im-
ported, with the understanding that φ1 and φ2 must be
calculated for the new model under consideration.

It is worth noting that the precise functional form
of φ1 and φ2 identified in the deterministically neutral
case (ε = 0) is dependent on the assumption that phe-
notype noise fluctuations are uncorrelated. While cor-
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related fluctuations (for instance resulting from mutual
predation of the phenotypes) can still be addressed with
similar methods to those employed here, there is then
the potential for the emergence of further noise-induced
selection terms (see Appendix F). Careful specification
of the phenotype interaction terms is therefore needed
to determine to what degree these additional processes
might amplify or dampen the induced selection we have
identified.

IV. DISCUSSION

In this paper, we have shown that stochastic effects can
profoundly alter the dynamics of systems of phenotypes
that change the carrying capacity of the total population.
Most strikingly, selection can act in the opposite direction
from that of the deterministic prediction if the phenotype
that is deterministically selected for also reduces the car-
rying capacity of the population. The methods used to
analyze the models outlined in the paper are based on the
removal of fast degrees of freedom [30]. The conclusions
drawn are therefore expected to remain valid as long as
the rate of change of the phenotype population compo-
sition occurs on a shorter timescale than the remaining
ecological processes.

By illustrating this phenomenon in the context of pub-
lic good production, we have revealed a mechanism by
which the dilemma of cooperation can be averted in a
very natural way: by removing the unrealistic assump-
tions of fixed population size inherent in Moran-type
game theoretic models. The potential for such behavior
has been previously illustrated with the aid of a mod-
ified Moran model [17] and a single variable Wright-
Fisher type model [18] that assumes discrete generations.
However we have shown that the mechanism can mani-
fest more generally in multivariate continuous time sys-
tems. Our analysis may also provide a mathematical in-
sight into the related phenomenon of fluctuation-induced
coexistence that has been observed in simulations of a
similar public good model featuring exogenous additive
noise [36]: such coexistence may rely on a similar con-
flict between noise-induced selection for producing phe-
notypes and deterministic selection against them.

For biologically reasonable public good production
costs, selection reversal is only observed in systems that
consist of a very small number of individuals. However,
by building a metapopulation analogue of the model to
account for spatial structure, the range of parameters
over which selection reversal is observed can be dramat-
ically increased, so long as public good diffusion and
phenotype dispersal between populations are not large.
Two distinct mechanisms are responsible for these re-
sults. First, including spatial structure allows for small,
local effective population sizes, even as the total size of
the population increases. This facilitates the stochastic
effects that lead to selection reversal. Second, since pro-
ducer populations tend to exist at greater numbers (or

higher local densities) they produce more migrants. The
stochastic advantage received by producers is thus am-
plified, as not only are they more robust stochastically
to invasions, but also more likely to produce invaders.
Away from the low-dispersal, zero public good diffusion
limit, the effect of selection reversal is diminished, but
is still present across a range of biologically reasonable
parameters. The analytical framework we have outlined
may prove insightful for understanding the simulation
results observed in [37], where a similar metapopulation
public good model was considered. In addition to fixa-
tion of producers (in the low dispersal-diffusion limit) and
fixation of non-producers (in the high dispersal-diffusion
limit), [37] observed an intermediate parameter range in
which noise induced coexistence was possible. Though
our model does not feature such a regime, extending our
mathematical analysis to their model would be an inter-
esting area for future investigations. However it must
be noted that coexistence in a stochastic setting is in-
herently difficult to quantify analytically, as for infinite
times some phenotype will always go extinct.

That space can aid the maintenance of cooperation is
well known [38, 39]. Generally, however, this is a result of
spatial correlations between related phenotypes, so that
cooperators are likely to be born neighboring other co-
operators (and share the benefits of cooperation) while
defectors can only extract benefits at the perimeter of a
cooperating cluster. This is not what occurs in the model
presented in this paper. Indeed, while we have assumed
in our analytic derivation of the invasion probability that
dispersal is small enough that each patch essentially con-
tains a single phenotype, we find that the phenomenon
of selection reversal manifests outside this limit (see Ap-
pendix H, movie S2 in which a majority of patches con-
tain a mix of producers and non-producers). Instead,
producing phenotypes have a selective advantage due to
the correlation between the fraction of producers on a
patch and the total number of individuals on a patch,
which provides both resistance to invasions and an in-
creased dispersal rate.

Most commonly in spatial game theoretic models of
cooperation-defection, individuals are placed at discrete
locations on a graph [40, 41]. In contrast, by using a
metapopulation modelling framework we have been able
to capture the effect of local variations in phenotype den-
sities across space, which is the driver of selection ampli-
fication in our model. Nevertheless, the question that
remains is which modelling methodology is more biolog-
ically reasonable. This clearly depends on the biological
situation. However, in terms of test-ability, our model
makes certain distinct predictions. In [41], producers
and non-producers were modeled as residing on nodes
of a spatial network, with a public good diffusing be-
tween them. The investigation concludes that both lower
public good diffusion and lower spatial dimensions (e.g.
systems on a surface rather than in a volume) should en-
courage public good production, essentially by limiting
the ‘surface area’ of producing clusters. While our inves-
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tigation certainly predicts that lower public good diffu-
sion is preferable, stochastic selection reversal does not
require that the spatial dimension of the system is low.
In fact the result utilized in Eq. (12) holds for patches ar-
ranged on any regular graph (where each vertex has the
same number of neighbors), and thus could be used to
describe patches arranged on a cubic, or even hexagonal,
lattice.

In our final investigation, we have shown that stochas-
tic selection reversal is not an artifact of a specific model
choice, but may be expected across a wide range of mod-
els. These models consist of two phenotypes, competing
under weak deterministic selection strength, reproducing
according to replicator dynamics and interacting with
their environment. Thus the phenomenon of selection
reversal is very general; however, it depends strongly on
how one specifies a selective gradient. We take one phe-
notype to have a stochastic selective advantage over the
other if a single mutant is more likely to invade a resi-
dent population of the opposite type. Such a definition
is also used in standard stochastic game theoretic mod-
els [4]. A key difference here however (where the popu-
lation size is not fixed) is that the invasion probability
is not specified by a unique initial condition; we must
also specify the size of the resident population. We have
assumed that the invading mutant encounters a resident
population in its stationary state. This is by no means
an unusual assumption; it is the natural analogue of the
initial conditions in a fixed population size model. Es-
sentially it assumes a very large time between invasion
or mutation events, an approach often taken in adaptive
dynamics [42].

If instead we assumed a well-mixed system far from the
steady state, our results would differ. For instance, sup-
pose the system initially contains equal numbers of the
two phenotypes. For the case when the two phenotypes
have equal reproductive rates (ε = 0), the phenotypes
have equal fixation probability. For ε > 0, the phenotype
with the higher birth rate has the larger fixation proba-
bility, regardless of its influence on the system’s carrying
capacity. This apparent contradiction with the results
we developed in the body of the paper echos the observa-
tions of r −K selection theory [43]: selection for higher
birth rates (r-selection) acts on frequently disturbed sys-
tems that lie far from equilibrium, while selection for
improved competitive interactions or carrying capacities
(K-selection) acts on rarely disturbed systems. In ad-
dition, r − K selection theory suggests that K-selected
species are typically larger in size and, as a consequence,
consist of a lower number of individuals [19]. This indi-
cates a further parallel with our stochastic model frame-
work, since selection for higher carrying capacities re-
quires that the typical number of individuals (of both
the low and high carrying capacity phenotypes) is small.
Though the mechanism that leads us to these conclusions
is distinct, our stochastic analysis provides a complemen-
tary view of r−K-selection theory, which may be appli-
cable to simple microorganisms. In exploring this anal-

ogous behavior further, future investigations may also
benefit from considering the results of [15], where it was
shown that stochastically induced selection can change
direction near carrying capacity.

Although we have implicitly developed our results in
the low mutation limit, including mutation explicitly in
the modeling framework is possible. This would be an in-
teresting extension to the framework. In the well-mixed
scenario, it is likely that the inclusion of mutation will
complicate the intuition developed here: while larger
populations are more robust to invasions, they are also
more prone to mutations, by virtue of their size. While
this may be offset by the additional benefits garnered
in the spatial analogue of the model, a complex set of
timescale-dependent behaviors is likely to emerge.

Finally, we propose a rigorous analytical investiga-
tion of existing models that conform to the framework
we have outlined; an example is the work conducted in
[36, 37], which we believe to be mathematically explain-
able within our formalism. In the context of induced
selection, whereby deterministically neutral systems be-
come non-neutral in the stochastic setting, similar ideas
have already been extended to disease dynamics [16] and
the evolution of dispersal [44, 45]. The extension of selec-
tion reversal to such novel ecological models may provide
further insight. Furthermore, this general scheme may be
of relevance to many other systems in ecological and bio-
logical modeling, such as cancer, for which the evolution
of phenotypes that profoundly alter cell carrying capacity
can be of primary importance.
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Appendix A: Obtaining the SDE system from the
microscopic individual based model

We begin with a model consisting of a discrete number
of entities, two phenotypes of a species, X and Y and a
public good Q. They interact according to the transitions

X
bx
−−→←−−
κ/R2

X +X , Y +X
κ/R2

−−−→ X ,

Y
by
−−→←−−
κ/R2

Y + Y , Y +X
κ/R2

−−−→ Y , ,

X +Q
r/R2

−−−→ X +X +Q , Y +Q
r/R2

−−−→ Y + Y +Q ,

X
px−→ X +Q , Q

δ−→ ∅ . (A1)

The term R−2 occurs in all terms involving two reactants.
It thus controls the interaction probability between in-
stances of the phenotypes and the public good. Taking
larger R decreases the interaction probability of pheno-
types X and Y and the public good and allowing the
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populations to grow to greater numerical abundances.
The parameter R can thus be understood as a measure
of the spatial scale of the system; when R is increases,
the probability of interactions in the well-mixed system
is decreased while the number of individuals the system
can contain is increased.

Let us denote n = (nx, ny, nq) the numbers of X,
Y and Q respectively. Then the dynamics of this system
can be described by the set of partial difference equations

dP (n, t)

dt
=
∑
n′ 6=n

[T (n|n′)P (n′, t)− T (n′|n)P (n, t)] ,

(A2)
where P (n, t) is the probability of the state being in state
n at time t, and T (n′|n), the probability transition rate,
is the probability per unit time of transitioning from state
n to n′. Formally this is known as the master equa-
tion [47]. Given the reactions Eq. (A1) the probability
transition rates can be expressed as

T1(nx + 1, ny, nq|nx, ny, nq) = bxnx +
r

R2
nxnq ,

T2(nx, ny + 1, nq|nx, ny, nq) = byny + r
R2nynq ,

T3(nx − 1, ny, nq|nx, ny, nq) =
κ

R2
nx (nx + ny) ,

T4(nx, ny − 1, nq|nx, ny, nq) = κ
R2ny (nx + ny) ,

T5(nx, ny, nq + 1|nx, ny, nq) = pxnx ,

T6(nx, ny, nq − 1|nx, ny, nq) = δnq . (A3)

Let us now make a change of variables into the scaled
expressions x = (x, y, q) = (nx, ny, nq)/R

2. Substitut-
ing the probability transition rates into Eq. (A2), we find
recurrent factors of 1/R2 appearing in the resulting ex-
pression. These terms are associated with the local tran-
sitions from state n to the surrounding states. If R2

is sufficiently large, the population grows larger (as the
crowding terms in Eq. (A1) grow small). We may then
Taylor expand Eq. (A2) in R−1, assuming that the vari-
ables (x, y, q) are approximately continuous [28]. Trun-
cating at second order in R−4, we arrive at a partial
differential equation for p(x, y, q, t) of the form

∂p(x, t)

∂t
= − 1

R2

∑
i

∂

∂xi
[Ai(x)p(x, t)]

+
1

2R4

∑
i,j

∂2

∂xi∂xj
[Bij(x)p(x, t)] , (A4)

x = (x1, x2, x3) ≡ (x, y, q) .

This is a diffusion approximation in a population genetics
context [22], but more generally is akin to the Kramers-
Moyal expansion [28] or a nonlinear analogue of the van
Kampen expansion [47]. The forms of A(x) and B(x),
given transition rates Eq. (A3) are found to be

Ax(x) = x (bx + rq − κ(x+ y)) ,

Ay(x) = y (by + rq − κ(x+ y)) ,

Aq(x) = pxx− δq , (A5)

and

Bxx(x) = x (bx + rq + κx+ κy) ,

Byy(x) = y (by + rq + κx+ κy) ,

Bqq(x) = pxx+ δq ,

Bij = 0 ∀ i 6= j . (A6)

Further, it can be shown that the above PDE is equiva-
lent to the set of Itō SDEs [48]

dx

dτ
= A(x) +

1

R
η(τ) , (A7)

where τ = tR2 and η(t) are Gaussian white noise terms
with zero mean and correlations

〈ηi(τ)ηj(τ
′)〉 = δ(τ − τ ′)Bij(x) . (A8)

Notice that the correlations are multiplicative and thus
dependent on the state of the system.

Appendix B: Obtaining one-dimensional effective
public good model

In this section we seek to identify and remove the fast-
modes of the SDE system Eq. (A7), and thus obtain an ef-
fective one-dimensional description of the dynamics. We
make use of methods of fast-mode elimination described
in [30]. Firstly we note that the deterministic nullcline
for q is given by

q =
pxx

δ
≡ Zq(x, y) . (B1)

Therefore, if the production and decay of public good oc-
cur much faster than the processes associated with the
phenotypes, we would expect the public good to quickly
attain this value, after which its dynamics would be
slaved to those of x and y. Notice that deterministically,
substituting Eq. (B1) into Eq. (A5) recovers a Lotka-
Volterra competition model for two competing species.

To make further analytic progress, we begin by consid-
ering the quasi-neutral limit in which bx = by ≡ b. Under
these conditions, the deterministic system exhibits a cen-
ter manifold (CM) given by Eq. (B1) and

y =
[bδ − (δκ− rpx)x]

δκ
≡ Zy(x) . (B2)

The CM is stable for κδ > rpx, and we assume that this
condition holds throughout the paper. Calculating the
intersection of the center manifold at the boundaries y =
0 and x = 0 allows us to determine the mean population
size in the quasi-neutral (ε = 0) limit when it consists of
only producers and non-producers respectively;

N (0)
x = R2K(0)

x , K(0)
x =

(
bδ

δκ− rpx

)
, (B3)

N (0)
y = R2K(0)

y , K(0)
y =

(
bδ

δκ− rpy

)
. (B4)
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These parameters will be useful in the following analysis.
Deterministically, the system comes to rest on a point

along the CM (defined by Eqs. (B1) and(B2)), which de-
pends on the system’s initial conditions. When stochas-
ticity is included, the CM ceases to exist in any true
sense. However, when the noise is small (already assumed
in the derivation of SDEs (A7)) we can say that far from
the CM, we expect the dynamics to be dominated by the
deterministic collapse to the CM, while in the vicinity
of the CM, we expect noise to play a more important
role, driving the slow change in population composition
until one or other of the phenotypes fixates. We wish to
exploit this timescale separation, and obtain an effective
description of the dynamics in terms of a single variable.

To begin, we note that the stochastic dynamics along
the CM has two components. First, noise can move the
system neutrally along the CM. Second, noise can take
the system off the CM, at which point we expect the de-
terministic component of the dynamics to become more
prevalent, driving the system back to the CM. In order to
capture the effect of both of these processes on the effec-
tive dynamics along the CM, we implement a non-linear
projection of the stochastic system to the CM. Essen-
tially this assumes that fluctuations which take the sys-
tem away from the manifold are instantaneously mapped
along deterministic trajectories back to the CM. In or-
der to formalize this, the mapping z = f(x, y, q) is in-
troduced, where f(x, Zy(x), Zq(x)) = x; that is z gives
the position on the CM, parameterized by x, which in-
tersects a deterministic trajectory beginning at (x, y, q).
The mapping can be determined analytically from the
observation that the quantity x/y in Eq. (A7) is invari-
ant in this quasi-neutral (bx = by) scenario. Therefore

z

Zy(z)
=
x

y
, z =

bδx

(δκ− pr)x+ δκy
. (B5)

The effective dynamics for z can now be straightfor-
wardly calculated by differentiating Eq. (B5) with respect
to t. One must note however that since the original SDE
system is defined in the Itō sense, the normal rules of
calculus no longer apply. Applying Itō’s rules of calculus
appropriately [30, 47], we find that the effective dynamics
along the CM take the following form

ż =
1

R2
S(z) +

1

R
ζ(t) , (B6)

where

S(z) =
1

2

(
∂2z

∂x2
Bxx(x) +

∂2z

∂y2
Byy(x)

)
|x=z,y=Zy(z),q=Zq(z) ,(B7)

=
2pxr

δ
z

{
1 +

1

b2δ2
z [bδ (2pxr − δκ) + pxr (pxr − δκ) z]

}
,

= 2b

(
K

(0)
x −K(0)

y

(K
(0)
x )3(K

(0)
y )2

)
z
(
K(0)
x − z

) [
K(0)
x K(0)

y

+
(
K(0)
x −K(0)

y

)
z
]
, (B8)

y x(0)

x(1)

x(1)

x(2)

x(2)

x

FIG. 6. Figure illustrating the origin of stochastically induced
drift along the center manifold (CM). The gray dashed line
shows the form of the deterministic center manifold, which
intersects the x axis at a higher value than the y axis (pheno-
type X has a higher carrying capacity due to the production
of the public good). The red shaded circle illustrates the

form of the Gaussian noise centered on the point x(0) on the
CM. Fluctuations in the population are equally likely to in-
crease or decrease the frequency of the Y phenotype to the
points x(1). Away from the CM, the deterministic pressure to
the CM becomes prominent, forcing the system along quasi-
deterministic trajectories back to the CM, at the points x(2).
The resulting distribution of x(2) does not have a mean cen-
tered on x(0). Rather, the distribution is shifted, inducing a
drift in favor of the producing X phenotype.

and

〈ζ(t)〉 = 0 , 〈ζ(t)ζ(t′)〉 = δ(t− t′)B(z) ,

with

B(z) =

([
∂z

∂x

]2

Bxx(x) +

[
∂z

∂y

]2

Byy(x)

)
|x=z,y=Zy(z),q=Zq(z) ,(B9)

= 2z

{
b+

1

b2δ3
z
[
b2δ2 (3pxr − δκ)

+ bpxrδ (3pxr − 2δκ) zp2
xr

2 (pxr − δκ) z2
] }

,

= 2b

(
1

(K
(0)
x )3(K

(0)
y )2

)
z
(
K(0)
x − z

) [
K(0)
x K(0)

y

+
(
K(0)
x −K(0)

y

)
z
]2
. (B10)

Notice that since the mapping Eq. (B5) is independent
of q, both Eq. (B7) and Eq. (B9) do not depend on the
noise correlations in q.

While the deterministic system features no dynamics
along the CM, the effective SDE (B6) does feature a drift
in the mean state, embodied by S(z). Understanding the
origin of this induced drift term requires considering the
following. We envisage fluctuations arising from a sin-
gle point on the CM, x(0), which take to the system to
a point off the CM, x(1) (see Fig. 6). The point x(1) is
clearly stochastic, but its distribution is approximately
Gaussian, with a variance defined by B(x(0)). The fluc-
tuation is now mapped back along a deterministic trajec-
tory to a point x(2) on the CM. The location x(2) is also
stochastic (dependent as it is on x(1)), and has its own
distribution. The presence of the term S(z) in Eq. (B6) is
indicative of the fact that the mean of the distribution of
x(2) is not x(0); fluctuation events on average are mapped



14

back to the CM with a preferred direction, inducing drift
along the CM. Note that S(z) is positive along the length

of the CM, which is defined on the interval [0,K
(0)
x ].

We now turn our attention to the case when ε > 0.
So long as ε is small, a separation of timescales is still
present, though now no center manifold exists. Instead
there is a slow manifold (SM), to which the determinis-
tic system quickly relaxes, before slowly moving along it
until phenotype Y fixates. The equations for the popula-
tion size at the boundaries of the SM are formally given
by

Nx = R2Kx , Kx =

(
bxδ

δκ− rpx

)
≡ K(0)

x +O(ε) ,

Ny = R2Ky , Ky =

(
byδ

δκ− rpy

)
≡ K(0)

x +O(ε) .

(B11)

In order to proceed with the stochastic calculation, we
assume ε ≈ O(R−2), and work order by order in R−1.
At leading order, the equation for the SM is identical
to that of the CM, Eqs. (B1) and (B2). The mapping
to the SM is also unchanged at leading order from the
quasi-neutral case (see Eq. (B5)). We proceed as before
to obtain an effective description of the system dynamics
in terms of z [30], now obtaining the dynamics,

ż = −εD(z) +
1

R2
S(z) +

1

R
ζ(t) . (B12)

where

D(z) = −
(
dz

dx
Ax(x) +

dz

dy
Ay(x)

)
|x=z,y=Zy(z),q=Zq(z) ,

= bz

[
1−

(
δκ− pxr

bδ

)
z

]
,

=
b

K
(0)
x

z
(
K(0)
x − z

)
, (B13)

and S(t) and ζ(t) retain their form from the quasi-neutral
case, Eqs. (B8) and (B10). The function D(z) is the de-
terministic contribution to the dynamics along the SM.
This expression is that which would be obtained using
standard fast variable elimination techniques on the de-
terministic system. From Eq. (B13), we can see that D(z)
is positive along the length of the SM and therefore acts
(as we would expect) to increase the selective advantage
of the non-producers, phenotype Y . There is therefore a
conflict between the two components of the drift in the
system. The term D(z) works against producers along
the length of the SM, while S(z) creates a selective pres-
sure in favor of producers. Ultimately, which term is
more prevalent is dependent on the parameters ε and R
(see Eq. (B12)); small R leads to a small population size
in which stochastic effects are stronger, and so producers
are more likely to be selected for. In contrast, when the
deterministic cost for good production is increased, the
non-producers have an increased advantage over produc-
ers.

Adopting the notation used in the main text, in which
we set z = x (which is valid on the CM and SM at lead-
ing order), the expression for the SDE (B12) can alter-
natively be written

ẋ =
b

K
(0)
x

x
(
K(0)
x − x

)( 1

R2
F(x)− ε

)
+

1

R
ζ(t) , (B14)

where

F(x) = 2

(
K

(0)
x −K(0)

y

(K
(0)
x )2(K

(0)
y )2

)[
K(0)
x K(0)

y +
(
K(0)
x −K(0)

y

)
x
]
.

(B15)

Appendix C: Probability of fixation for the reduced
public good model

The fixation probability for a phenotype in a single
variable system can be calculated using standard meth-
ods [28]. In order to conduct the calculation, we need
expressions for the absorbing boundaries of the problem.
For the reduced system given in Eq. (B12), these lie at

z = 0 and z = K
(0)
x . The fact that the boundary for the

problem exists at z = K
(0)
x , rather than z = Kx, is a con-

sequence of the order to which we are working in ε. At
this order the SM is approximated by the expression for
the CM, which intersects the absorbing boundaries x = 0

and y = 0 at z = 0 and z = K
(0)
x respectively. Denoting

Q(z0) the fixation probability of producing phenotype X
given an initial frequency z0 on the CM/SM, the fixation
probability can be conveniently be expressed

Q(z0) =

∫ z0
z=0

ψ(z)dz∫Kx
z=0

ψ(z)dz
,

ψ(z) = exp

[∫ z

0

2(−εRD(z′) + S(z′))

B(z′)
dz′
]
. (C1)

Substituting for D(z), S(z) and B(z) from
Eqs. (B13), (B8) and (B10), we find

Q(z0) =
1−G(z0)

1−G(Kx)
,

G(z0) = exp


(
εN

(0)
y K

(0)
x z0

)
(
K

(0)
x K

(0)
y + (K

(0)
x −K(0)

y )z
)
 .(C2)

The nature of these expressions can be understood
more intuitively if we move from considering the initial
frequency of X on the CM, z0 = nx0/R

2, to consider-
ing the initial fraction of phenotype X on the CM, fz0.
The fraction and number of phenotype X on the CM are
related by

fz0 =
z

z + Zy(z)
,

z =
K

(0)
x K

(0)
y fz0

K
(0)
x − (K

(0)
x −K(0)

y )fz0
. (C3)
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Substituting this into Eq. (C2), we find

Q(fz0) =
1− exp

[
εN

(0)
y fz0

]
1− exp

[
εN

(0)
y

] , Q(fz0)|ε=0 = fz0 .

(C4)
On first appraisal, the fixation probabilities Eq. (C4) ap-
pear to share the form of the well-mixed Moran model
with weak selection. There is however one crucial dis-
tinction; the relation between fz0 and (x0, y0, q0) is de-
pendent on the form of the CM/SM, and is not neces-
sarily symmetric under the interchange of X and Y . For
instance, let us consider the quasi-neutral case (ε = 0)
with the population initially consisting of a mutant X in
a population of the Y phenotype in its stationary state.
Then fz0 = 1/Ny. In contrast, if the mutant is of phe-
notype Y , and the resident population consists of pheno-
type X in the stationary state, fz0 = 1−1/Nx. Since Nx
and Ny are distinct, these frequencies are not the same,
and Eq. (C4) is not symmetric under the interchange of
phenotypes, undermining its apparent similarities with
the Moran model.

In this section a crucial aspect of the selection reversal
has been elucidated. The selection reversal along the SM
is a result of the differing densities at which the popu-
lations of X and Y phenotypes reside in isolation. In a
deterministic system, we would define the fitter pheno-
type as the one which fixates at long times. In stochas-
tic Moran-type model, the fitter phenotype is defined as
that with the greater invasion probability. Since Moran-
type models feature a constant population size, N , the
invasion probability of a mutant phenotype is defined by
a unique initial condition; a single mutant, and N − 1
residents. In systems such as the public good model dis-
cussed in this paper, the invasion probability is no longer
defined uniquely by the specification of a single invading
mutant; we must also define the size of the resident phe-
notype population and the public good density. If the
system has been allowed to relax to a stationary state
before the mutant is introduced, then selection reversal
along the CM may be present, and it is possible for the
producing phenotype to have a larger fixation probability
than the non-producing phenotype. Thus the producing
phenotype may be fitter.

Appendix D: Pairwise invasibility for
non-producers, producers and hyper-producers

In this section we explore the pairwise invasibility of
three separate phenotypes, non-producers, producers and
hyper-producers. We begin by noting that, under the
assumption that the birth rates differ by only a small
amount from phenotype to phenotype, the invasion prob-
ability of phenotype i in a resident population j, φi|j , can

be expressed

φi|j =
1− exp

[
(bi − bj)/(κN (0)

j )
]

1− exp [(bi − bj)R2/κ]
. (D1)

We therefore define phenotype i as fitter than phenotype
j if φi|j > φj|i. Let us now explicitly express the birth
rates of each of the phenotypes as

Non− producer : by = b ,

Producer : bx = b(1− ε) ,
Hyper− producer : bu = b(1− abε) .

(D2)

We now wish to obtain an expression for the criti-
cal costs to birth rate ε at which producers are fitter
than non-producers, hyper-producers are fitter than non-
producers and hyper-producers are fitter than producers.
To do this we must solve φi|j = φj|i for ε for each pair
of phenotypes. An analytic solution is available if we set
ε = ε̃R−2 with ε̃ of order one, and expand Taylor expand
in R−2. Truncating at first order, we find that the crit-
ical cost for species i to be fitter than species j, εi|j is
given by

εi|j =
κ log [(pir − δκ)/(pjr − δκ)]

[(bi − bj)/ε]R2
. (D3)

We note that this provides eight different possible scenar-
ios of fitness ranking, described in Fig. 7. Substituting in
our equations for the birth rates, Eq. (D2), these expres-
sions become

εx|y =
κ

bR2
log

[
− δκ

pxr − δκ

]
, (D4)

εu|y =
κ

abR2
log

[
− δκ

pur − δκ

]
, (D5)

εu|x =
κ

(a− 1)bR2
log

[
pxr − δκ
pur − δκ

]
. (D6)

Clearly the exact scenarios which emerge for a given
set of parameters depends on the relationship between px
and pu. We make the assumption

pu = appx . (D7)

For ap > ab, the hyper-producer pays a discounted cost
to its birth rate for its additional good production. In
this situation, only scenarios (c-f) are possible in Fig. 7.
It is always better to be a hyper-producer or a non-
producer, depending on the production rate px and ε.
This ‘all or nothing’ result makes intuitive sense; if the
hyper-producer produces much more than the producer,
but pays only fractionally more to its birth rate, any
region in which production is favored will be dispropor-
tionately advantageous to the hyper-producers. In con-
trast, if ap < ab, the hyper-producer receives decreas-
ing production returns as a function of the cost it pays
to birth in comparison with the producer. In this case,
scenarios (a-b) and (e-f) are possible. Either producers
or non-producers are favored, and hyper-producers are
never favored.
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(e) P
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HP NP

FIG. 7. Eight different fitness rankings are possible based on
the pairwise invasibility probabilities of non-producers, pro-
ducers and hyper-producers. (A) Producers have a larger
invasion probability than both hyperproducers and nonpro-
ducers, while hyperproducers have a larger invasion proba-
bility than nonproducers. (B) Producers have a larger inva-
sion probability than both hyperproducers and nonproduc-
ers, while nonproducers have a larger invasion probability
than hyperproducers. (C) Hyperproducers have a larger inva-
sion probability than both producers and nonproducers, while
nonproducers have a larger invasion probability than produc-
ers. (D) Hyperproducers have a larger invasion probability
than both producers and nonproducers, while producers have
a larger invasion probability than producers. (E) Nonproduc-
ers have a larger invasion probability than both producers and
hyperproducers, while hyperproducers have a larger invasion
probability than producers. (F) Nonproducers have a larger
invasion probability than both producers and hyperproducers,
while producers have a larger invasion probability than hyper-
producers. (G) Producers have a larger invasion probability
than hyperproducers. Hyperproducers have a larger invasion
probability than nonproducers. Nonproducers have a larger
invasion probability than producers. (H) Producers have a
larger invasion probability than nonproducers. Nonproduc-
ers have a larger invasion probability than hyperproducers.
Hyperproducers have a larger invasion probability than pro-
ducers. The nontransitive dynamics of G and H are not seen
in the public good model.

Appendix E: Generality of results

We begin by specifying in a very general way the dy-
namics of an arbitrary IBM with m distinct types of con-
stituent, fully described by a set of u reaction rates. The
model can be expressed in chemical reaction notation as

m∑
i=1

aµiXi
rµ−→

m∑
i=1

bµiXi, ∀µ = 1, . . . u, (E1)

where aµi and bµi respectively specify the reactants and
products of the µth reaction, and rµ are the reaction rate
constants (see, for example, Eq. (A1)). The stoichiomet-
ric matrix is defined by νiµ = bµi − aµi, whose elements
give the change in number of the ith species due to the
µth reaction. Together with the rate constants rµ, the
stoichiometric matrix allows us to express the transition
rates

Tµ(n+ νµ|n) = rµ

m∏
i=1

aµi
ni
R2

, (E2)

where R2 once again is a controlled measure of how often
constituents interact (see Eq. (A3)). In the well-mixed

model, it therefore directly controls the typical area of
the system. Together with the master equation (A2),
the full stochastic dynamics are specified.

With a general notation now in hand, we now begin
to define the specific type of system we will analyze. We
consider a system consisting of two phenotypes, X1 and
X2, who interact with a set of discrete ecosystem vari-
ables Xi, for i = 3, . . . , N . The state of the system at
any time is given by the number of each phenotype and
ecosystem constituent n = (n1, n2, n3, . . . , nN ). The sit-
uation we envisage is as follows; while the interplay be-
tween the phenotypes and the ecosystem is relevant for
the dynamics, we are primarily interested in the evolu-
tionary dynamics and outcome of competition between
the two phenotypes. We make the following assumptions
on their dynamics;

1. Each phenotype birth and death event is propor-
tional to the number of that phenotype;

if ν1µ 6= 0 then aµ1 > 0 , and

if ν2µ 6= 0 then aµ2 > 0 . (E3)

2. The phenotypes are very similar in their utiliza-
tion of the ecosystem. For each µth reaction that
changes the frequency of X1, there therefore exists
a similar reaction µ′ that changes the frequency of
X2 such that;

ν1µrµ = ν2µ′(rµ′ +O(ε)) . (E4)

3. There is no reaction which simultaneously changes
the frequencies of the phenotypes (i.e. no cannibal-
ization or simultaneous killing);

ν1µν2µ = 0 ∀µ . (E5)

The phenotypes may however differ significantly in their
effect on the ecosystem, so that one phenotype may de-
plete or increase ecosystem constituents in an entirely
distinct way to the other (for instance, the production of
a public good by phenotype X in Eq. (A1)).

As R is increases so too does the number of each phe-
notype and ecosystem constituent. If R is sufficiently
large, once again a system-size expansion of the master
equation can be conducted. Making the change of vari-
ables x1 = n1/R

2, x2 = n2/R
2 and ei = ni−2/R

2, we
obtain the set of Itō SDEs

dx1

dt
= x1

[
F (0)(x, e)− εF (1)(x, e)

]
+

1

R
η1(t) ,

dx2

dt
= x2F

(0)(x, e) +
1

R
η2(t) ,

dei
dt

= hi(x, e) +
1

R
βi(t) , ∀ i = 1, . . . N . (E6)
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The deterministic contribution to the SDEs can be de-
termined from the transitions via

x1

[
F (0)(x, e) − εF (1)(x, e)

]
=

u∑
µ=1

ν1µTµ
[
R2(x, e)T + νµ|(x, e)T

]
,(E7)

x2F
(0)(x, e) =

u∑
µ=1

ν2µTµ
[
R2(x, e)T + νµ|(x, e)T

]
,(E8)

hi(x, e) =

u∑
µ=1

ν(i+2)µTµ
[
R2(x, e)T + νµ|(x, e)T

]
.

Notice that the relationship between Eqs. (E7) and (E8)
is controlled by assumption 2. The correlations in the
noise meanwhile are given by

〈η1(t)η1(t′)〉 =

δ(t− t′) lim
ε→0

u∑
µ=1

ν2
1µTµ [R(x, e) + νµ|(x, e)] , (E9)

〈η2(t)η2(t′)〉 =

δ(t− t′) lim
ε→0

u∑
µ=1

ν2
2µTµ [R(x, e) + νµ|(x, e)] , (E10)

〈η1(t)η2(t′)〉 = 0 , (E11)

〈ηi(t)βj(t′)〉 =

δ(t− t′) lim
ε→0

u∑
µ=1

νiµν(j+2)µTµ [R(x, e) + νµ|(x, e)] ,(E12)

〈βi(t)βj(t′)〉 =

δ(t− t′) lim
ε→0

u∑
µ=1

ν(i+2)µν(j+2)µTµ [R(x, e) + νµ|(x, e)] ,

(E13)

at leading order in ε. The lack of noise correlation be-
tween the phenotypes, Eq. (E11), is a consequence of as-
sumption 3. Assumption 2 allows us to rewrite Eqs. (E9)
and (E10) as

〈η1(t)η1(t′)〉 = δ(t− t′)x1H(x, e) ,

〈η2(t)η2(t′)〉 = δ(t− t′)x2H(x, e) . (E14)

An example of a system where this condition is not en-
forced is explored in Section F.

To begin our analysis of the SDEs, a quasi-neutral limit
is considered in which ε = 0. Then the deterministic
ODEs for the system (the SDEs in the limit R→∞) lead
to a manifold of fixed points associated with the focus
phenotypes. We now make two additional assumptions;

5. There exits a single stable, well behaved, manifold

6. This manifold is one-dimensional, and so can be
paramaterized by a single variable

We then choose to parameterize the manifold in terms of
x1, which for clarity we label z on the CM. The CM is
then defined by the set of equations

x1 = z , x2 = Z2(z) , ei = Zei(z) ∀ i = 2, . . . N .
(E15)

The system dynamics are now entirely analogous to that
of the public good model in the quasi-neutral limit. De-
terministically, the system comes to rest at a point on the
CM (which depends on the system’s initial conditions) at
which it stays indefinitely, and when stochasticity is in-
cluded the system moves along the CM until one of the
phenotypes fixates. A timescale separation is present so
long as the composition of the population changes on a
slower timescale to that of the collapse to the CM. In
practice, the timescale of the collapse to the CM can
be inferred from the eigenvalues of Eq. (E6) linearised
about the CM. The magnitude of the smallest non-zero
eigenvalue is indicative of the slowest component of col-
lapse to the CM [34]. This should be much larger than
the timescale at which the system moves along the CM,
which is of order R−1 [35].

In order to implement the timescale separation, a non-
linear projection is applied to the system which maps
fluctuations back to the CM. This can be seen to be
equivalent to transforming into the deterministically in-
variant variable whose existence is guaranteed by the
existence of the CM [31], setting the dynamics in all
other variables equal to zero, and evaluating the variables
themselves on the CM. What form does this mapping
take, in the quasi-neutral limit, for Eq. (E6)? Since the
dynamical equations for the phenotypes take on the form
of degenerate replicator equations in the limit ε→ 0, the
ratio x1/x2 is deterministically invariant, regardless of
the other parameters. Therefore the non-linear mapping
may be obtained by solving the following equation for z;

z

Z2(z)
=
x1

x2
, → z = Y (x1, x2) . (E16)

The resulting effective description for the quasi-neutral
system on the CM can be denoted

ż =
1

R
S(z) +

1√
R
ζ(t) . (E17)

Note that while the deterministic system evaluated on
the CM had no drift dynamics, the reduced system may.
Mathematically, this is a consequence of the fact that the
equations are defined strictly in the Itō sense (from the
underlying IBM) and therefore the normal rules of calcu-
lus do not apply. Instead, any nonlinear transformation
induces a drift, in general given by

S(z) =
1

2

 2∑
ij

(
∂z

∂xi∂xj
Bij

)

+

N∑
ij

(
∂z

∂ei∂ej
Beij

)∣∣∣∣∣∣
x1=z,x2=Z2(z),ei=Zei(z)

.(E18)
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However, since the mapping z is independent of the
ecosystem variables e (see Eq. (E16)), Eq. (E18) can be
simplified to

S(z) =
1

2

2∑
ij

(
∂z

∂xi∂xj
Bij

)∣∣∣∣∣∣
x1=z,x2=Z2(z),ei=Zei(z)

.

(E19)
The form of the correlations in ζ(t) are now given by

B(z) =

2∑
ij

([
∂z

∂xi

]
i

[
∂z

∂xj

]
j

Bij(x)

)∣∣∣∣∣∣
x=z,x2=Z2(z),ei=Zei(z)

,

(E20)
where once again we have taken advantage of the prop-
erty (dz/dei) = 0 for all i.

In this very general scenario, what inferences can we
make about S(z)? To answer this, it is convenient to
return to our original SDEs, Eq. (E6), and implement
the timescale separation in a different fashion. We begin
by transforming into variables measuring the total size of
the x1 and x2 population and the fraction of type x1;

NT = x1 + x2 , f1 =
x1

x1 + x2
,

→ x1 = f1NT , x2 = NT (1− f1) . (E21)

Applying this transformation, taking care to account for
the impact of Itō calculus, we arrive at the following
SDEs for the system;

df1

dt
=

1

2R2

2∑
i,j=1

∂2f1

∂xi∂xj
Bij +

1

R
η̃1(t) ,

dNT
dt

= NTF
(0)(x, e) +

1

R
η̃2(t) ,

dei
dt

= hi(x, e) +
1

R
β̃i(t) , ∀ i = 1, . . . N . (E22)

By conducting the transformation, we immediately no-
tice a few things. Most trivially, the forms of the noise
correlations are now altered in all variables. Second, since
the transformation into the variable NT was linear, its
governing SDE contains no noise-induced elements. Fi-
nally, the non-linear transformation into f1 has resulted
in a noise induced drift term. This drift term however
is only dependent on the noise correlation structure be-
tween x1 and x2. Evaluating the dynamics for NT and
e on the CM and substituting in the remaining expres-
sions from Eqs. (E11) and (E14), we obtain the following
one-dimensional SDE for f1;

df1

dt
=

1

R
η̃1(t) , (E23)

where η̃1(t) is evaluated on the CM. There are no deter-
ministic dynamics in our reduced dimension description
of f1. This is a consequence of assumptions 2 and 3.
The equation for the fixation probability of phenotype

X1 given an initial fraction f10 on the CM, Q(f10), is
then, regardless of the noise form,

Q(f10) = f10 . (E24)

Crucially however, f1 is evaluated on the CM, which may
vary depending on the constitution of the population;

f10 =
x10

x10 + Z2(x10)
. (E25)

If [dZ2(x10)/dx10] < 1, then the total phenotype popu-
lation decreases with increasing x20, and phenotype X1

has a larger invasion probability than X2. From this we
can infer that S(z) will be positive on average along the
length of the CM;∫ N1/R

2

z=0

S(z)dz > 0 . (E26)

Therefore, the phenotype with the higher carrying capac-
ity will be stochastically selected for in this quasi-neutral
case, regardless of their interaction with the environment.
We note once again that this result is in general depen-
dent on assumption 2. If assumption 2 does not hold then
there will be correlations between the fluctuations η1(t)
and η2(t) and, rather than the equation for the time evo-
lution of f1 featuring no mean drift (as in Eq. (E23) there
will be a noise induced drift term favoring one or other
of the phenotypes. The exact form of this term will be
highly dependent on the exact form of the interactions
between the phenotypes, a full treatment of which lies
outside the scope of this paper.

Now suppose that ε > 0, so that the system is non-
neutral. Now there exists no CM. There is no line of de-
terministic fixed points, and therefore no invariant vari-
able to project our variables on to and reduce the prob-
lem. However, under the assumption that ε is small there
is still a separation of timescales. If ε is sufficiently small,
the slow manifold (and the projection to it) can be ap-
proximated by the results from the quasi-neutral case
(see Eqs. (E15) and (E16)), plus an ε correction. A per-
turbative analysis can thus be conducted, and, under the
assumption the ε ≈ O(R−2), at leading order we have

ż = −εD(z) +
1

R2
S(z) +

1

R
η̄(t) . (E27)

The form of S(z) is unchanged from Eq. (E18), while the
new deterministic contribution to the drift takes the form

D(z) = −
N∑
i=1

(
dz

dxi

dxi
dt

)∣∣∣∣∣
x1=z,x2=Z2(z),e=Ze(z)

. (E28)

Once again however, the projection is simply a function
of x1 and x2, and so

D(z) = −
(
x1F

(0)(x)
dz

dx1
+ x2F

(0)(x)
dz

dx2

− εx1F
(1) dz

dx1

)∣∣∣∣
x1=z,x2=Z2(z),e=Ze(z)

. (E29)
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Finally, we also know that in the limit ε→ 0 this deter-
ministic contribution to the dynamics on the CM, D(z),
should disappear. Therefore the first two terms in the
above equation must cancel, leaving us with

D(z) = εz

(
F (1)(x)

dz

dx1

)∣∣∣∣
x1=z,xi=Zi(z)

. (E30)

We now have a much simpler system to deal with. Say
that F (1)(x) is strictly positive. Then this will be a
term which consistently decreases the value of x1. Based
on physical arguments, we would expect that, regard-
less of the form of ζ, D(z) must be positive. We still
require the exact form of z (see Eq. (E16)) to make an-
alytic progress and specific predictions. Generally how-
ever, we have shown that S(z) will be positive so long as
species X1 has a larger carrying capacity (subject to the
above conditions). A consideration of Eq. (E27) shows
that even when the system is non-neutral, for sufficiently
weak selection/small R, there will be a tradeoff between
stochastic ‘strength in numbers’ and deterministic costs
for high-density behavior.

Appendix F: Illustrating generality with reference to
a complimentary systems: The stochastic

Lotka-Volterra system

In Section B it was noted that deterministically the
public good model reduces to a competitive Lotka-
Volterra model under the elimination of the fast pub-
lic good dynamics. However, it is important to note
that though they may be deterministically equivalent at
long times, due to alterations in the demographic noise
structure the two systems have distinct behaviors. De-
spite this, the qualitative picture remains the same; for
the quasi-neutral system, the fixation probability of each
type is simply proportional to its initial fraction in the
population, while when selection is introduced, there
is playoff between stochastic and deterministic effects.
To illustrate this, we investigate the stochastic Lotka-
Volterra competition model (SLVC), derived from first
principles.

In this section we analyze a stochastic Lotka-Volterra
competition model using the methods developed in Sec-
tion E. We assume a population composed of two phe-
notypes, X1 and X2, whose numbers in the system are
measured by n = (n1, n2). The phenotypes are born, die
and compete with each other. In particular, we define
the system to be governed by the probability transition
rates

T1(n1 + 1, n2|n1, n2) = b1n1 ,

T2(n1 − 1, n2|n1, n2) = d1n1 + c1
R2n

2
1 + c2

R2n1n2 ,

T3(n1, n2 + 1|n1, n2) = b2n2 ,

T4(n1, n2 − 1|n1, n2) = d2n2 + c1
R2n1n2 + c2

R2n
2
2 .

Together with Eq. (A2), this fully specifies the stochastic
dynamics. Taking the limit of large R, we can once again

obtain a mesoscopic description of the system;

dx1

dt
= x1 ((b1 − d1)− c1x1 − c2x2) +

1

R
η1(t),

dx2

dt
= x2 ((b2 − d2)− c1x1 − c2x2) +

1

R
η2(t),

(F1)

where ηi(t) have correlation structure Eq. (A8) with
Bij(x) term given by

B11(x) = x1 ((b1 + d1) + c1x1 + c2x2) ,

B22(x) = x2 ((b2 + d2) + c1x1 + c2x2) ,

B12(x) ≡ B21(x) = 0 . (F2)

Note that the noise structure is not the same as that in
Eq. (E14); two phenotypes with an equal effective repro-
duction rate b1− d1 = b2− d2 have the same determinis-
tic fitness, but distinct multiplicative noise. Phenotypes
which are reproducing and dying more quickly are sub-
ject to greater noise as they have a larger rate of pop-
ulation turnover. We will however proceed to consider
this more general scenario in order to illustrate what can
happen when this assumption is not enforced. Finally,
we impose a separation of timescales by setting

b1 − d1 = b̃(1− ε) , b2 − d2 = b̃ . (F3)

A CM thus exists if ε = 0, and an SM while ε is small.
The parameter b̃ is an effective birth rate encompassing
birth and death, while ε is a fitness cost paid by phe-
notype X1 either in terms of a decreased birth rate, or
increased death rate, relative to phenotype X2.

In the case ε = 0, the system is quasi-neutral, and
so a CM exists. The equation for the CM x2 = Z2(x1)
(see Eq. (E15)) and its intersection with the boundaries

x2 = 0 and x1 = 0, K
(0)
1 and K

(0)
2 respectively, are

Z2(x1) =
1

c2

(
b̃− c1x1

)
,

K
(0)
1 =

b̃

c1
, K

(0)
2 =

b̃

c2
. (F4)

The parameters K
(0)
1 and K

(0)
2 give the frequency of X1

and X2 phenotypes in isolation. We assume that c2 > c1
and thus that phenotype X1 exists at higher densities
than phenotype X2. Finally, the mapping from any point
(x1, x2) to a coordinate z = x1 on the CM is determined
from Eq. (E16);

z =
b̃x1

c1x1 + c2x2
. (F5)

We can now obtain expressions for D(z), S(z) and B(z)
directly from Eqs. (E30), (E18) and (E20);

D(z) = −z
(
b̃− c1z

)
, (F6)

S(z) =
2

b̃2
z
(
b̃− c1z

)(
c2(b̃+ d2)− c1(b̃+ d1)

)
,(F7)

B(z) =
2

b̃2
z
(
b̃− c1z

) [
z
(
c2(b̃+ d2)

− c1(b̃+ d1)
)

+ b̃(d1 + β)
]
. (F8)
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The equation can now be solved to calculate the fixation
probability of phenotype X1 along the CM. In terms of
the initial fraction of X1, f1, we find

Q(f1) =
1− χ(f1)

1− χ(1)
,

χ(f1) =

[(
K

(0)
1

d1 + b̃

)(
d1(1− f1) + d2f1 + b̃

K
(0)
1 (1− f1) + f1K

(0)
2

)]−θ
,(F9)

where θ is a parameter given by

θ =

(
1 +

K
(0)
1 K

(0)
2 R2b̃ε

K
(0)
2 (d1 + b̃)−K(0)

1 (d2 + b̃)

)
. (F10)

Let us consider the special case ε = 0. The fixation
probability then becomes

Q(f1)|ε=0 =
f1(d2 + b̃)

d1(1− f) + d2f + b̃
. (F11)

The species with the lower death rate (and death rate,

since b̃ is fixed), has a greater probability of fixation than
the species with the higher birth rate/death rate. This
insight, made in [9, 10], is a result of the higher lev-
els of noise experienced by the phenotype with the high
birth and death rates. This makes it easier for the longer
lived phenotype, (lower birth/death rates), to invade and
fixate. For the purposes of this paper, we ignore such ef-
fects in order to focus on systems in which the carrying
capacity of the phenotypes alone is responsible for the dif-
ferences in noise experienced by the phenotypes on the
CM/SM.

To this end, we now focus on the case b1 = b2 ≡ b,
d1 = d2 ≡ d. In this case, Q(f1)|ε=0 = f1, and Q(f1) in
general becomes

Q(f1) =
1− χ(f1)

1− χ(1)
,

χ(f1) =

(
K

(0)
1

K1(1− f1) + f1K
(0)
2

)−θ
, (F12)

where θ is now given by

θ =

(
1 +

K
(0)
1 K

(0)
2 R2(b− d)ε

(K
(0)
2 −K(0)

1 )b

)
. (F13)

The invasion probabilities φ1 and φ2 meanwhile are
given by

φ1 = Q(N−1
2 ) , φ2 = 1−Q(1−N−1

1 ) . (F14)

We can use the above expressions to obtain an approxi-
mate value for the maximum cost to birth rate that can
be paid in order that selection reversal is observed. As-
suming N−1

1 and N−1
2 are of order ε and Taylor expand-

ing in ε, we find the cost to birth must obey

1

N2

(
b

b− d

)(
1− N2

N1

)
> ε (F15)

for the direction of selection to be reversed. This is anal-
ogous to Eq. (8) in the main text.

Appendix G: Order of magnitude parameter
estimates

In this section we seek an illustrative set of parameters
for use in the model in order emphasis that the insights
developed are biologically reasonable. We wish to obtain
order of magnitude estimates for the set of parameters,
b, px, pu, r, δ, κ, R, m and D. We choose the yeast
Saccharomyces cerevisiae as our model organism. While
our model is more physically realistic than many mathe-
matical public good models, we note that there are still
choices that must be made in relating this physical sys-
tem to our general framework.

Our model is constructed such that the uptake of one
constituent of the public good, Q, by a phenotype, results
in a reproduction event. In the context of S. cerevisiae,
the type Q is thus shorthand for the amount of inver-
tase that must be present in the system to break down
sucrose into sufficient glucose for a reproduction event of
the yeast. Let us define σ to be the scaling between nq
and the total number of invertase molecules, such that
the number of invertase molecules is σnq. In order to
understand the relationship between our model parame-
ters and physically measurable parameters, we begin by
considering a simplified ODE system of our model.

dx

dt
= x(b+ rq − κx) , (G1)

dq

dt
= px− δq . (G2)

While the total number of discrete invertase constituents
is nq ≈ R2q, the total number of invertase molecules is
R2σq. Let θ be a measure of the number of invertase
molecules, such that θ = σq. The ODEs in this more
natural variable read

dx

dt
= x(b+

r

σ
θ − κx) , (G3)

dθ

dt
= σpx− δθ . (G4)

The decay rate δ is independent of the number of
molecules which make up an invertase constituent Q,
so we can take experimental measurements of the inver-
tase molecular decay rate as values for δ. Meanwhile
the molecular invertase production rate and reproduc-
tion rate due to invertase take on scaled forms of the
parameters in our original ODEs;

rmol =
r

σ
, (G5)

pmol = σp . (G6)

While measurements of pmol are obtainable in the lit-
erature (see Table S.1), our estimation of rmol is com-
plicated by the fact that it is an effective parameter. It
must capture the increase in the reproductive rate due to
invertase, which in reality is coupled to both the reaction
rate of invertase and sucrose into glucose, as well as the
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uptake rate of glucose by yeast and the energy conver-
sion to reproduction. We do however know the typical
range of yeast reproduction rates. Let us define λexp as
the yeast reproduction rate as measured experimentally.
In turn, let λeff be the effective per capita reproduction
rate of yeast in the model;

λeff = b+ rq . (G7)

The yeast reproduction rate clearly depends on the
amount of public good in the system, typically varying
from

λeff = b (all non− producers)

to λeff = b
δκ

δκ− pxr
(all producers) . (G8)

In reality, the reproduction rate of yeast in a system with-
out any invertase is effectively zero; we have assumed
some baseline birth rate for convenience in the model,
which could be physically interpreted as being associ-
ated with an exogenous glucose concentration in the sys-
tem. We assume that this is typically low, such that b
is small, while the yeast approaches its maximum repro-
ductive rate when it consists entirely of producers.

The parameter κ controls death due to crowding. For
simplicity this is the only form of death in the model.
This choice leads, perhaps unnaturally, to the non-
producers (who exist at typically lower densities) having
a much smaller death rate than producers. For the pa-
rameters chosen however, we obtain per- capita death
rates on the order of an hour for producers, and ten
hours for non-producers. The parameter R meanwhile
measures the assumed spatial interaction scale. It deter-
mines the typical number of individuals on each patch.
We can use this value to infer the size of a patch. De-
noting the diameter of a yeast cell as Lc, and assuming
that the hyper-producing cells in the stationary state can
be packed on a grid, the size of each patch, Lp, can be
approximated by

Lp = Lc
√
Nu , (G9)

= LcR
√
Ku . (G10)

The parameters m and D are effective migration and dif-
fusion rates in our model. To map these physical param-
eters these must be in turn scaled by the patch length.
The public good diffusion rate must also be scaled by σ,
which maps the discrete amount of invertase constituents
Q to the number of invertase molecules. Denoting mexp

and Dexp the physical migration and public good diffu-
sion rate rates, it can be shown that [28]

Dexp = σL2
pD , mexp = L2

pm. (G11)

The parameter choices which follow from these calcula-
tions are summarized in Table S.2.

When considering the parameter choices summarized
in Table S.2, it is important to make a final point. While

both the approximations we have employed, the system
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FIG. 8. Figure illustrating the larger range of values for the
parameter ε over which the approximation Eq. (C4) is accu-
rate. Parameters are given in Table S.2, with the exception
of px and ε which are varied. Note that this figure is similar
to Fig. 2, plotted in the main text, but plotted over a grater
range of ε and φx−φy. The parameter region plotted in black
is that for which κδ > rpx.

size expansion in Section A and the fast-variable elimi-
nation in Section B, rely formally on R2 being large and
ε being small (O(R−2) > ε), in practical terms the pro-
cedures are relatively robust to this restriction. Indeed,
throughout the body of the main text, R = 4, while ε is
varied on the interval [0, 0.1]. In fact we find that the ap-
proximate analytic expression we obtain for the invasion
probabilities of the phenotypes, Eq. (C4), describes the
results obtained from simulation well, up to ε = R−2, as
illustrated in Fig. 8.

In terms of the system size expansion, this robustness
can in part be explained by the fact that the typical pop-
ulation sizes (Nx, Ny and Nq) are proportional to R. For
populations of fixed size N , SDEs for the system can be
obtained by means of a Taylor expansion of the master
equation (for example, Eq. (A2)) as a series in 1/N . A
crucial feature of the system we are concerned with here
however, is that population sizes may vary, and so this
technique is unavailable. Instead we conduct an expan-
sion in the interaction scale R, which is proportional to
the mean population size. Though R may not be a large
number itself, increasingR leads to an associated increase
in population size (see Table S.2). In turn, this leads to
terms of higher order in the Taylor expansion of the mas-
ter equation becoming subdominant [47], justifying the
truncation which leads to Eq. (A4). In contrast, the re-
silience of the fast-variable elimination approximation to
such large values of ε is surprising.
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Experimental parameters

Experimental Parameter Value Description

pmol 0.46 mol s−1 Production rate of a molecule of invertase per

producing yeast cell [26].

δ 2× 10−3 mol s−1 Estimated efficacy decay rate of invertase (see [49], Fig 5.)

λexp 0.31− 0.5hr−1 Yeast reproduction rate in producing population [50, 51]

εexp 0.06 Cost of public good production to yeast reproduction rate [50]

Dexp 100µm2s−1 Diffusion rate of invertase molecules estimated in [41]

Lc 3µm Cell length physical approximation [41].

TABLE S.1. List of experimental parameters obtained from literature.

Illustrative parameter choices with justifications

Parameter Value Justification

σ 4000 Assumed parameter. Presence of 4000 invertase

molecules required for yeast reproduction.

py 0 True non-producer does not produce invertase.

px 1.14× 10−4 s−1, Experimental value of molecular invertase production

(0.41hr−1) rate (see Table S.1) scaled by σ (see Eq. (G6)).

pu 1.2× 10−4 s−1 Leads to factor 1.7 increase in the steady state invertase

(0.43hr−1) from producing to hyper-producing population, consistent with [33].

b 6.94× 10−6 s−1 Small baseline yeast birthrate assumed.

(0.025hr−1)

r 1.58× 10−5 s−1 Chosen so as to give per-capita yeast reproduction rate

(0.057hr−1) (b+ rq) ≈ λexp when system entirely producers (see Table S.1).

δ 0.002 s−1 Taken from experimentally measured values. (see Table S.1)

κ 1× 10−6 s−1 Suggested parameter for illustrating effects in paper;

restricted by δκ > pir, i = x, y, u.

R 2 Suggested parameter for illustrating effects in paper.

ε 0.06 Taken from experiments (see Table S.1)

Ny 28 See Eq. (B11).

Nx 302 See Eq. (B11).

Nu 499 See Eq. (B11) for Nx and substitute pu for px.

Lp 67µm See Eq. (G10).

m 3.4× 10−7 s−1 Yields a migration to birth-rate ratio between m/b = 4.9× 10−2

(all non-producers) and m/(b+ rq) = 4.5× 10−3 (all producers).

D 2.22× 10−5 s−1 Obtained using experimental value Dexp from Table S.1 and

Eq. (G11).

TABLE S.2. List of parameters used in the simulation, with the exception of px, pu, ε, m and D which are varied.
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Appendix H: Movies

Metapopulation dynamics

t = 253 days

Producers

on patch

0
25
50
75
100
125

Movie 1. Still from Movie S1: Movie of a simulation of
the metapopulation public good model on a 100 × 100 grid
(C = 104). Colors indicate the number of producers on each
patch; patches with a small number of producers are colored
red while patches with a large number of producers are col-
ored blue. Parameters used are px = 1 × 10−4, ε = 0.02,
m = 3.7 × 10−5 and the remaining parameters taken from
Table S.2. With these parameters, Ny ≈ 28 and Nx ≈ 129.
Initial conditions are a single producer and non-producer on
each patch. Large numbers of producers on a patch are corre-
lated with low numbers of non-producers on the same patch.
The space-averaged dynamics of this simulation are given in
the main text, Fig. 4. Counter to the deterministic predic-
tion, the number of producers increases with time, while the
number of non-producers decreases.

Metapopulation dynamics

t = 253 days

Patch State

All Non-producers

Mix

All Producers

Movie 2. Still from Movie S2: Movie showing the distribution
of homogeneous non-producing patches (red), homogeneous
producing patches (blue) and heterogeneous mixed patches
(gray-green) in the simulation of the metapopulation public
good model given in Video S1. For the majority of the obser-
vation time, every patch contains a heterogeneous mix of pro-
ducers and non-producers. Homogeneous producer patches
only begin to emerge as producers approach fixation in the
system.
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