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1 Introduction

The worldline formalism [1, 2] is a first quantised approach to quantum field theory which

offers an alternative, highly efficient approach to many calculations. Recently it has been

gaining in popularity as a valuable way of addressing modern problems in field theory,

although it has roots in attempts to understand the Bern-Kosower master formulae [3, 4]

which were originally uncovered in string theory. The general approach is to rewrite a field

theory in terms of the quantum mechanics of a (spinning) point particle which traverses a

particular worldline whilst interacting with a background gauge field. One then integrates

over the particle trajectories and spin degrees of freedom to arrive at an effective action
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for the gauge field. This is often used as a starting point for the calculation of physi-

cally significant quantities and leads to simple and computationally economic calculations

that maintain manifest gauge invariance [4, 5]. For applications of this approach see, for

example, the work in [5–15].

Interest in worldline approaches to field theories with a non-Abelian symmetry has

been revived by a new approach to the description of colour degrees of freedom. Tradi-

tionally one introduces a Lie-algebra valued potential which is minimally coupled to the

matter field but gauge invariance demands that the path ordering procedure be imple-

mented inside functional integrals. From the point of view of the worldline theory this is

somewhat unnatural, for which reason it can be more beneficial to implement the coupling

by introducing auxiliary worldline fields [16, 17]. These additional colour fields may be

Grassmann variables or may be bosonic in nature and are responsible for providing an en-

larged Hilbert space and imposing the required path ordering [18, 19]. However, this space

is generally described by a reducible representation of the gauge group and it is neces-

sary to extract a single wavefunction component which transforms in a desired irreducible

representation [20, 21]. In such work, one may choose the colour fields to transform in

an arbitrary representation (and its conjugate) of any desired gauge group and it is sub-

sequently possible to generate the Wilson-loop couplings for matter fields transforming

in fully anti-symmetric or fully symmetric tensor products of this representation. In the

present case we will instead achieve this coupling for an SU(N) gauge group by combining

sets of colour fields transforming only in the (conjugate-)fundamental representation of this

group; this approach, which we now describe, is easily generalised to other gauge groups

with the same technique.

We have recently outlined the general method that achieves this projection onto an

arbitrarily chosen representation of the symmetry group in [22]. To do this it was necessary

to include a fixed number of families of the additional colour fields, each of which spans a

Hilbert space whose wavefunction components transform in fully anti-symmetric or sym-

metric representations (depending on the nature of the auxiliary fields). The matter field

then transforms in the (reducible) tensor product of these (anti-)symmetric representations

but, by partially gauging a unitary symmetry which rotates between the families, we were

able to impose constraints on the physical states in order to select a single irreducible

representation from this space. This overcame previous limitations that had existed where

the matter field was restricted to transforming in representations produced by fully anti-

symmetric tensors product of the chosen representation of the colour fields [23]. In [22]

we verified our construction by calculating the colour degrees of freedom associated to the

matter field, confirming that this coincided with the dimension of the representation onto

which we wished to project.

In the current article we will go beyond this simple calculation to also include the

coupling between the matter field and the gauge field. We will construct the worldline the-

ory which describes the partition function of the Dirac field transforming in an arbitrary

representation of the gauge group of SU(N). We will carry out the functional quantisation

of the colour degrees of freedom and show that it generates a sum over Wilson-loop inter-

actions for particles in different representations of the symmetry group. We will then use
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the projection outlined in [22] to select from this sum the appropriate coupling for the field

in the chosen irreducible representation. To begin with will choose each family of auxiliary

fields to be anti-commuting so that everything is made up out of combinations of objects

which transform in fully anti-symmetric representations. After achieving our aim we will

then return to the case that the colour fields are bosonic, where the interactions are then

constructed out of objects transforming in fully symmetric representations.

In the next section we first present the standard reformulation of quantum field theory

in a first quantised setting followed by the introduction of a single family of Grassmann

colour carrying fields. In section 3 we discuss the structure of this worldline theory and its

symmetries, which will allow us to arrive at the simplest form of projection based on gauging

a U(1) symmetry. We then quantise this basic model by computing the path integral on the

circle in section 4, with the result being the Wilson-loop interaction taken in an arbitrary

fully anti-symmetric representation. The worldline theory is then extended in section 5.

There we introduce F families of worldline fields and uncover a U(F ) symmetry on the

worldline. We partially gauge this symmetry and compute the path integral to arrive at

the Wilson-loop coupling for a particle in an arbitrarily chosen irreducible representation of

the gauge group. Following this, section 6 briefly presents an analogous worldline theory in

the case that the colour fields are bosonic, which is quantised in section 6.1 and generalised

to produce arbitrary irreducible representations in section 7.

2 Worldline theory

We begin with the configuration space action describing the N = 1 supersymmetric point

particle [24]:

S [ω, ψ] =
1

2

∫ 2π

0
dτ

[

ω̇2

T
+ iψ · ψ̇

]

, (2.1)

where ωµ are the bosonic coordinates of the particle in target space and the ψµ are their

Grassmann super-partners encoding the particle’s spin degrees of freedom. This action

appears naturally in the worldline formalism [1, 25] of the Dirac field, Ψ, coupled to a gauge

boson, A, which we now briefly review. The quantum effective action, Γ [A], describes the

dynamics of the gauge boson in the presence of the matter field. It is defined by integrating

over the matter degrees of freedom which leads to a functional determinant:

Γ [A] = − ln

{∫

D(Ψ̄Ψ)e−
∫

d4x Ψ̄γ·DΨ

}

= −1

2
Tr ln (γ ·D)2. (2.2)

In the above we have denoted the covariant derivative by D = (∂ +A), absorbing the

coupling strength into the gauge field. Using the Schwinger proper time trick [26] the

logarithm is turned into an integral, following which the functional trace is interpreted as

the transition amplitude for a fictitious spin 1/2 point particle to traverse a closed loop in

the presence of a background gauge field. This quantum mechanical transition amplitude
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can be written in path integral form as

∫ ∞

0

dT

T

∮

D(ω, ψ)e−SE [ω,ψ] trP exp

(

i

∫ 2π

0
AR(τ ′)TRdτ ′

)

. (2.3)

where the action on the particle worldline is the (Euclidean) extension of (2.1) to incorpo-

rate a (super-)Wilson loop interaction between the particle and the gauge field:

g(τ) := P exp

(

i

∫ τ

0
AR(τ ′)TRdτ ′

)

; A := ω̇ ·A− iT

2
ψµFµνψ

ν , (2.4)

where we have denoted the Hermitian Lie algebra generators by {TR} and indicated the

path ordering prescription that is necessary for gauge invariance of the worldline theory.

The colour degrees of freedom of the original Dirac field are now encoded in the above

super-Wilson loop interaction between the fictitious particle and the background field:

they are specified by choosing the representation of the TR. In this way the original field

theory based on second quantisation has been re-written in terms of simple one dimensional

quantum mechanics which benefits from all of the advantages discussed in the introduction.

In the case that the gauge group is Abelian, the worldline theory enjoys translation

invariance and a global supersymmetry. When the field strength tensor contains the addi-

tional commutator term present for a non-Abelian theory, the former of these invariances

is preserved but the supersymmetry is spoilt at the level of the action. The traditional

approach to preserve this supersymmetry is to incorporate only the Abelian part of Fµν in

the worldline action and to then introduce a modification to the path ordering prescription;

this “super-path ordering” is responsible for completing the field strength tensor to include

the missing commutator [2] as discussed in appendix A. However, as we shall now explain,

there is an alternative approach which allows one to include the full field strength tensor

in the worldline action whilst preserving the supersymmetry, at the expense of introducing

additional, auxiliary worldline fields.

The path ordering and the inclusion of the Lie algebra generators is unnatural from

the perspective of the particle theory and tends to lead to unwanted complication when it

comes to the calculation of physical quantities. It can instead be represented by introducing

additional fields to encode the colour degrees of freedom [19, 20, 27]. These fields can

be anti-commuting or commuting as we have discussed in [22]. In this section we take

the former route, using Grassmann auxiliary fields, leaving the bosonic case for section 6

onwards. For a gauge group SU(N) we need N pairs of fields φ̃r, φr which transform in

the same (and conjugate) representation of the gauge group as A (we follow the notation

in [19]). We choose the following Poisson brackets for these fields

{φ̃r, φs}PB = −iδrs ; {φ̃r, φ̃s}PB = 0 = {φr, φs}PB (2.5)

which can be used to absorb the gauge group indices of the generators by defining new

objects which provide a representation of the Lie algebra

RS ≡ φ̃r(TS)r
sφs;

{

RS , RT
}

PB
= fSTURU , (2.6)
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where the fSTU are the structure constants of the algebra. The action and the boundary

conditions of these new variables is first order and is chosen so as to reproduce the path-

ordering and trace in (2.3). The extended worldline action including these “colour fields”

is then given by

S[ω, ψ, φ̃, φ] =

∫ 2π

0
dτ

[

ω̇2

2T
+

i

2
ψ · ψ̇ + iφ̃rφ̇r + φ̃rAr

sφs

]

, (2.7)

where we have introduced the notation Ar
s = AR(TR)r

s. As promised, this action now

enjoys invariance under global supersymmetric transformations generated by the constant

Grassmann parameter η, in which the worldline fields transform as

δηω = iηψ; δηψ = − η

T
ω̇

δηφ̃
r = −ηφ̃sψ ·As

r; δηφr = −ηψ ·Ar
sφs (2.8)

We will gauge these symmetries in the next section where the theory is reformulated in

superspace so as to arrive at a worldline theory with local supersymmetry and reparam-

eterisation invariance. This is useful for a deeper understanding of the structure of the

worldline theory. The particle action and global symmetry discussed above will then arise

upon a certain choice of gauge fixing, but this approach will also require constraints to be

imposed on the physical state space. Note also that the worldline Green function for the φ̃,

φ theory is (up to constants which depend upon the boundary conditions) proportional to

the step function 2G(τ, τ ′) = θ(τ − τ ′), which suffices to build the (familiar) path ordering

— further details are given in the next section and in appendix A.

We have studied this action before in the context of the standard model and unified

theories [18, 19] and it has also appeared in perturbative calculations in the worldline for-

malism [23, 28]. Related actions include the generalisation of the model to O(2S) extended

supersymmetry [29–31], whereby 2S families of Grassmann fields {ψk} are used to describe

particles of (semi-)integer spin S, in flat and curved spaces. We shall make use of some of

these ideas in later sections. For now we focus on the action (2.7), the simplest incorpora-

tion of colour fields into the worldline model. In the next section we consider the structure

of this theory by exploring the Hilbert space of physical states using canonical techniques.

We will also discuss the gauging of the reparameterisation invariance and supersymmetry.

This will help us to interpret the results of the functional quantisation presented in sec-

tion 4. These results will then be recycled in the remaining parts of this article when we

generalise the model to describe non-trivial matter multiplets.

3 Worldline symmetry and canonical structure

The supersymmetry of the xµ, ψµ theory can be extended to the theory describing φ̃ and φ

if we introduce two commuting auxiliary variables z̃ and z to be their super-partners and

replace the part of the action involving these fields in (2.7) by

S[φ̃, z̃;φ, z] =

∫

dτ

[

φ̃r

(

iδsr
d

dτ
+A0

r
s

)

φs − T z̃rzr + iT
(

z̃rψ ·Ar
sφs + φ̃rψ ·Ar

szs

)

]

,

(3.1)

– 5 –
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where A0 = ω̇ · A − iTψ · ∂A · ψ is the super-Wilson loop exponent without the commu-

tator part of the field strength tensor. It is easy to verify that the full Wilson loop is

now generated (i.e A0 is completed to include the non-Abelian field strength tensor) by

integrating over the auxiliary fields z̃ and z [22, 32] and that this action is also globally

supersymmetric if

δηφ̃ = iηz̃; δη z̃ = − η

T
˙̃
φ

δηφ = iηz, δηz = − η

T
φ̇ (3.2)

for the constant Grassmann generator η. Note that when the fields z̃ and z are put on-shell

the transformations for φ̃ and φ given in (2.8) are recovered. Indeed, since these fields are

auxiliary, we may trivially integrate them out, in which case we recover the action (2.7).

This global supersymmetry is the residual symmetry which comes from gauge fixing

a locally supersymmetric action, which we give here in the superspace formalism.1 We

extend the parameter domain τ → (τ, θ), where the Grassmann parameter θ squares to

zero, and introduce an einbein, e (τ), and its super-partner (the gravitino), χ (τ). We also

define the superfields

X (τ, θ) = ω (τ) + θe
1

2 (τ)ψ (τ) ,

E (τ, θ) = e (τ)− 2θe
1

2 (τ)χ (τ) ,

Φ̃ (τ, θ) = φ̃ (τ) + θe
1

2 (τ) z̃ (τ) ,

Φ (τ, θ) = φ (τ) + θe
1

2 (τ) z (τ) , (3.6)

and the super-derivative D = ∂θ + iθ∂τ . We have suppressed the colour indices on Φ̃

and Φ for brevity and chosen a convention for each superfield which leads to an action

which takes a similar form to that of Brink, diVecchia and Howe [24]. Then the locally

supersymmetric action

∫

dτdθ

[

−1

2
E−1D2X ·DX− Φ̃rDΦr + iΦ̃rDX ·Ar

s (X)Φs

]

, (3.7)

1Local supersymmetry transformations provide a graded generalisation of the diffeomorphisms of the

circle, Sdiff
(

S1
)

— see [33]. Under transformations parameterised by V (τ), the generator of reparameter-

isations, and a Grassmann function η (τ), generating pure supersymmetry transformations,

τ → τ + V (τ) + θη (τ) ; θ → θ + η (τ) +
1

2
θV̇ (τ) , (3.3)

the super-derivative transforms homogeneously

DX → Λ (τ, θ)DX (3.4)

and the super-einbein transforms as

E → Λ2 (τ, θ)E (3.5)

where Λ (τ, θ) = 1 + 1

2
V̇ (τ) + θη̇ (τ). The integration measure transforms as dτdθ → Λ−1 (τ, θ) dτdθ,

ensuring that Edτdθ transforms homogeneously; Φ̃ and Φ transform as worldline scalars like X.

– 6 –
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can be expanded into component fields and integrated over θ to give the configuration

space action

∫

dτ

[

1

2
e−1ω̇2 +

i

2
ψ · ψ̇ + iφ̃rφ̇r −

iχ

e
ω̇ · ψ + φ̃rA0

r
sφs

− ez̃rzr + ie(z̃rψ ·Ar
sφs + φ̃rψ ·Ar

szs)

]

(3.8)

The transformations of the components are inherited from the superspace variations in

footnote 1. Under reparameterisations ω, ψ, φ̃, z̃, φ and z transform as worldline scalars,

e2 transforms as a worldline metric and χ transforms as e. Under a pure supersymmetry

transformation generated by the Grassmann η(τ) the transformations of the fields are

δηω = iηψ; δηψ = −η

e
(ω̇ − iχψ) ; δηe = −2iηχ; δηχ = η̇, (3.9)

and similarly

δηφ̃ = iηz̃; δη z̃ = −η

e

(

˙̃
φ− iχz̃

)

; δηφ = iηz; δηz = −η

e

(

φ̇− iχz
)

, (3.10)

and the action (3.8) is invariant under these variations.

With the given periodicity conditions on the worldline fields the local supersymme-

try can be gauged to e(τ) = T and χ = 0 where T is a constant modulus (we discuss

the Faddeev-Popov determinant in the next section) — we note that in the case of open

worldlines the gauge fixing procedure can only fix χ to be a constant Grassmann number,

χ0, say, which is another modulus to integrate over. We intend to study this case in fu-

ture work. Substituting their classical solutions into (3.8) reproduces the action for both

the matter fields S [ω, ψ] and the new Grassmann fields S[φ̃, φ] upon integration over θ.

The equations of motion for these variables impose first class constraints2 on the resulting

theory [24]. One of the great advantages that the superspace form of the theory offers is

that the gauge field A now enters linearly in the action, making its functional quantisation

straightforward. In appendix A we discuss different approaches to producing the path

ordered exponential g(2π) out of this locally supersymmetric theory by using the form of

the Green functions of the Grassmann variables to construct a super-path ordering and in

the next subsection we examine the Hilbert space of the φ̃, φ theory.

3.1 Fock space of the colour fields

We must also briefly discuss the Hilbert space of the extended theory so as to understand

the form of the results we present in the next sections. We follow the procedure presented

in [22]. For canonical quantisation we promote φ̃r and φs to creation and annihilation

operators which span a two dimensional Fock space {|↓r〉 , |↑r〉} for each index r. The

Poisson brackets (2.5) become the fundamental anti-commutation relations, {φ̂†r, φ̂s} = δrs ,

which in a coherent state basis are solved by setting φ̂†r = φ̃r and φ̂r = ∂φ̃r when acting

2The equation of motion for the einbein enforces the mass-shell condition on physical states and that

of the gravitino corresponds to the Dirac equation γ · D |phys〉 = 0, when the fields ψµ are replaced by

γ-matrices upon quantisation.
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on wave-functions Ψ(x, φ̃). The Fock space is then built up by acting on the vacuum with

creation operators and is finite dimensional since we have taken φ̃ and φ to anti-commute.

The creation operators φ̃r have an index which transforms in the conjugate representation

of the generators TR (see (2.6)) and the wave function Ψ(x, φ̃) has a finite expansion in

components which transform in anti-symmetric products of this representation [34]:

Ψ(x, φ̃) = Ψ(x) + φ̃r1Ψr1(x) + φ̃r1 φ̃r2Ψr1r2(x) + . . .+ φ̃r1 φ̃r2 . . . φ̃rNΨr1r2...rN , (3.11)

where the wavefunction components transform in the fully anti-symmetric representations

of the gauge group so that Ψ(x, φ̃) will in general be described by a reducible representation

of the gauge group [35].

To pick out a given representation requires a means of projecting the intermediate

states of the path integral onto coherent states with the correct occupation number [35].

The operator n̂ = φ̂†rφr has the commutator [n̂, φ̂†r] = φ†r and therefore has eigenstates

n̂ |↓r〉 = 0, n̂ |↑r〉 = |↑r〉 whose eigenvalues indicate the occupation of state r. So we

can impose the constraint that the physical states have occupation number n via the

introduction of a delta function in the path integral measure:

∫

D φ̃Dφ →
∫

D φ̃Dφ δ

(

φ̃rφr −
(

n− dR
2

))

(3.12)

where dR is the dimension of the representation in which the fields transform. On the

Fock space (anti-symmetrising to resolve the operator ordering ambiguity) this constraint

becomes
(

1

2

(

φ̂†rφ̂r − φ̂rφ̂
†r
)

−
(

n− dR
2

))

|phys〉 = 0. (3.13)

This acts on the wave function as
(

φ̃r∂φ̃r − n
)

Ψ = 0 which is easily seen to enforce the

vanishing of all components of Ψ except for that which transforms under the representation

with n indices. In functional quantisation we can represent the delta function as a path

integral over a further worldline field so as to form

∫

D φ̃DφDa e
i
∫

dτ
[(

n−
dR
2

)

a(τ)−a(τ)φ̃rφr

]

. (3.14)

In this way the field a acts as a Lagrange multiplier whose equation of motion imposes the

correct constraint on physical states.

An equivalent way of arriving at (3.14) — and one which will be important in later

sections — is to recognise that the action (2.7) has a global symmetry under rotations of

φ̃ and φ by a U(1) phase factor: under φr → e−iϑφr and φ̃r → φ̃reiϑ the action remains

invariant. The conserved current associated to this transformation is easily verified to be

φ̃rφr which upon quantisation just becomes the occupation number operator. To gauge this

symmetry we can introduce a new worldline field a(τ) and construct a covariant deriva-

tive Dφ =
(

d
dτ

+ ia
)

φ. The “dynamics” of this gauge field is given by a Chern-Simons

term [20, 23, 28] which on S1 can only be the one-form
∫

dτ
(

n− dR
2

)

a(τ). Note that the

quantised nature of the prefactor multiplying a(τ) ensures that this Chern-Simons theory

– 8 –
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is absent of anomalies [36]. We hence arrive at (3.14) which is the gauged version of (2.7).

Using the covariant derivative we can return to the worldline theory to write the action

corresponding to the φ̃, φ part of (2.7) as

S[φ̃, φ, a] =

∫ 2π

0
dτ

[

φ̃r (iδrsD +Ar
s)φs +

(

n− dR
2

)

a

]

. (3.15)

The Grassmann fields are taken to have anti-periodic boundary conditions whilst the gauge

field is periodic on the interval. The infinitesimal transformations of the fields under the

U(1) symmetry which leave this action invariant are generated by ϑ(τ) and are given by

δϑφ̃
r = iϑφ̃r; δϑφr = −iϑφr; δϑa = ϑ̇ (3.16)

This mechanism has been used very successfully in the worldline formalism of quantum field

theory for a variety of situations [11, 20, 28, 34, 37, 38] in order to project onto irreducible

representations of the gauge group. In [18, 19], this projection was not included so as to

count the contribution from all representations constructed out of totally anti-symmetric

tensor products of the fundamental representations of SU(2), SU(3), SU(5) and SO(10) in

order to investigate worldline approaches to the standard model and unified theory.

In this article we include the U(1) gauge field and demonstrate how the projection

onto irreducible representations works in the functional approach. These results will be

the building blocks of later sections, where we will extend the worldline theory of this

section to include different families of Grassmann variables to construct worldline theories

of matter fields that transform in arbitrary irreducible representations of the gauge group.

Once this has been attained, we will also explain how it is possible to take the fields φ̃ and

φ to be bosonic in order to generate an infinite sum over fully symmetric representations,

as in [28].

4 Functional quantisation

In this section we carry out the (Euclidean) path integral quantisation of the gauged

worldline theory discussed above. In order to do so we will follow the usual procedure

of choosing a convenient fixing of the gauge symmetry, introducing Faddeev-Popov deter-

minants to compensate for this restriction and integrating over the remaining degrees of

freedom. This will be seen to compute the exponentiated line integrals in various repre-

sentations of the SU(N) gauge symmetry, of which the U(1) projection outlined above will

select one irreducible representation. We continue for the time being by assuming that φ̃

and φ are anti-commuting (Grassmann) fields, discussing what happens if they are taken

to be commuting in later sections. The results of this section will be vital when we come

to generalise the model to include multiple copies of the colour fields so as to project on to

an arbitrary representation of the gauge group.

We have three local symmetries to fix — namely the reparameterisation invariance,

the supersymmetry and the U(1) invariance. These are gauged by the triple of fields

(e, χ, a). We gauge fix these to constants
(

T, 0, θ
2π

)

which is particularly convenient from

the point of view of calculations and is standard in the worldline approach to quantum
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field theory [23, 29]. These moduli parameterise gauge inequivalent choices of the fields. It

is well known that the Faddeev-Popov measure associated to fixing the einbein is dT
T

and

on closed curves the anti-periodicity of χ allows us to completely gauge it away without

requiring the introduction of ghosts (for further details see the appendices of [39]). For the

fixing of the U(1) field we discuss in appendix B that we can at best set the gauge field

equal to a constant and application of large gauge transformations implies that θ must

be interpreted as an angle in [0, 2π]. The measure associated with this gauge fixing is

independent of θ and can be normalised to dθ
2π . In summary, for an arbitrary functional Ω

we can make the replacement

∫

DeDχDaΩ [e(τ), χ(τ), a(τ)] →
∫ ∞

0

dT

T

∫ 2π

0

dθ

2π
Ω [T, 0, θ] (4.1)

which will be used to put path integrals into gauge fixed form.

Using (4.1), Wick rotating to Euclidean space and recalling that z̃ and z are non-

dynamical auxiliary fields that can be integrated out at any time we will consider the

partition function

Z [A]=

∫

DωDψD φ̃DφDeDχDa

Vol(Gauge)
e
−

∫ 2π

0
dτ

[

e−1 ω̇2

2
+ 1

2
ψ·ψ̇−χ

e
ω̇·ψ+φ̃r(δsrD−iAr

s)φs−i
(

n−
dR
2

)

a
]

=

∫ ∞

0

dT

T

∮

DωDψ e−
1

2

∫ 2π

0
ω̇2

T
+ψ·ψ̇ dτ

∫ 2π

0

dθ

2π
e
i
(

n−
dR
2

)

θZ [A, θ] . (4.2)

We have denoted by Z [A, θ] the partition function of the φ̃, φ theory which is responsible

for generating the Wilson-loop:

Z [A, θ] =

∫

D φ̃Dφ e−
∫ 2π

0
dτ φ̃r(δsrD−iAr

s)φs , (4.3)

where A is the super-Wilson loop exponent which, on the chosen gauge slice, depends on

the path ω, spin variable ψ and modulus T . In the first line of (4.2) we divided by the size

of the symmetry group associated to the reparameterisation invariance, the supersymmetry

and the U(1) symmetry, which is taken care of in the second line by the integration over the

moduli T and θ. The covariant derivative becomes Dφ =
(

d
dτ

+ iθ
2π

)

φ after gauge fixing.

It is quite illuminating to see the coupling between the Grassmann fields in (4.3) which

consists of a piece −iArs representing the particle’s interaction with the space-time gauge

field and a second coupling to the worldline gauge field iθ
2π δ

s
r whose interplay will be crucial

in the proceeding sections.

The integral over the physical worldline fields ω and ψ in (4.2) is the usual worldline

integral that arises in the worldline formalism of quantum field theory. The path integral

of these variables coupled to Wilson loops is well established in the literature [2] and is not

the source of any novelty in this article. We will instead focus on Z [A, θ], calculating the

gauge group information that it contains, before completing the integral over θ in order to

select out the path ordered exponent in a chosen anti-symmetric representation.

For the purposes of one-loop calculations in the worldline approach it is conve-

nient to incorporate the coupling to the gauge field into the Grassmann fields by a re-
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definition [23, 28]

φ̃ (τ) → φ̃ (τ) exp

(

−i

∫ τ

0
a
(

τ ′
)

dτ ′
)

= φ̃(τ)e−
iθ
2π

τ

φ (τ) → exp

(

i

∫ τ

0
a
(

τ ′
)

dτ ′
)

φ (τ) = e
iθ
2π

τφ(τ) (4.4)

whose effect is to remove the dependence on a in the Lagrangian of (4.3) at the expense of

changing the boundary conditions on the Grassmann fields. The original theory initially

required φ̃ and φ to be anti-periodic so that under the above redefinition the boundary

conditions become φ̃ (2π) = −eiθφ̃ (0) and φ (2π) = −e−iθφ(0). The integral over θ in (4.2)

then interpolates between all such “twisted” boundary conditions. This procedure is partic-

ularly useful for perturbative calculations because it decouples the Grassmann fields from

the worldline, or U(1), gauge field. In this context the Green function of the Grassmann

fields is modified to reflect the field re-definition.3 We will also use this procedure for the

calculation of Z [A, θ] (we comment below on how our calculation would differ if we did

not make the field redefinition).

With this change of variables the partition function becomes

Z [A, θ] =

∫

TBC
D φ̃Dφ e−

∫ 2π

0
dτ φ̃r(δsr

d
dτ

−iAr
s)φs , (4.5)

where TBC stands for the twisted boundary conditions on φ̃ and φ. Integrating over φ̄ and

φ in (4.5) leads to a functional determinant

Z [A, θ] = det
TBC

(

i

(

d

dτ
− iA

))

, (4.6)

which we evaluate in the next section as in [18, 19].

4.1 Calculation of the determinant

We define the functional determinant (4.6) as the product of the eigenvalues of the operator

in brackets on the space of fields satisfying the twisted boundary conditions. To find

the eigenfunctions of this operator, v(τ), we make use of the defining equation of the

super-Wilson loop, (2.4), writing them as v (τ) = g (τ) f (τ), where the function f(τ) is

to be determined. Then the eigenvalue equation i
(

d
dτ

+A
)

v (τ) = µv (τ) translates to an

equation for f (τ):

i
d

dτ
f (τ) = µf (τ) =⇒ f (τ) = v (0) e−iµτ . (4.7)

3As has been discussed earlier the Green function with anti-periodic boundary conditions is G(τ, τ ′) =
1

2
(Θ(τ − τ ′)−Θ(τ ′ − τ)). With the twisted boundary conditions above this is replaced by Gθ(τ, τ

′) =
1

2 cos θ

2

(

ei
θ

2 Θ(τ − τ ′)− e−i θ
2 Θ(τ ′ − τ)

)

, which clearly reduces to the original Green function for θ = 0. It

should be noticed that this Green function may appear with derivatives, for example when performing

integrations by parts on the coordinates ωµ(τ). Eventual singularities (derivative of the step functions)

cancel using standard regularisations of the path integral which preserve gauge invariance. In curved space

one needs instead explicit counterterms to preserve background local symmetries, see for example the general

results of [40], needed in treating higher spinning particles in curved space [41, 42].
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We then impose the twisted boundary conditions which allows us to relate the eigenvalues

µ to the eigenvalues of the Wilson loop, ρ. Indeed, taking v (2π) = −e−iθv (0) we require

v (0) to be an eigenvector of g (2π) and must impose a condition on µ:

g (2π) v (0) = ρv (0) ; ρe−2πiµ = −e−iθ. (4.8)

These equations can be solved to write the eigenvalues µ in terms of the eigenvalues of the

Wilson-loop: µ = n+ 1
2 +

ln (ρeiθ)
2πi . The product of these eigenvalues is proportional to

∏

n≥0

(

1−
(

ln (ρeiθ)
)2

((2n+ 1)πi)2

)

(4.9)

where we have normalised against the free theory partition function (without the insertion

of φ̃Aφ).4 We have also paired the positive and negative integers with one another to

produce the product over n ≥ 0 which serves to regulate the determinant (we could just

as well have used ζ-function regularisation as in [43–45] which would have led to the same

expression).

The above expressions are familiar from the infinite product expansion of the cos

function and it remains to finally take the product over ρ. We then arrive at an expression

for the partition function written in terms of the determinant of quantities related to the

Wilson-loop:

Z [A, θ] ∝ det

(

√

eiθg (2π) + 1/
√

eiθg (2π)

)

. (4.10)

This is an explicit realisation of how the φ̃, φ theory is related to the path ordered expo-

nential we started with. In order to proceed we now show how this determinant can be

written in terms of group invariant objects which turn out to be traces of the Wilson loop

in different representations.

Following [19] we use a constant SU(N) transformation to rotate g(2π) onto the Cartan

subalgebra so that

g(2π) = exp(αiHi); i = 1, . . . , N − 1 (4.11)

which allows us to write its eigenvalue equation in terms of the weights of the representation

in which it is chosen to transform. The determinant in (4.10) can be expressed as the

product over the eigenvalues of the matrix in the brackets which can also be expressed

in terms of these weights. From the resulting expression we can then arrange the terms

in to collections of group invariants constructed out of g(2π). For example, the group

SU(3) was considered in [18] with the fields φ̃ and φ taken to transform in the (conjugate)

fundamental representation, 3̄ and 3, without the presence of the U(1) field. If we now

include the factors of θ that arise in our current work then we find for the partition function

Z3 [A, θ] ∝ e
3

2
iθ + tr(g3)e

1

2
iθ + tr(g3̄)e

− 1

2
iθ + e−

3

2
iθ, (4.12)

4Had we not made the field redefinition (4.4) then we would have instead considered the eigenvalues

of
(

d
dt

− iA+ iθ
2π

)

. The homogeneous solution to this equation would be g̃(τ) = P exp
(∫ τ

0
iA(τ) + iθ

2π
dτ

)

which factorises to provide g̃(2π) = eiθg(2π). The eigenvalues of this operator are then ρ̃ = ρeiθ and,

imposing anti-periodic boundary conditions on the eigenfunctions, we would have arrived at (4.9).
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where the subscript denotes the representation in which the trace is to be taken. Each

term is interpreted as describing the interaction between the gauge field and a matter field

which transforms in the labelled representation of the gauge group, whilst also carrying an

exponent which denotes the U(1) worldline hypercharge. We recognise the traces involved

are of the super-Wilson loop in the representations constructed out of fully anti-symmetric

tensor products of the fundamental — in Young tableaux notation these are •, , and .

Similarly, by taking φ̃ and φ to transform in the fundamental of SU(5) we have previ-

ously shown [19] that the partition function evaluates to

Z5 [A, θ] ∝ e
5

2
iθ + tr (g5) e

3

2
iθ + tr (g10) e

1

2
iθ + tr (g

10
) e−

1

2
iθ + tr (g5̄) e

− 3

2
iθ + e−

5

2
iθ (4.13)

which is easily seen to consist of traces of g(2π) in the fully anti-symmetric representa-

tions5 of SU(5). These two models are relevant to standard model physics and the unified

theories based on SU(5), flipped SU(5) and SO(10). In [19] we have also described a way

to provide chirality to the particle multiplets which appear and considered the more com-

plicated case where the Grassmann fields transform in an arbitrary representation of the

symmetry group.

For the remainder of this paper we will consider the general case that the symmetry

group is SU(N) and restrict our attention to the case that φ̃ and φ transform in the con-

jugate fundamental and fundamental representations N̄ and N. We also adopt a notation

where the representations in which the traces of the Wilson loop are to be taken are indi-

cated by Young tableaux. This allows for general formulae to be presented which are valid

for all choices of N and avoids the clutter caused in a scheme based on indication of the

dimensions of the representations involved.

The generalisation of (4.12) and (4.13) is easy to work out by consideration of the

Hilbert space structure discussed in section 3.1. We anticipate a sum over traces of the

Wilson-loop taken in all completely anti-symmetric representations formed out of the fun-

damental representation, which are just the one column Young tableaux of SU(N). We

write this as

ZN [A, θ]∝trg( · )e
N
2
iθ+trg( )e

N−2

2
iθ+trg( )e

N−4

2
iθ+ . . .+trg( .. )e−

N−2

2
iθ+trg( · )e−

N
2
iθ ,

(4.14)

where we have denoted the representation in which the trace is to be taken by its Young

tableau, so that the the term with U(1) charge N−2p
2 is denoted by the one-column Young

tableau with p rows signifying that the matter field has p completely anti-symmetric indices.

To see why (4.14) is correct we can consider the determinant (4.10). If g(2π) transforms

under the fundamental representation, N, then it has N eigenvalues, {ρj}. The partition

5These can be represented as •, , , , and .
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function is then calculated by taking the product of these eigenvalues, and has the form

ZN [A, θ] ∝
N
∏

j=1

(

e
1

2
iθρ

1

2

j + e−
1

2
iθρ

− 1

2

j

)

∝ e−
N
2
iθ

N
∏

j=1

(

eiθρ
1

2

j + ρ
− 1

2

j

)

. (4.15)

The coefficient of the term in the product with factor epiθ is determined by a sum involving

the ρj whose total number of terms is given by the binomial coefficient dp = NCp, which

we can use to deduce the composition of the contribution with hypercharge N−2p
2 . We

know that it must be made up of group invariants constructed out of g(2π) in totally anti-

symmetric representations. However the dimension of the representation with p totally anti-

symmetrised indices is precisely dp =
N !

p!(N−p)! and the trace of g(2π) in this representation

will consist of dp terms. This allows us to identify the coefficient of e
N−2p

2
iθ as the trace

of g(2π) taken in the representation with p anti-symmetrised indices, as we have claimed

in (4.14) and in agreement with the analysis of section 3.

4.2 Projecting onto representations

Having completed the calculation of the restricted partition function we return to (4.2)

to consider the remaining integrals. In particular we focus on the integral over the U(1)

modulus, θ, whose purpose is to project intermediate states of the path integral over φ̃ and

φ onto fixed occupation number. We will now see how the integral over θ picks out just

one of the representations of (4.14) depending on the choice of the quantised Chern-Simons

level n− dR
2 . We consider (dR = N)

∫ 2π

0

dθ

2π
ei(n−

N
2
)θZN [A, θ] (4.16)

and for convenience we take out a factor of e
N
2
iθ from (4.14) so as to leave the simplified

expression

∫ 2π

0

dθ

2π
einθ

(

trg( · ) + trg( )e−iθ + trg( )e−2iθ + . . .+ trg( .. )e−piθ + . . .

+ trg( .. )e−(N−1)iθ + trg( · )e−iNθ

)

, (4.17)

where the general term with exponent exp (−piθ) involves the trace of g(2π) in the repre-

sentation with p totally anti-symmetric indices represented by a one column Young tableau

with p rows. It is easy to see that enumerating through n ∈ {0 . . . N} the integral over θ

picks out the representation in which the matter fields have n anti-symmetric indices. In

particular, setting n = 1 provides

tr(gN) = trNP exp

(

i

∫ 2π

0
A[ω(τ), ψ(τ)]dτ

)

(4.18)
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which is the Wilson-loop coupling between the gauge field and a matter field transforming

in the fundamental representation of SU(N). It is of course sometimes necessary to include

matter fields transforming in other representations of the symmetry group. One example is

in unified theory; for SU(5) unification the left-handed standard model particles are placed

into the 5̄ and 10, which have 4 and 2 totally antisymmetrised indices respectively. We

have discussed this, and the inclusion of chirality, in [19].

Putting this path ordered exponential back into the full worldline partition func-

tion, (4.2), generates the well-known first quantised description of the partition function

of a spinor field transforming in the fundamental representation of the symmetry group in

the presence of the boson A which gauges this symmetry:
∫ ∞

0

dT

T

∮

DωDψ e−
1

2

∫ 2π

0
ω̇2

T
+ψ·ψ̇ dτ trNP exp

(

i

∫ 2π

0
A[ω(τ), ψ(τ)]dτ

)

. (4.19)

At this point it is important to reiterate that the procedure outlined above has been

considered in perturbative worldline calculations before [23, 28]. Furthermore, as we have

previously demonstrated (see [18, 19]) it is sometimes advantageous not to carry out any

projection at all, instead including the contribution from all anti-symmetric representations.

We believe, however, that this is the first time that the complete path integral has been

computed analytically in this context. A natural question to ask at this point is whether or

not the method can be adapted or extended in order to generate the Wilson-loop coupling

for a matter field that transforms in representations other than those constructed as totally

anti-symmetric tensor products whilst still only using color fields transforming in the (anti-

)fundamental representation of the chosen symmetry group. In the following sections we

explain how to generate couplings for fields transforming in arbitrary representations of

the symmetry group. This question is important for first quantised descriptions of such

matter fields where methods have been, up to now, somewhat limited, being restricted to

representations with special symmetries.

5 Mixed symmetry tensors

In this section we consider how to describe matter fields that transform in an arbitrary

representation of the symmetry group in the presence of the background gauge field. To

do so we will use generalise the approach taken above by using tensor products of anti-

symmetric representations to build a Young tableau with a chosen shape. This will require

the use of further copies of the additional Grassmann fields transforming in the same

representatations as above. Using such ideas a worldline description of higher spin fields has

been described before in a phase space formulation [9, 20, 29]. A similar method has been

used in the context of differential forms on complex manifolds [21, 38, 46] and to construct

detour complexes from BRST quantisation of worldlines theories [11]. We shall follow

the general approach taken by these authors but it must be stressed that the focus of this

article is to reproduce the correct interaction between the matter fields and the background

gauge field. We also continue to work in configuration space and will reproduce path

ordered exponentiated line integrals to realise the Wilson-loop coupling which describes the

interaction. We leave a perturbative calculation of scattering amplitudes for future work.
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The result of the previous section was a worldline theory that produces a sum over all

fully anti-symmetric representations of a chosen symmetry group (strictly speaking these

are representations built out of fully anti-symmetric tensor products of the representation in

which the Grassmann fields φ̃r and φr transform [19]). To combine multiple anti-symmetric

representations requires the introduction of separate families of the anti-commuting fields

— we showed this in [22]. Each family will generate its own set of interactions between

the matter field and the background gauge field which can then be combined to generate

more complicated representations by forming their tensor-product. To see how this is

incorporated in the worldline theory we return to (2.7). As discussed above this consists

of a factor describing the free dynamics of the matter field and a second piece responsible

for producing the interaction with the background field. It is this second part that will be

modified in the next section.

5.1 The generalised worldline theory

The adjustment we proposed in [22] is to introduce F families of the Grassmann fields φ̃r
k

and φkr, denoting each family with an index k ∈ {1, . . . , F}. The generalisation of (2.7)

is then

S[ω, ψ, φ̃, φ] =

∫ 2π

0
dτ

[

ω̇2

2T
+

i

2
ψ · ψ̇ + iφ̃r

kφ̇kr + φ̃r
kAr

sφks

]

. (5.1)

which consists of F copies of the interaction between the matter field and the gauge field.

The Fock space of this extended theory is much richer than before, since creation opera-

tors associated with different families can act independently to populate the physical state

space. The action (5.1) can incorporate the super-symmetry discussed in section 3 (F

families of super-partners z̃rk and zkr are needed) but the invariance under unitary trans-

formations of the anti-commuting fields is enriched. It is now possible to make a global

U(F ) transformation on the fields φ̃k and φk which rotates between the families. This is

generated by the constant matrix αkl and takes the following infinitesimal form

δαφ̃
r
k = iφ̃r

lαlk; δαφkr = −iαklφlr. (5.2)

The global symmetry implies the existence of the conserved currents Nkj = φ̃r
kφjr which

upon quantisation become the generalisation of the occupation number operator in the

previous section. The diagonal elements Nkk just give the occupation number of the kth

family and generate independent U(1) transformations, whilst the off-diagonal elements

step between families.

This new symmetry can be gauged via the introduction of fields akj(τ) so as to form

a covariant derivative Dkj =
(

δkj
d
dτ

+ iakj
)

, from which the following worldline action can

be constructed

S[ω, ψ, φ̃, φ] =

∫ 2π

0
dτ

[

ω̇2

2T
+

i

2
ψ · ψ̇ + φ̃r

k(iδ
s
rDkj +Ar

sδkj)φjs

]

, (5.3)

which is invariant under the full non-Abelian symmetry group if δαakj = α̇kj − i[α, a]kj
transforms in the adjoint representation of U(F ). However, for reasons which will now be

explained we found in [22] it is not advantageous to gauge the full symmetry group and
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it will prove necessary to consider only a partial gauging, leaving part of the subgroup

U(1)F ⊂ U(F ) invariant.

In the previous section the gauging of the group allowed for the introduction of a

Chern-Simons term for a(τ) which played the rôle of projecting the intermediate states of

the path integral onto fixed occupation number. This ensured that from the list of represen-

tations generated by the Grassmann fields only one wavefunction component contributed

to the final result. Now that there are multiple families of these anti-commuting fields

this projection is more complex, since a mechanism is needed to fix the number of indices

contributed to the matter field by each family separately. The problem with gauging the

whole U(F ) group is that the only gauge invariant quantity that can be constructed is

tr(a) =
∑F

k=1 akk which allows for the introduction of only one Chern-Simons term [11]

S[a] =

∫

dτ s tr(a(τ)). (5.4)

This fixes the occupation numbers of each family to be the same and imposes no constraints

on how the families are combined. This does not allow us to specify the indices in each

family independently and will not lead to a projection onto an irreducible representation.

The first problem can be overcome by instead fixing only the Abelian subgroup U(1)F .

This ensures that the diagonal elements of akj transform as a total derivative so we can

construct independent Chern-Simons terms for each family [11]

S[a] =

∫

dτ
F
∑

k=1

sk akk (τ) . (5.5)

This can be used to select the occupation numbers of each family separately. However, this

still does not achieve irreducibility because there remains too much freedom in how these

representations can be combined. We presented the resolution of this problem in [22] where

we found that one should in fact gauge only those Nkj with k > j. This retains the gauge

invariance of the independent Chern-Simons terms above since in this instance δakk =

α̇kk ∀k. We showed that the equations of motion for the fields akj , in combination with

the above Chern-Simons terms imply the vanishing off the off-diagonal number operators

Nkj which constrains how the creation operators of each family can be combined to build

up the physical state space. This will later be seen to reflect the Lie algebra rules for

combining tensor products of representations in such a way as to arrive at a projection

onto an irreducible representation. We are consequently led to the following action for F

families of colour fields which represents the gauging of the “auxiliary group” generated by

the upper triangular elements αk>j

S[φ̃, φ, a] =

∫ 2π

0
dτ

[

iφ̃r
kφ̇ks + φ̃r

kAr
sφkr −

F
∑

k=1

ak (Nk − sk)−
∑

j<k

akjNkj

]

, (5.6)

where, as in [22], we have introduced the notation ak ≡ akk and we have separated the

diagonal generators of the auxiliary gauge group from the off-diagonal entries so as to pair

them with the Chern-Simons terms. A simple calculation of the equations of motion for
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the ak and akj is sufficient to show that these fields impose the constraints

(

φ̃r
k∂φ̃r

k
− nk

)

Ψ(x, φ̃) = 0 and φ̃r
k∂φ̃r

j
Ψ(x, φ̃) = 0 (5.7)

for k, j ∈ {1, 2, . . . , F} (there is no sum over these indices). These are the conditions

that set the occupation number of each family of colour fields and achieve irreducibility

respectively. This ensures that the remaining wavefunction component has the correct

symmetries to transform in a single irreducible representation. For the rest of this section

we will focus on this action and its functional quantisation, making use of the results

found above.

5.2 Gauge fixing and functional quantisation

Before carrying out the functional integration over the F families of colour fields we must

gauge fix to take into consideration the overcounting caused by the symmetry of the action

under the auxiliary gauge group. As in the U(1) case previously discussed the auxiliary

U(F ) symmetry can at best be fixed by setting akj to be constant (see appendix B) which,

as explained in [22], can be taken to be in the form

2πâkj =











θ1 0 · 0

0 θ2 · 0

· · · ·
0 0 · θF











(5.8)

where the {θk} are angular moduli to be integrated over. This gauge fixing can be compen-

sated for by the introduction of the Faddeev-Popov measure which we denote by µ ({θk}).
This is easily determined from the infinitesimal transformation of a:

µ ({θk}) = Det

(

d

dτ
+ i[a, ·]

)∣

∣

∣

∣

a=â

(5.9)

and depends on how the global U(F ) symmetry is gauged. For the partial gauging used

in [22] which we discussed above we found the modular measure

µ ({θk}) =
∏

j<k

µ ({θk, θj}) =
∏

j<k

2i sin

(

θj − θk
2

)

(5.10)

which we will show is responsible for the required projection.

In what follows we again focus on the φ̃ and φ theory to construct a worldline rep-

resentation of matter fields with arbitrary representation coupled to a background gauge

field. For path integral quantisation we again rotate to Euclidean space. On the gauge

slice defined by akj = âkj , the generalisation of the field theory partition function (4.2)

is now

∫ ∞

0

dT

T

∮

DωDψ e−
1

2

∫ 2π

0
ω̇2

T
+ψ·ψ̇ dτKF

F
∏

k=1

∫ 2π

0

dθk
2π

eiskθkµ ({θk})Z(F ) [A, {θk}] (5.11)
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where the reduced partition function (which produces the Wilson-loop interaction between

the matter fields and the gauge fields) on the chosen gauge slice is

Z(F ) [A, {θk}] =
F
∏

k=1

∫

D φ̃kDφk e
−

∫ 2π

0
dτ φ̃r

k
(δsrDkj−iAr

sδkj)φjs , (5.12)

which will be the focus of the remainder of this section. In the first equation above, KF is

a normalising constant equal to the inverse of the number of fundamental domains [22] and

the sk are the Chern-Simons levels fixing the occupation number of each family of colour

fields. Noting that with (5.8) the covariant derivative is diagonal the functional integration

factorises and we can repeat the arguments of section 4 over each family. The boundary

conditions on each family of fields remain anti-periodic. The only additional fact is that

each family carries its own U(F ) modulus θk which, if desired, can be absorbed into the

Grassmann fields φ̃k and φk by making field redefinitions akin to (4.4). The functional

determinant which arises upon integrating over {φ̃k} and {φk} can then be written as a

product of determinants related to the super-Wilson loop which generalises (4.10):

Z(F ) [A, {θk}] ∝
F
∏

k=1

det

(

√

eiθkg (2π) + 1/
√

eiθkg (2π)

)

. (5.13)

Furthermore, each factor in this product has been calculated above, leading simply to a

sum of traces of the super-Wilson loop over all representations constructed out of fully

anti-symmetric tensor products with a hypercharge that is related to the number of indices

associated to the representation — that is, products of the form (4.14). It is now time to

return to the integral over the U(F ) moduli which is needed to enforce irreducibility.

5.3 Irreducibility

The functional integration over each family of Grassmann variables results in a reducible

sum of products of traces of the super-Wilson loop in anti-symmetric representations. In

this section we understand the effect of the measure µ ({θk}) to see how the partial gauging

of the U(F ) symmetry fixes the representation contributed by each family and the group

structure of the product that emerges. For simplicity we first focus on the case of two

families, F = 2, which will illustrate the important behaviour, before generalising the

results to an arbitrary choice of F .

The Chern-Simons terms in (5.11) allow the specification of the number of anti-

symmetric indices (or number of rows in the one-column Young tableaux) in each family,

denoted by nk. We will denote our choices of the nk by n-tuples n = (n1, n2, . . . , nF ) where

without loss of generality we choose nk+1 > nk. For F = 2 and a symmetry group SU(N)

we take 0 6 n1 6 n2 6 N . Following [22] this requires us to take the Chern-Simons levels

to be s1 = n1 − N
2 − 1

2 and s2 = n2 − N
2 + 1

2 which leads us to consider (K2 = 1)

∫ 2π

0

dθ1
2π

∫ 2π

0

dθ2
2π

ei(n1−
N
2
− 1

2)θ1ei(n2−
N
2
+ 1

2)θ2µ ({θ1, θ2})Z(2)
N

[A, {θ1, θ2}] . (5.14)
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For Z(2)
N

we use two copies of (4.14) with associated U(1) hypercharges and following the

steps that led to (4.17) it is again useful to extract factors of e
N
2
iθ1 and e

N
2
iθ2 to cancel the

same terms in the Chern-Simons moduli, leaving the integral

∫ 2π

0

dθ1
2π

∫ 2π

0

dθ2
2π

ei(n1−
1

2)θ1ei(n2+
1

2)θ2
(

ei
θ1
2 e−i

θ2
2 − e−i

θ1
2 ei

θ2
2

)

×
(

trg( · ) + trg( )e−iθ1 + trg( )e−2iθ1 + . . .+ trg( .. )e−(N−1)iθ1 + trg( · )e−iNθ1

)

×

(

trg( · ) + trg( )e−iθ2 + trg( )e−2iθ2 + . . .+ trg( .. )e−(N−1)iθ2 + trg( · )e−iNθ2

)

, (5.15)

which we use to explore the behaviour of the worldline theory in this simple case.

Integrating over the U(2) moduli produces a sum of products of the trace of the Wilson

loop in different representations. The traces combine to form the desired result, being the

trace of the Wilson loop in a single, chosen irreducible representation. For example it is

easy to check that, taking n = (1, 1), the integration provides the correct combination of

Wilson loop interactions

trg( )× trg( )− trg( )× trg( · ) = trg( ) (5.16)

where the first trace in each product arises from integrating over θ2 and the second from

integrating over θ1. Similarly for n = (2, 3) we get

trg( )× trg( )− trg( )× trg( ) = trg( ) (5.17)

which can be verified to correctly generate the trace of the Wilson-loop in the represen-

tations whose Young-Tableau has n1 rows in the first column and n2 rows in the second

column.6 So with this approach it is now possible to project onto any irreducible repre-

sentation of the gauge group which can be denoted by two-column Young tableaux simply

be specifying the number of rows in each column and making use of the measure on U(F )

moduli in (5.10).

6To demonstrate that the measure plays a non-trivial rôle we note that if we set µ ({θ1, θ2}) = 1, cor-

responding to the Faddeev-Popov determinant associated with the gauging of the U(1)F Abelian subgroup

of the full U(F ) symmetry group, then the above two results become

trg( )× trg( ) = trg( ) + trg( ), (5.18)

consisting of the trace in both the fully symmetric and fully anti-symmetric representations, and

trg( )× trg( ) = trg( ) + trg( ) + trg( ), (5.19)

neither of which has achieved the desired irreducibility. Clearly some extra structure is needed in order to

constrain the result to pick out a single, irreducible representation from the product — this is the job of the

partial gauging of the unitary symmetry and the associated Faddeev-Popov measure. These equalities, and

those in the main text, are easily verified by again rotating g(2π) onto the Cartan subalgebra and finding

the sum of its eigenvalues in each representation.

– 20 –



J
H
E
P
0
9
(
2
0
1
6
)
0
8
1

5.4 Projection onto an arbitrary representation

The generalisation of these results to an arbitrary number of families is fairly straight-

forward. To project onto a representation denoted by an F -column Young tableaux we

specify the number of rows, nk, in each column and include the Chern-Simons modular

term exp (iskθk) for each family. The generalisation of the U(F ) measure µ ({θk}) is given
in (5.10), although it could also be arrived at by symmetry considerations as follows. Each

family should be treated equally and no particular pairing of the families should be favoured

so we need a copy of µ ({θk, θj}) for each possible pairing. Indeed, doing so leads to

µ ({θk}) =
∏

j<k

µ ({θk, θj}) =
∏

j<k

2i sin

(

θj − θk
2

)

(5.20)

which takes the product of the U(2) measure across all pairs and correctly coincides with

the Faddeev-Popov determinant for the partial gauging of the U(F ) symmetry as presented

above. So in the general case — with each family of Grassmann fields taken to transform

in the fundamental representation of SU(N) — (5.11) becomes

∫ ∞

0

dT

T

∮

DωDψ e−
1

2

∫ 2π

0
ω̇2

T
+ψ·ψ̇ dτKF

F
∏

k=1

∫ 2π

0

dθk
2π

eiskθk
∏

j<k

µ ({θj , θk})Z(F )
N

[A, {θk}] .

(5.21)

This formula projects onto the correct representation by forming the tensor product of

the representations produced by each family and then iteratively compensating for the

unwanted representations that appear in their tensor product decomposition. That is,

choosing occupation numbers n = (n1, n2, . . . , nF ), it forms the tensor product of represen-

tations whose Young tableaux have one column and nk rows and then pairwise subtracts

the representations whose Young-Tableaux do not consist of n1 ≤ n2 ≤ . . . ≤ nF rows

in each column. As we have shown in [22], this is realised by taking Chern-Simons levels

sk = nk − N
2 − F−(2k−1)

2 , which allows the above formula to be written in the simpler form

∫ ∞

0

dT

T

∮

DωDψ e−
1

2

∫ 2π

0
ω̇2

T
+ψ·ψ̇ dτ

F
∏

k=1

∫ 2π

0

dθk
2π

einkθk
∏

j<k

(

1−e−iθjeiθk
)

× (5.22)

F
∏

k=1

(

trg( · ) + trg( )e−iθk + trg( )e−2iθk + . . .+ trg( .. )e−(N−1)iθk + trg( · )e−iNθk

)

.

This is the first of the two main results of this article. To bring this formula into line

with the form of the results presented in [22] it is necessary to make a change of variables

by introducing F complex parameters zk = eiθk . These variables are in fact (worldline)

Wilson-loops which parameterise inequivalent fields with respect to the auxiliary gauge

group. Doing so allows (5.22) to be recast in a concise form as

∫ ∞

0

dT

T

∮

DωDψ e−
1

2

∫

ω̇2

T
+ψ·ψ̇ dτ

F
∏

k=1

∮

dzk
2πi

∏

l<j

(

1− zj
zl

) F
∏

k=1

N
∑

pk=1

trg(2π)[pk]

zpk+1−nk

k

(5.23)
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where the integrals with respect to zk are now over closed contours in the complex plane

encircling the origin. These integrals simply pick out the poles that arise at z = 0 for

certain values of the summation variables pk which denote the representation in which the

traces of the super-Wilson loop are to be taken: by trg(2π)[pk] we mean the trace of the

super-Wilson loop in the representation with pk fully antisymmetric indices.

To illustrate the usage of (5.22) or (5.23) we present the result for F = 6 families of

Grassmann fields and choose n = (1, 2, 4, 4, 6, 7) (picking N ≥ 7). Then by integrating over

the U(6) moduli we arrive at the following worldline path integral

∫ ∞

0

dT

T

∮

DωDψ e−
1

2

∫ 2π

0
ω̇2

T
+ψ·ψ̇ dτ trRP exp

(

i

∫ 2π

0
A[ω(τ), ψ(τ)]dτ

)

(5.24)

where the representation, R, in which the super-Wilson loop is taken to transform has

Young tableau

(5.25)

in agreement with the specification of rows given by n. Of more interest is perhaps a

projection onto the adjoint representation of the chosen gauge group. This requires the use

of F = 2 families and the choice n = (1, N−1) to project onto the irreducible representation

with Young tableau

.. , (5.26)

where the first column has N − 1 boxes so the dimension of the representation is N2 − 1.

This is an important step towards developing a worldline description of gluons and their

interaction with a background field.

The worldline theory (5.22) can be tested against any representation and it is instruc-

tive to do so for small values of F to see explicitly how the modular measure enforces

irreducibility by compensating for the proliferation of unwanted representations. For ex-

ample, taking F = 3 and n = (1, 1, 2) formula (5.22) gives

trg( ) = trg( ) trg( ) trg( )− trg( ) trg( ) trg( · )

− trg( ) trg( ) trg( · ) + trg( ) trg( · ) trg( · ) (5.27)

which can be analysed as follows. The first term on the right hand side generates a sum

over irreducible representations

trg( ) trg( ) trg( ) = trg( ) + trg( ) + 2 trg( ) + trg( ) (5.28)

whose trailing three terms are not desired. From this sum, the last term and one copy of

the penultimate term are removed by the second product on the right hand side of (5.27):

trg( ) trg( ) = trg( ) + trg( ). (5.29)
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The term with square tableaux in (5.28) and the second copy of its penultimate term are

countered by the first term on the second line of (5.27) but this also subtracts an extra

copy of the representation with the one-column tableau

trg( ) trg( ) = trg( ) + trg( ) + trg( ). (5.30)

This last contribution must then be added on again, which explains the final term on the

second line of (5.27). This procedure removes all the unwanted representations of (5.28),

leaving only the first term on the right hand side of that decomposition, thereby completing

the projection onto the desired representation.

Formula (5.22) allows complete freedom in the specification of the representation in

which the matter field is to be taken in the first quantised representation of the quantum

field theory. It overcomes the limitations of previous work and gives a general framework

in which quantum mechanics can be used to describe a gauged field theory based on given

Lie group.

6 Symmetric representations

In the above construction we took the auxiliary worldline fields, which generate the coupling

of the matter field to the gauge field, to be anti-commuting. As such they spanned a Hilbert

space whose wavefunction components transform in tensor products of fully anti-symmetric

representations of the gauge group. In [22], building upon [28], we showed that a similar

idea works when the colour fields are chosen to have bosonic statistics. In this case, the

correct coupling to the gauge field will be built out of products of traces of the Wilson-loop

interaction in fully symmetric representations. The aim is to present a worldline theory

which leads to a formula analogous to (5.22) which may be used in other first quantised

settings. To do so, we follow our earlier work in [22], which we briefly recap below.

Before doing so, we wish to point out that our earlier work in [22] suggests an imme-

diate method of arriving at a worldline description of matter fields transforming in fully

symmetric representations of the symmetry group interacting with the gauge field. A repre-

sentation with p fully symmetric indices has a Young tableau with one row and p columns.

We could build this up by following the earlier sections with the use of F = p families of

Grassmann fields, using the worldline theory based on fully anti-symmetric representations

of the gauge group. Simply by setting n = (1, 1, . . . , 1), the main formula (5.22) gives

trg( ·· ), (6.1)

where the trace of the Wilson-loop is taken in the representation whose Young tableau has

one row with p columns as desired.

In the following sections, however, we consider an alternative approach to worldline de-

scriptions of matter fields where the building blocks themselves are instead fully symmetric

representations of the symmetry group. To effect this change it suffices to make just a small

modification to the worldline theory. Rather than taking the colour fields to be Grassmann

variables we instead follow [28] by taking these fields to be bosonic. We begin with a single
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family of the auxiliary fields as the result will be needed in the generalisation to multiples

copies of the bosonic colour variables. So we consider the gauge group SU(N) and define

N pairs of fields φ̃r and φr. We again impose the Poisson brackets {φ̃r, φs}PB = iδsr and

construct new operators which satisfy an algebra inherited from the gauge group

LS = φ̃r(TS)r
sφs;

{

LS , LT
}

PB
= fSTULU (6.2)

and will consequently work just as well to represent the coupling between the matter field

and the gauge field. We incorporate these fields into the worldline action in the same way

as in [22], which leads to an action similar to (2.7):

S[ω, ψ, φ̃, φ] =

∫ 2π

0
dτ

[

ω̇2

2T
+

i

2
ψ · ψ̇ + iφ̃rφ̇r + φ̃rAr

sφs

]

, (6.3)

that is now based upon bosonic colour fields. As discussed previously in section 3, it is

also possible to write down a globally supersymmetric version of this worldline theory by

introducing super-partners (which would now need to be fermionic7) to φ̃ and φ, which

could then be gauged if desired. For brevity we omit further discussion on this point as it

will not be important for what is to come. However, it is instructive to consider the Fock

space of the commuting variables so we briefly recap the main points discussed in [22].

We promote the φ̃r and φs to creation and annihilation operators which in the present

case span an infinite dimensional space {|nr〉} for nr ∈ N for each index r. The fundamental

commutation relations inherited from the Poisson brackets are [φ̂†r, φ̂s] = −δrs which are

solved by taking φ̂†r = φ̃r and φ̂r = ∂φ̃r when acting on wave-functions Φ(x, φ̃) which have

an expansion

Φ(x, φ̃) = Φ(x) + φ̃r1Φr1(x) + φ̃r1 φ̃r2Φr1r2(x) + . . . (6.4)

Notice that the commuting nature of the variables means that the Fock space is infinite di-

mensional so that the expansion above does not terminate. The sum is over all components

whose indices transform as symmetric tensor products of the fundamental representation so

Φ(x, φ̃) is described by a reducible representation of the gauge group. We solve this prob-

lem as in the previous case: the number operator for these fields is n̂ = φ̂†rφr which one

can use to project onto states with the correct occupation number. To do so we introduce

the constraint (n̂− n) |phys〉 = 0. This acts on wave-functions as
(

φ̃ · ∂φ̃ − n
)

Φ(x, φ̃) = 0

to pick out the component with n symmetrised indices. From the point of view of the path

integral this constraint can again be enforced by gauging the U(1) symmetry of the colour

fields [22], achieved by modifying the functional integration over φ̃ and φ to

∫

D φ̃DφDa ei
∫

dτ (n+N
2 )a(τ)−a(τ)φ̃rφr . (6.5)

Under this symmetry the fields transform as δϑφ̃ = iϑφ̃, δϑφ = −iϑφ and δϑa = ϑ̇,

where ϑ is an infinitesimal real parameter. As before, we have introduced the topological

term
∫

dτ
(

n+ N
2

)

a(τ) as a Chern-Simons coupling for this gauge field in order to impose

7This change in the nature of the components of the colour multiplet also means that the variations of

z̃ and z in (3.2) lose their minus signs.
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the desired constraint (the operator ordering ambiguity that arises upon quantisation is

this time resolved by symmetrising which leads to the plus sign). We wish to show now

that this additional U(1) symmetry is sufficient to project away the unwanted states in

the decomposition of Φ in (6.4) so as to pick out a single wavefunction component that

transforms irreducibly. We shall do this by functionally quantising the colour fields and

the U(1) field.

6.1 Functional quantisation

The partition function associated to these new fields is (we continue to carry out path

integrals in Euclidean space) given by

Z =

∫

DaD φ̃Dφ

Vol(U(1))
e−

∫ 2π

0
dτ [φ̃r(δsrD−iAr

s)φs−i(n+N
2
)a], (6.6)

where D =
(

d
dτ

+ ia
)

, which represents the complete coupling between the matter field and

the gauge field, implemented by the auxiliary colour fields. There are important differences,

however, due to the bosonic nature of the colour fields, which will lead to an interesting

result which is of importance for remaining sections. We proceed as before by fixing the

the U(1) symmetry which we do by setting 2πa(τ) = θ, where θ is a constant angle in

[0, 2π]. This angle is the U(1) modulus which parameterises inequivalent Wilson-loops

of the worldline gauge field. The Faddeev-Popov determinant associated with this fixing

remains trivial so with this gauge choice we arrive at

Z =

∫ 2π

0

dθ

2π
ei(n+

N
2
)θZ [A, θ] , (6.7)

where the partition function of the colour fields continues to be denoted by

Z [A, θ] =

∫

PBC
D φ̃Dφ e−

∫ 2π

0
dτ φ̃r(δsrD+Ar

s)φs , (6.8)

with periodic boundary conditions (PBC) on the colour fields. As above it is then possible

to absorb the coupling to the gauge field into these fields by using the field re-definition

φ̃ (τ) → φ̃ (τ) exp

(

−i

∫ τ

0
a
(

τ ′
)

dτ ′
)

= φ̃(τ)e−
iθ
2π

τ

φ (τ) → exp

(

i

∫ τ

0
a
(

τ ′
)

dτ ′
)

φ (τ) = e
iθ
2π

τφ(τ), (6.9)

which implies the twisted boundary conditions (TBC) φ̃(2π) = eiθφ̃(0) and φ(2π) =

e−iθφ(0) but removes the awkward θ-dependence from the action. Integrating over these

fields then gives a functional determinant

Z [A] =
1

det
TBC

(

i
(

d
dτ

− iA
)) , (6.10)

which we find as above through the product of the eigenvalues of the operator in (6.10).

These eigenvalues can again be expressed in terms of eigenvalues of the Wilson-loop, which
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we denote by ρ, and a simple calculation similar to that in section 4.1 shows that the

determinant is proportional to8

∏

{ρ}

∏

n>0

(

1−
(

ln (ρeiθ)
)2

(2nπi)2

)

ln (ρeiθ), (6.12)

which reminds one of the infinite product expansion of the sin function (we have paired

positive and negative integers together which is part of our regularisation procedure).

Indeed, taking the product over ρ and inverting the result we arrive at

Z [A, θ] ∝
(

det

(

√

eiθg (2π)− 1/
√

eiθg (2π)

))−1

. (6.13)

which can be compared with (4.10). This result justifies the introduction of the bosonic

auxiliary fields and gives a concrete realisation of their purpose in generating objects related

to the Wilson-loop providing the interaction between matter and the gauge field. The

determinant in rounded brackets depends in a non-trivial way on the Wilson-loop. We have

shown in section 4 (see also [19]) that it can be re-expressed in terms of group invariant

objects built from traces of g(2π) in fully anti-symmetric representations and we will use

this extensively in what follows.

To proceed it is necessary to expand (6.13) as an infinite series. We should indeed

expect to encounter such an infinite sum since the Fock space of the φ̃, φ theory is infinite

dimensional. From the series expansion of (6.13) we must arrange the resulting products of

traces in anti-symmetric representations into traces of the Wilson-loop taken in symmetric

representations as anticipated from (6.4). We will then make use of the U(1) field to project

onto a chosen symmetric representation by carrying out the integral over this modulus. As

in section 4, we will make use of the notation based upon Young tableaux, since this allows

us to make statements that hold for arbitrary N .

The change of sign in (6.13) means that the result given in (4.14) must also be modified

by a few changes of sign: we find

ZN [A, θ] ∝
(

trg( · )e
N
2
iθ − trg( )e

N−2

2
iθ + trg( )e

N−4

2
iθ + . . .

+ (−1)N−1trg( .. )e−
N−2

2
iθ + (−1)N trg( · )e−

N
2
iθ

)−1

. (6.14)

To project onto a certain representation we must integrate this over the U(1) modulus

with associated Chern-Simons term exp
(

i(n+ N
2 )

)

. It is convenient to cancel the leading

8The difference in the current setting is that the eigenfunctions must obey periodic boundary conditions.

Denoting the eigenvalues of the operator in (6.10) by µ+, these eigenfunctions can be written as v(τ) =

g(τ)v(0)e−iµ+τ and we require the µ+ be related to the eigenvalues of g(2π) by

g (2π) v (0) = ρv (0) ; ρe
−2πiµ+ = e

iθ
. (6.11)

The solution to this condition is µ+ = n+
ln (ρeiθ)

2πi
.
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e−iN
2 by factorising ei

N
2 out of the right hand side of (6.14). Doing so leaves an integral

representation for Z
∫ 2π

0

dθ

2π
einθ

(

1− trg( )e−iθ + trg( )e−2iθ + . . .+ (−1)p+1trg( .. )e−piθ + . . .

+ (−1)−(N−1)trg( .. )e(N−1)iθ + (−1)N trg( · )e−iNθ

)−1

. (6.15)

A binomial expansion of the rounded bracket produces a non-terminating series which can

be arranged in increasing powers of e−iθ; the integration over this variable then picks out

the coefficient of the term of order e−inθ. We illustrate this by considering the first few

terms in the expansion of (6.15):

∫ 2π

0

dθ

2π
einθ

[

1 +trg( )e−iθ+

(

(trg( ))2 − trg( )

)

e−2iθ+

(

(trg( ))3 − 2trg( )trg( )

+ trg( )

)

e−3iθ+

(

(trg( ))4 + (trg( ))2 + 2trg( )trg( )

− 3(trg( ))2trg( )− trg( )

)

e−4iθ +O
(

e−5iθ
)

]

. (6.16)

Setting n = 0 or n = 1 clearly provides the expected trace of the Wilson-loop in the

representations with n indices. After this some group theory identities are uncovered.

According to our analysis of the Hilbert space, setting n = 2 should provide the trace of

g(2π) in the representation with two fully symmetrised indices. The Young tableau of this

representation is which has dimension N
2 (N + 1). So (6.16) implies that

trg( ) ∝ (trg( ))2 − trg( ), (6.17)

and it is easy to check that the dimensions of the representations on the right hand side

combine correctly to agree with the dimension of the left hand side. Similarly, by choosing

n = 3 we should find the trace of the Wilson-loop transforming in the N
6 (N + 1)(N + 2)

dimensional representation , which transforms as the symmetric product of three copies

of the fundamental. Integrating (6.16) over θ then yields

trg( ) ∝ (trg( ))3 − 2trg( )trg( ) + trg( ). (6.18)

A straightforward calculation shows that the dimensions of the representations of the right

hand side are consistent, since N3−2×N
2 (N−1)+N

6 (N−1)(N−2) is indeed the dimension

of the representation on the left hand side. Finally, by putting n = 4 and carrying out the

integration another identity is found:

trg( ) ∝ (trg( ))4 + (trg( ))2 +2trg( )trg( )− 3(trg( ))2trg( )− trg( ) (6.19)

which relates the traces of g(2π) in anti-symmetric representations to that in the four index

totally symmetric representation.
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These identities are of course related to the decomposition of tensor products of the

fundamental representation into the direct sum of irreducible representations. For example,

the decompositions

⊗ = ⊕ and ⊗ ⊗ = ⊕ 2 ⊕ (6.20)

take a similar form to the first two identities presented above (the difference being that

the identities are related to the traces of the Wilson-loop in the representations signified

by the Young tableaux). Furthermore a fourth tensor product with the fundamental gives

⊗ ⊗ ⊗ = ⊕ 3 ⊕ ⊕ 3 ⊕ , (6.21)

into which form (in combination with the obvious tensor product decompositions) the third

identity quoted above can be cast. The three identities we have presented here, and their

generalisations derived from higher order terms in (6.16), are easily verified in the simple

case that the gauge group is SU(3) or SU(5) as we have previously considered, if one uses

a global SU(N) transformation to rotate g(2π) onto the Cartan subalgebra, determines

its eigenvalues in the appropriate representations and combines them for the traces given

in the equations above. Straightforward algebra proves, for example, that for SU(3) the

traces of the Wilson-loop are related as expected:

tr(g6) = (tr(g3))
2 − tr(g3̄)

tr(g10) = (tr(g3))
3 − 2tr(g3)tr(g3̄) + 1

tr(g15′) = (tr(g3))
4 + (tr(g3̄))

2 + 2tr(g3)− 3(tr(g3))
2tr(g3̄). (6.22)

Similar results hold in the case of SU(5) and other Lie groups.

To lend further weight to the claim that the terms in (6.16) arrange themselves into

traces of the super-Wilson loop in the fully symmetric representations it is informative to

count the dimensions of the representations that combine to make each term. The trace of

the Wilson-loop is equal to the sum of its eigenvalues, whose number match the dimension

of the representation in which it transforms. We use this to count the number of terms

making up each trace in (6.15). Since the dimension of the representation of SU(N) with

k fully antisymmetrised indices is

(

N

k

)

the number of terms building each trace in the

denominator of (6.15) is

[

(

N

0

)

−
(

N

1

)

e−iθ +

(

N

2

)

e−2iθ + . . .+ (−1)p

(

N

p

)

e−piθ + . . .

+ (−1)N−1

(

N

N−1

)

e−(N−1)iθ + (−1)N

(

N

N

)

e−iNθ

]

=
(

1− e−iθ
)N

(6.23)

where we have made use of the binomial theorem to rewrite the series as the difference

of two terms. This trick will prove enough to extract the dimension of the representation
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which makes up the coefficient of e−piθ in (6.16). To understand how, it suffices to invert

the above equation and use the binomial expansion once again to arrive formally at

(

1− e−iθ
)−N

=
∞
∑

p=0

(

−N
p

)

(−1)pe−piθ. (6.24)

The binomial coefficients for negative powers are defined by

(

−N
p

)

=
−N(−N − 1) . . . (−N − (p− 1))

p!
= (−1)p

(

N+p−1

p

)

, (6.25)

which when substituted into (6.24) produces

(

1− e−iθ
)−N

=
∞
∑

p=0

(

N+p−1

p

)

e−piθ. (6.26)

This equation shows that the coefficient of the term in (6.16) involving e−piθ is made up of

a sum containing exactly

(

N+p−1

p

)

terms involving the eigenvalues of the Wilson loop

in various representations. However, this is the dimension of the representation of SU(N)

which has p fully symmetric indices, and the trace of g(2π) in that representation is the

sum over this number of eigenvalues. There may of course be other representations which

have the same dimension, but the analysis of the Fock space of colour carrying fields in

section 6 shows that it will be the fully symmetric representations that are involved. This

allows us to conclude that (6.15) and (6.16) can be written more informatively as

Z =

∫ 2π

0

dθ

2π
einθ

(

trg( · ) + trg( )e−iθ + trg( )e−2iθ + trg( )e−3iθ + . . .

+ trg( ·· )e−piθ + . . .

)

, (6.27)

containing an infinite sum over traces of the super-Wilson loop in all symmetric represen-

tations, each carrying a U(1) hypercharge. The integral over θ then selects from this sum

the single representation which has n indices.

This concludes the discussion of one method for generating the Wilson-loop coupling

between a gauge field and a spin 1/2 matter field which transforms in an arbitrary totally

symmetric representation of the symmetry group. This is an interesting problem for the

worldline formalism of quantum field theory since it allows for a simple description of such

matter fields in a framework which enjoys significant calculational advantages and has

met great success in perturbative calculations (see for example [28]). However, up until

now we have been restricted to projecting onto fully symmetric representations, which is

a limitation that can be overcome. We now explain how to use this as the basis with

which an arbitrary irreducible representation can be built up by introducing families of

the commuting colour fields and a method of projecting out unwanted contributions to

the result.
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7 Mixed symmetry tensors with bosonic colour fields

To generalise these ideas to a theory describing matter fields which transform in an arbi-

trary representation of the gauge group it is useful to follow the same ideas as in section 5

where the colour fields were anti-commuting (as we originally advocated in [22]). As we

have shown, this allowed us to build wavefunctions out of components transforming in

tensor products of anti-symmetric representations. In the present case, however, a spec-

ified representation will be constructed by taking tensor products of the fully symmetric

representations uncovered in the previous section. To do this we repeat the process of

introducing multiple families of bosonic fields. Each family will produce the trace of the

super-Wilson loop in an individually chosen symmetric representation and the families will

be combined to generate products of these traces. These must be manipulated into a single

expression which transforms in the desired irreducible representation.

As before the generalisation of the partition function is arrived at by extending it to

include F copies of the bosonic variables. We continue to denote these colour fields by φ̃r
k

and φkr, where k indexes the family of the field. In Minkowski space the dynamics are

given by

S[ω, ψ, φ̃, φ] =

∫ 2π

0
dτ

[

ω̇2

2T
+

i

2
ψ · ψ̇ + φ̃r

k(iδ
r
sDkj +Ar

sδkj)φjs

]

, (7.1)

where Dkj = (δkj
d
dτ
+iakj) is the covariant derivative constructed out of gauge fields akj(τ).

These fields supply the worldline theory with a U(F ) symmetry which generalises the U(1)

symmetry that appeared in the previous section. Under a transformation, generated by

the infinitesimal parameters αk
l the fields vary as

δαφ̃
r
k = iφ̃r

lαlk; δαφkr = −iαklφlr; δαakj = α̇kj − i[α, a]kj , (7.2)

and are generated by the conserved currents which are now constructed out of bosonic con-

stituents as Nkj = φ̃r
kφjr. We have shown in [22] that, as it stands, the partition function

for the colour fields supplies a Hilbert space in which the wavefunction components trans-

form in tensor products of fully symmetric representations. As in [22], and the previous

section, it is necessary to partially gauge the U(F ) symmetry in order to project onto a

single irreducible representation. To retain the ability to add independent Chern-Simons

terms for each family one must introduce akj only for k > j, corresponding to gauging the

first class subgroup generated by the corresponding Nkj . This means that the diagonal

gauge fields transform in an Abelian way so that we can construct Chern-Simons terms

S[a] =

∫

dτ
F
∑

k=1

skakk(τ) (7.3)

which are invariant under the transformations in (7.2). The equations of motion of the

akk will then impose the constraints which pick out the wavefunction component which

transforms as the F -fold tensor product with nk fully symmetric indices in the kth fam-

ily [22]. We denote the set of integers specifying the occupation numbers of each family
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by n = (n1, n2, . . . , nF ), taking n1 6 n2 6 . . . 6 nF which enter into the Chern-Simons

levels sk. The off-diagonal gauge fields impose further conditions on the symmetries that

exist over indices belonging to different families. The only wavefunction component that

survives lies in the kernel of all of the Nkj for k > j. The action of these constraints on the

wavefunction components mirror the way that elements of the Lie algebra are combined

in the tensor product and ensure that unwanted representations cannot enter the path

integral at intermediate steps.

7.1 Gauge fixing and evaluation of the path integral

We are once again interested in calculating the path integral over gauge inequivalent con-

figurations of the dynamical fields and the colour fields. Focusing for the moment on the

colour fields, we compute

Z(F ) =

∫

D φ̃DφDa

Vol(Gauge)
exp

(

−
∫ 2π

0
dτ

[

φ̃r
k

(

δsr
d

dτ
− iAr

s

)

φks

+ i
F
∑

k=1

ak (Nk − sk) + i
∑

j<k

akjNkj

])

(7.4)

As is by now familiar we must first gauge fix the auxiliary U(F ) fields in order to deal with

the quotient by the volume of the auxiliary symmetry group and we choose the akj to be

constants:

2πâkj =











θ1 0 · 0

0 θ2 · 0

· · · ·
0 0 · θF











(7.5)

where the diagonal elements are the angular moduli that we must integrate over. The

Faddeev-Popov determinant associated to this gauge fixing gives the same modular measure

as in section 5

µ ({θk}) =
∏

j<k

µ ({θk, θj}) =
∏

j<k

2i sin

(

θj − θk
2

)

. (7.6)

Now, on our chosen gauge slice the partition function of the colour fields becomes

Z(F ) [A, {θk}] =
F
∏

k=1

∫

PBC
D φ̃kDφk e

−
∫ 2π

0
dτ φ̃r

k
(δsrDk−iArs)φks , (7.7)

where each family of bosonic fields has period boundary conditions and the covariant

derivative is diagonal so Dk = ( d
dτ

+ iθk
2π ). When we then return to integrate this parti-

tion function against the Chern-Simons moduli we will include the factors which fix the

occupation numbers in each family and the measure which ensures irreducibility. It is easy

to see that the path integral factorises into a product of inverse functional determinants,

where the factor corresponding to each family carries an independent hypercharge:

Z(F ) [A, {θk}] ∝
F
∏

k=1

(

det

(

√

eiθkg (2π)− 1/
√

eiθkg (2π)

))−1

. (7.8)
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As we have shown, each factor in the product turns into an infinite series involving the

traces of the super-Wilson loop in all fully symmetric representations with an angular

exponent related to the number of indices which specify how the representation transforms.

Reinstating the functional integrals over the matter degrees of freedom and the remaining

integrals over the U(F ) moduli, the complete worldline theory is now given by

∫ ∞

0

dT

T

∮

DωDψ e−
1

2

∫ 2π

0
ω̇2

T
+ψ·ψ̇ dτ

F
∏

k=1

∫ 2π

0

dθk
2π

eiskθkµ ({θk})Z(F ) [A, {θk}] (7.9)

which the crucial factor being the measure which is required to impose irreducibility.

With these computations, the worldline theory (7.9) leads to a general formula which

generates the trace of the Wilson loop in a single irreducible representation, extending

the projection presented in (6.27) to allow the matter field to transform in an arbitrary

representation. By following the same straightforward algebra mentioned in section 5 we

can write the resulting formula compactly as

∫ ∞

0

dT

T

∮

DωDψ e−
1

2

∫ 2π

0
ω̇2

T
+ψ·ψ̇ dτ

F
∏

k=1

∫ 2π

0

dθk
2π

einkθk
∏

j<k

(

1−e−iθjeiθk
)

×

F
∏

k=1

(

trg( · ) + trg( )e−iθk + trg( )e−2iθk + . . .+ trg( ·· )e−piθk + . . .
)

. (7.10)

In this equation we have chosen to use the results of section 6 to write the infinite sum

in (6.16) in terms of the traces of the super-Wilson loop in the fully symmetric representa-

tions; the general term involves the trace taken in the representation with p fully symmetric

indices. We have also made the occupation numbers explicit having absorbed part of the

Chern-Simons factors into the product at the end of the top line. The mechanics of this

formula are as follows: the kth family produces the trace of g(2π) in the representation

with nk fully symmetric indices. The measure is responsible for combining these traces in

such a way as to form the trace in the tensor product of these representations and to sub-

tract the traces in all the unwanted representations in the tensor product decomposition.

As we have seen, the integrals over the modular parameters pick out a single contribution

from each of the terms in the product on the bottom line.

As we explained in the case of fermionic colour fields, the idea is that various contri-

butions are combined together so as to eventually leave only the trace of the super-Wilson

loop in the representation whose Young tableau this time has nk columns in each row. So,

for example, taking F = 6 and n = (1, 2, 4, 4, 5, 8), the integration over the U(6) moduli

produces a worldline path integral
∫ ∞

0

dT

T

∮

DωDψ e−
1

2

∫ 2π

0
ω̇2

T
+ψ·ψ̇ dτ trRP exp

(

i

∫ 2π

0
A[ω(τ), ψ(τ)]dτ

)

(7.11)

where the representation, R, in which the super-Wilson loop is taken to transform has a

Young tableau with six rows and nk columns in each row:

(7.12)
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as desired. In this instance it remains possible to project onto the adjoint representation

of the symmetry group. Now we need F = N − 1 families and set n = (1, 1, . . . , 2), which

projects onto the irreducible representation with Young tableau

.. . (7.13)

The first column of this diagram has N − 1 boxes so the dimension of the representation is

N2 − 1 as required. It proves convenient to introduce the worldline Wilson-loop variables

zk = eiθk , as we did in the fermionic case, so that we may write a compact version of (7.10)

in the same notation as [22]:

∫ ∞

0

dT

T

∮

DωDψ e−
1

2

∫

ω̇2

T
+ψ·ψ̇ dτ

F
∏

k=1

∮

dzk
2πi

∏

l<j

(

1− zj
zl

) F
∏

k=1

N
∑

pk=1

trg(2π)(pk)

zpk+1−nk

k

(7.14)

where the integrals with respect to the complex parameters zk are closed loops winding

around the origin. In (7.14), the notation trg(2π)(pk) now means the trace of the super-

Wilson loop in the representation with pk fully symmetric indices.

To demonstrate how the modular measure imposes irreducibility, and to compare its

behaviour to the case we have previously discussed, we provide an example calculation

involving F = 3 families, taking (as we did earlier) n = (1, 1, 2).

trg( ) = trg( ) trg( ) trg( ) − trg( ) trg( ) trg( · )

− trg( ) trg( ) trg( · ) + trg( ) trg( · ) trg( · ). (7.15)

The first term on the right hand side of this equation contains the representation that is

sought, along with some traces that spoil the result:

trg( ) trg( ) trg( ) = trg( ) + trg( ) + 2 trg( ) + trg( ). (7.16)

The last term and one copy of the second-to-last term on the right hand side of this equation

are removed by the second product of traces on the top line of (7.15) by the identity

trg( ) trg( ) = trg( ) + trg( ). (7.17)

The second copy of the penultimate term and the trace taken in the representation with

square tableau in (7.16) are cancelled by the first term on the bottom line of (7.15), but

this (like in the case that the colour fields were Grassmann) also removes an extra copy of

the representation whose Young tableau has one row:

trg( ) trg( ) = trg( ) + trg( ) + trg( ). (7.18)

The final term on the right hand side of (7.15) then adds this contribution back on so as

to leave only the trace of the Wilson-loop in the representation that is desired — the first

term on the right hand side of (7.16) with two columns in the first row and one in the next
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two rows. This shows how the formula (7.10) correctly projects onto the representation

specified by the choice of Chern-Simon levels.

For completeness we wish to point out that these techniques could now be used to write

a worldline theory of a matter field in an arbitrary fully anti-symmetric representation of

the symmetry group interacting with a background field. To project onto the representation

with p fully anti-symmetric indices (with 0 ≤ p ≤ N) requires F = p families of bosonic

fields. Setting n = (1, 1, . . . , 1) formula (7.10) provides

trg( .. ) (7.19)

where the Young tableau has p boxes as sought. We have checked that this is a consis-

tent approach to take to the generation of anti-symmetric representations of the symmetry

group. In particular, taking F > N would imply the matter field transforming in a rep-

resentation with more than N fully anti-symmetrised indices. If the above technique is

employed then the sum over the traces of the Wilson-loop in symmetric representations

identically vanishes. The group structure which underlies this model, and the form of

the U(F ) modular measure, ensures that this occurs. We have dealt with anti-symmetric

representations fully in previous sections.

8 Conclusion

In this article we have presented a first quantised theory describing the Dirac field coupled

with a gauge field. We represented the colour degrees of freedom of the field by intro-

ducing additional families of worldline fields which generate the required path ordering

and Wilson-loop coupling. We first considered a single set of anti-commuting colour fields,

whose Hilbert space contains states transforming in fully antisymmetric representations

and showed that the partition of the worldline theory contains a sum over Wilson-loop in-

teractions taken in these representations. We also described how to project onto a chosen

irreducible representation by gauging a U(1) symmetry on the worldline.

We then extended the theory to include F copies of these colour fields which enlarge the

Hilbert space to include tensor products of the representations associated to each family.

To pick out a single irreducible representation from the space required the partial gauging

of a U(F ) symmetry which rotates between these families. The effect of this gauging, and

associated Chern-Simons terms, was to impose constraints on the physical states. To check

that the projection we proposed in [22] was correct we computed the path integral over the

colour fields. This produced the correct Wilson-loop coupling between the gauge field and

the matter field, taken in an arbitrarily chosen representation. Our approach thus provides

a complete framework for a first quantised description of arbitrary matter multiplets in the

worldline formalism.

We also repeated the above calculations in the case that the auxiliary colour fields were

bosonic. The commuting nature of the colour fields then meant that our basic building

blocks were Wilson-loop couplings taken in fully symmetric representations. The result
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of combining these objects would lead to the matter field transforming as the (reducible)

tensor product of the representation provided by each family. This was overcome in the

same way by partially gauging the resulting unitary symmetry and using Chern-Simons

terms to fix the occupation number of each set of colour fields. We verified our construction

via the path integral quantisation of the worldline theory, showing that it generates the

expected Wilson-loop coupling between the matter and the gauge field, taken in the correct

representation.

The work we have presented here has immediate application to scattering amplitudes

in the worldline approach. In particular, it could be used to produce a Bern-Kosower type

master formula for the one-loop scattering of gauge bosons in the presence of arbitrary

matter. We also wish to extend our work to the case of open worldlines. In this context,

the particle endpoints are fixed, the transition amplitude depends on the spin degrees of

freedom at either end and the Wilson-line itself carries gauge group indices. This is im-

portant for tree level calculations and has recently been addressed for scalar field theory

with one set of colour fields in [5]. Along similar lines, the worldline approach to quantum

field theory can be related to a theory of tensionless spinning strings which interact upon

contact [39, 47]. The endpoints of these strings are identified as particle worldlines and the

Wilson-loop interaction is contained in the partition function of the string theory. This pro-

gram was initiated by a study into an Abelian-field theory but the work we have presented

here would allow one to include non-Abelian interactions. This in turn would require extra

worldsheet fields which are related to the colour carrying fields on the boundary and would

represent interesting progress for alternative descriptions of the Dirac field.

Future work should compare and contrast the use of commuting versus anti-commuting

colour fields to determine which provides the simplest and most efficient tools for calcula-

tion of physical quantities. In particular, one would not wish to compromise the existing

calculational advantages offered by the worldline approach, and we hope that the method

advocated in this article will preserve the ease of computation when more complicated mat-

ter is considered. One might also wish to include the colour fields in first quantised theories

on curved space time, which is rapidly becoming a valuable tool to explore gravitational

physics. We hope this approach will offer a powerful way of describing arbitrary matter

multiplets interacting with gauge fields and be an attractive alternative to conventional

tools in field theory.
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A Path ordered exponentials

Here we comment on the various mechanisms by which the path ordered exponential g(2π)

is produced in the first order formalisms. We show heuristically how there are two pos-

sible prescriptions for the path ordering that arise depending upon the treatment of the

colour fields and their super-particles. We consider the superspace form of the action from

section 3:

S =

∫

dtdθ
[

−Φ̃DΦ+ iΦ̃DX ·A (X)Φ
]

. (A.1)

Gauge fixing by expanding about e = T we can integrate over θ to arrive at the component

form expression S[φ̃, z̃;φ, z] in (3.1). The Green function for the free z̃, z theory is trivial

and the exponent of the path integral is linear so the (Euclidean) functional integral over

these degrees of freedom is easily computed as
∫

D z̃Dz e−SE = e−
∫

dt φ̃( d
dt
+A0−T

2
ψµ[Aµ,Aν ]ψν)φ (A.2)

so that A0 is completed to the full A (of course, one must then make sure that the super-

symmetry variations of the remaining colour fields are then taken from (2.8). The Green

function for the φ̃, φ theory involves the step function: G (t, t′) ∼ Θ(t− t′). This relation

holds up to other terms which depend on the boundary conditions — this is where the

choice of statistics for the additional fields has an effect. As it stands, taking the Green

function for the colour fields to be the step function, the integral over these fields yields a

path ordering prescription

P

(

ei
∫ 2π

0
A(t)dt

)

=
∞
∑

n=0

n
∏

k=0

∫ 2π

0
dtk

n−1
∏

i=1

Θ(ti − ti+1)(i)
nA(tk) (A.3)

as desired. In the main text we seek the trace of this path ordered exponentiated line

integral in a chosen irreducible representation, which leads us to introduce an additional

U(1) field on the worldline and take into account the effect of the (anti-)periodic boundary

conditions of the colour fields on the worldline Green function.

Alternatively we may form the path integral over Φ̃ and Φ against the exponential of

the action in S directly. In this case it is easy to verify that Θ (t− t′ − θθ′) is a super-

invariant Green function: DΘ(t− t′ − θθ′) = (θ − θ′)δ(t − t′) = δ(θ − θ′)δ(t − t′). The

interaction part of the action can be expanded as

e−Sint = e−
∫

dtdθ Φ̃
(

ψ·A+θ(ω̇·A+eψµ∂µAνψ
ν)
)

Φ. (A.4)

Taking this as an insertion in the path integral we expand the exponential and Wick

contract Φ̃ and Φ based on the super-Green function. Using Θ (t− t′ − θθ′) = Θ(t− t′)−
θθ′δ(t−t′) the result can be cast into a form similar to the previous case but with a different

prescription for path ordering:

P̃

(

ei
∫ 2π

0
θA0(t)+e

1
2 (t)ψ(t)·A(t) dt

)

=
∞
∑

n=0

n
∏

k=0

∫ 2π

0
dtkdθk

n−1
∏

i=1

(Θ(ti−ti+1)−θiθi+1δ(ti−ti+1))

× (i)n
(

θA0(tk) + e
1

2 (tk)ψ (tk) ·A(tk)
)

. (A.5)
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The point is that the integral over the θk provides two terms; the order n contribution

containing A0 is complemented by the effect of the contact term in the super-Green func-

tion, which at order n+ 1 multiplies two copies of the e
1

2ψ ·A to produce the commutator

eψµ [Aµ, Aν ]ψ
ν which completes A0 to the full A. So the linear dependence on A (X) can

still produce the correct super-Wilson loop exponent due to the form of the super-Green

function and the result is equivalent to the familiar path ordered exponential (A.3).

B Chern-Simons gauge fixing

We consider the gauge fixing of the U(1) theory which arose with the introduction of a

projection onto states of fixed occupation number. This is of course a special case of

the more general theory which requires the gauge fixing of a subgroup of a U(F ) worldline

symmetry. At the end of this appendix we comment on this general case; whilst the general

idea is the same, in the latter case we will use the Faddeev-Popov procedure to keep the

discussion simple.

Under the U(1) gauge transformation φ̃ → φ̃eiϑ, φ → e−iϑφ we take a → a+ ϑ̇ in order

that the partition function (3.15) be invariant. Reparameterisation invariance requires

we take a(t) to transform as a covariant vector (form) so that under t → t′(t) we have

a → dt
dt′

a. This ensures that it transforms in the opposite way to the integration measure

and the Chern-Simons term
∫

dt a(t) is invariant. This also means that a(t) transforms as

e(t), the square root of the worldline metric. This is why we can construct the worldline

action describing a in a topologically invariant way.

We must take care to properly account for the overcounting caused by the gauge

invariance. We do so by following Polyakov [48, 49], splitting variations in a into gauge

transformations and orthogonal, physical changes (see also the appendix of [39]). To define

the functional integration we proceed by analogy with finite dimensional integration. If

the space of fields can be parameterised by some local coordinates ζi then we define

Da =

√

det

(

∂a

∂ζi
,
∂a

∂ζj

)

∏

k

dζk (B.1)

where (·, ·) denotes an inner product on field variations that must be chosen. We can

construct such an inner product on gauge invariant variations that is reparameterisation

invariant and independent of the worldline metric by making use of the transformation

properties of a:

(δ1a, δ2a) =

∫

dt a(t)
δ1a(t)δ2a(t)

(a(t))2
(B.2)

which we now use to partition the space of field variations. At the end of this section we

show that, in the event that the space of functions a(t) is allowed to include those where

the field can vanish the same techniques can be applied by instead defining the functional

integration measure using the worldline einbein. This is arguably more conventional, but it

initially requires the topological independence of the theory to be broken and later restored

at the end of the quantisation.
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Under a gauge transformation δ1a = ϑ̇. For a change δ⊥a to be orthogonal to this it

is easy to check that we require δ⊥a
a

= c, a constant, which corresponds to a global scaling

of the field. Using (B.1) we then have

Da = dcDϑ

√

(∫

dt a(t)

)

det

(

−1

a

d

dt

(

1

a

d

dt

))

(B.3)

where Dϑ is constructed using the reparameterisation invariant inner product on scalars:

(δ1ϑ, δ2ϑ) =

∫

dt a(t)δ1ϑ(t)δ2ϑ(t) (B.4)

The gauge invariance of the action means that we may use a gauge transformation to bring

an arbitrary function a(t) to a constant9 so we use this to expand about a(t) = θ
2π . Then

∫ 2π
0 dt a(t) = θ and the eigenvalue equation for the operator in (B.3) becomes

− (2π)2

θ2
d2Θ

dt2
= λΘ (B.5)

on the space of periodic functions Θ. The eigenfunctions are sinnt and cosnt with two-fold

degenerate eigenvalues λ = 4π2n2

θ2
and the determinant is therefore defined by the square of

their product over the integers n. Using ζ-function regularisation we calculate the product

of eigenvalues of an operator Ô as

exp

(

− d

dz
ζ
Ô
(z)

∣

∣

∣

∣

z=0

)

; ζ
Ô
(z) ≡

∞
∑

n=1

λ−z
n (B.6)

where the λn are the eigenvalues of Ô. The infinite product is then regulated via the analytic

continuation of the ζ-function. In our case ζ
Ô
(z) =

(

θ
2π

)2z
ζ(2z) which has derivative

ζ
Ô
(z) = 2 ln

θ

2π

(

θ

2π

)2z

ζ(2z) + 2

(

θ

2π

)2z

ζ ′(2z). (B.7)

Putting z = 0 and exponentiating the determinant we seek is θ2.

In this gauge we also have dc = dθ
θ

and the scalings act to translate through gauge-

inequivalent fields. We must take care of the subtlety of the constant zero mode ϑ(t) = ϕ

which should be excluded because it does not change the value of the gauge fixed field, so

we should replace Dϑ in (B.3) by Dϑ′ where Dϑ′ excludes constant functions. Now the

inner product between two constant functions is (δ1ϕ, δ2ϕ) = θδ1ϕδ2ϕ. So Dϑ =
√
θDϑ′dϕ.

Putting all of this together we get

Da =
dθ

2π
Dϑ. (B.8)

9The finite version of the gauge transformation is a → a − iU−1U̇ , where U = eiϑ. This might

be used to set an arbitrary function a(τ) equal to zero but the resulting gauge transformation U(τ) =

exp (−i
∫ τ

0
a(τ ′)dτ ′) is not periodic. Instead, the best than can be done is to identify a modulus of the

gauge field θ =
∫ 2π

0
a(τ)dτ and form Ũ(τ) = U(τ)eiθ. The effect of this transformation is to take a(τ) → θ

and periodicity implies θ ∈ [0, 2π].
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Now
∫

Dϑ is just the volume of the gauge group which we have successfully separated from

the integral over non-equivalent configurations. Since the action (and any insertions that

may arise under the path integral) should be gauge invariant the functional integral over

ϑ cancels with the overall normalisation to take into account the overcounting caused by

the symmetry. In summary we can therefore choose our gauge slice to be a(t) = θ
2π and

replace Da by dθ.

The final subtlety is to notice that a(t) enters in the path integral as exp
(

i
∫ 2π
0 a(t) dt

)

= eiθ so we must identify phases that are equivalent. To cover the space of distinguishable

Wilson-loops eiθ we should take θ ∈ [0, 2π] and finally arrive at the replacement

∫

Da →
∫ 2π

0

dθ

2π
(B.9)

as claimed in the text.

Using the einbein. It is more conventional to define reparameterisation invariant mea-

sures by making use of the worldline metric to construct expressions with the correct

transformation properties. One of the benefits of doing this is that the metric is taken to

be positive definite but in the case of the Chern-Simons theory introducing a dependence

on the einbein affects its topological nature which we must then hope to restore at the end

of the quantisation procedure. We modify the inner product (B.2) to

(δ1a, δ2a) =

∫

dt e(t)
δ1a(t)δ2a(t)

(e(t))2
(B.10)

and the inner product on scalars becomes

(δ1ϑ, δ2ϑ) =

∫

dt e(t)δ1ϑ(t)δ2ϑ(t). (B.11)

We will show that the integration measure eventually comes out independent of the einbein

so that this separation can be preserved despite the explicit dependence in (B.10).

The calculation proceeds in a similar way to before. This time a variation orthogonal to

a gauge transformation must satisfy δ⊥a
e

= c, a constant so that the variation is proportional

to the einbein itself. Then the integration measure factorises as

Da = dcDϑ

√

(∫

dt e(t)

)

det

(

−1

e

d

dt

(

1

e

d

dt

))

. (B.12)

As in the main text we will fix the local reparameterisation symmetry of the worldline

theory by expanding about e = T and we again gauge fix the U(1) symmetry by setting

a = θ
2π . Then

∫ 2π
0 dt e(t) = 2πT and the eigenvalue equation for the operator above is

− 1

T 2

d2ϑ

dt2
= λϑ, (B.13)

which has the same form as in the previous case. The determinant can be determined with

ζ-function regularisation and is given by (2πT )2. This time dc = dθ
2πT and we must still
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take care of the zero mode in the measure Dϑ. The inner product between two constant

functions is now (δ1ϕ, δ2ϕ) = 2πTδ1ϕδ2ϕ, so Dϑ =
√
2πTDϑ′dϕ. Combining these results

we again arrive at the identification

∫

Da →
∫ 2π

0

dθ

2π
(B.14)

which shows that the integration measure remains independent of T after all. This con-

cludes our detailed discussion of the gauge fixing procedure for an Abelian worldline sym-

metry, which is intended to illustrate the tools that could be used when this U(1) symmetry

is generalised to the U(F ) case.

Fixing the U(F ) symmetry. For the U(F ) symmetry met in sections 5 the gauge fixing

is more complicated since the symmetry group is non-Abelian. Instead the generator of the

symmetry, α, is in the Lie algebra of U(F ) and effects the following gauge transformation

on the gauge field:

a → U−1aU − iU−1U̇ ; U(τ) = eiα(τ). (B.15)

As before, a näıve attempt to set the gauge field to zero requires the solution of d
dτ
U(τ) =

−ia(τ)U(τ) which is easily arrived at using the path ordering prescription

U(τ) = Pe−i
∫ τ

0
a(τ ′)dτ ′ . (B.16)

This gauge transformation is not periodic on the circle so may not be used. Instead, we can

form Ũ(τ) = U(τ)eiΘ, identifying the constant group valued matrix e−iΘ = Pe−i
∫ 2π

0
a(τ)dτ .

This gauge transformation takes the gauge field into the constant, upper triangular matrix

Θ in the Lie algebra of the symmetry group

akj(τ) → Θkj . (B.17)

As discussed in [22], the path integral over the colour fields is insensitive to the off diagonal

terms of akj so we may in fact simplify our work by choosing the gauge field to be given

by the diagonal matrix âkj in (5.8). Using the (Abelian) subgroup U(1)F ⊂ U(F ) allows

us to make a large U(1) transformation on each of the θk in â. Periodicity then identifies

the θk as angles in [0, 2π].

The integration measure could be defined in analogy to the U(1) case considered in

this appendix by defining gauge invariant and reparameterisation invariant inner products

on variation in akj and expanding about (5.8). However, since in the text we end up

discussing the gauging of subgroups of the U(F ) symmetry it is more convenient to use

the Faddeev-Popov formalism (see [50] for a nice discussion). The integration over gauge

equivalent configurations can be factored out of the functional integration by integrating

only over the moduli θk, introducing the functional determinant (5.9) to compensate for

the restriction to a chosen gauge slice. That is,

∫

Da →
∫

DU

∫

DaDet

(

d

dτ
+ i[aU , ·]

)

δ
(

aU − â
)

(B.18)
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where â is the gauge fixed form of a and aU represents the action of a gauge transformation

on a. The calculation of these determinants is presented in the main text and, cancelling

the functional integration over U with the volume of the gauge group, leads to gauge fixed

integrals of the form

∫

DaΩ[a] →
F
∏

k=1

∫

dθk
2π

µ({θk}) Ω[â({θk})] (B.19)

where Ω is any functional of the gauge fields and µ denotes the Faddeev-Popov measure

maintaining gauge invariance.
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