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Abstract

We present a model of multilayer folding in which layers with bending stiffness EI are separated
by a very stiff elastic medium of elasticity k2 and subject to a horizontal load P. By using
a dynamical systems analysis of the resulting fourth order equation, we show that as the end
shortening per unit length E is increased, then if k2 is large there is a smooth transition from
small amplitude sinusoidal solutions at moderate values of P to larger amplitude chevron folds,
with straight limbs separated by regions of high curvature when P is large. The chevron solutions
take the form of near heteroclinic connections in the phase-plane. By means of this analysis,
values for P and the slope of the limbs are calculated in terms of E and k2.
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1. Introduction

The folding of sedimentary rocks under tectonic compression has historically been of great
interest to structural geologists [2, 18, 25], and subject of many different modeling approaches.
Aside from the economic implications, due to the correlation between folding and valuable min-
eral deposits, exposed escarpments of folded rocks often display distinctive patterns. These may
be localised or periodic, smooth or non-smooth, regular or chaotic. Examples of this are shown
in Fig. 1, and our particular interest in this paper is the zig-zig like chevron folding patterns ob-
served in the second figure. Questions which naturally arise are what mechanisms can produce
all types of observed patterns and how can we identify which type of pattern is most likely to
form? In this paper we will discuss the nature of these patterns from the perspective of dynam-
ical systems theory, and will derive a model in which we demonstrate that sinusoidal folding
patterns are consistent with (low amplitude) periodic orbits arising at bifurcation points whereas
non-smooth, chevron-type behaviour, in which we see zig-zag patterns with straight limbs, can
be described in terms of near heteroclinic orbits, and that there is a continuous transition between
these two types of behaviour.
The focus of the existing modelling work has considered the buckling or folding of a single lay-
ered imbedded in a softer matrix [3, 27, 28, 25] and has more recently received much interested
from an engineering and mathematical perceptive on localised and sequential folding [19, 23, 6].
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Much less attention has been given to modelling multilayered folding processes, in part this is
due to the inherent analytical difficulties arising from the high nonlinear geometric constraints
of layers fitting together. However, these interlayer interactions play a fundamental role in fold
pattern selection [28, 25, 11], and understanding this interaction is central to this paper. Biot [4]
proposed a continuum model for the deformation of a laminated material under plane stress. In
particular he noted that even though the individual layers maybe considered isotropic the layer-
ing offers a plane of weakness, giving a natural anisotropy. Biot proposed that the bulk properties
of layered materials, could be described by a homogeneous anisotropic (elastic) material, char-
acterised by two constants G < M which describe shear and compressive stiffness respectively.
Vertical and horizontal equilibrium equations under plane stress σ, can be combined to a single
linear fourth order PDE(

G −
σ

2

)
φxxxx + (4M − 2G) φxxyy +

(
G −

σ

2

)
φyyyy = 0, (1)

in terms of the stress function φ. Subject to appropriate boundary conditions, this equation can
then be analysed by using the method of characteristics. This equation has a rich variety of
solutions. An analysis presented in [4] equates different folded patterns with varying levels of
anisotropy ratio G/M. Different levels of anisotropy correspond to different regimes of the fourth
order equation (1); at low contrast the system is elliptic, admitting smooth periodic solutions, yet
at higher contrast the system becomes hyperbolic leading to (weak) kink-type solutions. Whilst
the results provide a selection process of different fold types in terms of the anisotropy ratio the
results are at odds with both physical intuition and scaled experiments on aggregate materials
(e.g. paper); in particular kink-type patterns are readily observed whilst compressing layers of
paper under conditions with low anisotropy contrast with G ∼ M [32, 20]. Furthermore the two
parameters which characterise an anisotropic solid, do not capture the intrinsic length scale of
a multilayered material, the layer thickness. The model predicts, in the elliptic range the sys-
tem buckles into an infinitely small wavelength, which is contradictory with Biot’s theory of a
dominant wavelength ([3]). The shortcomings of this formulation stem from the assumption that
the shear behaviour of a multilayered material can be described by a single parameter (G). In
fact the shear parallel to the layers is in general much weaker than the shear stiffness orthog-
onal layers. For cases in which there are large disparities, models must not only consider the
anisotropic nature of shear at the interfaces, but also the individual contributions of layers as
they bend (see for example [22, 13, 14]) . In other words, the difference in shear parallel and or-
thogonal naturally leads to non-symmetry in the shear stresses introducing moments per unit area
or coupled-stresses. Various contributions have included layer-wise bending mechanics into con-
tinuum descriptions of layered media using Cosserat Theory (see for example [22, 1, 14]). This
approach regularises the problem, rendering the governing equation fully elliptic and introduces
a dominant wavelength into which layers initially buckle. Whilst gradient-enhanced continuum
descriptions of layered materials have come some way in addressing the short-comings of Biot’s
initial model (1), both approaches consider only the onset of folding instabilities and neglect
large deformation geometric interactions between layers. These geometric constraints have been
investigated by a number of authors for specific mechanics and processes. For example a geo-
metric model for chevron folds is given in [29], kink banding in layered media is described in
[32], the formation of parasitic or accommodation structures is studied in [16, 30, 12] and the
formation of hinges and delamination at folding induced singularities outlined in [5, 10]. Whilst
these approaches give good explanations for the role geometry places in the forming of specific
folding scenarios, they each make certain a-priori assumptions of the geometry and structure of
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the folding patterns.
In this paper, in contrast, we present a simplified nonlinear energy-based model of a periodic
multi-layered material. This model will allow us to investigate the role that the constraints of the
multilayer geometry play in fold pattern selection, when long layers of rock are buckled from an
initially flat state. The model considers a periodic multilayered material of (long) undeformed
length 2L described by a horizontal variable x ∈ [−L, L]. The material comprises long single elas-
tic layers lying on top of each other with, up to translation, identical displacements u(x, t) + nh
where n = 0, 1, 2, . . . and h is a constant layer separation. These layers are in turn separated by
a stiff elastic medium of stiffness k2, and the whole structure embedded in an elastic material of
stiffness k1. The limit of large k2 corresponds to the layers lying in close contact so that their pat-
terns of folding are constrained directly by their geometry. We assume that the system is initially
lying flat, and then that the layers are compressed horizontally (for example by the action of tec-
tonic motion) and are thus subjected a prescribed end-shortening distance ∆(t) associated with an
(unknown) horizontal axial load P(t). In doing so the layers buckle, compressing and stretching
the interlayer material. Initially the layers will deform into small amplitude periodic sinusoidal
folds for which the wavelength and the associated buckling axial load PC , are determined by the
elastic constant k1 [2] and the amplitude by ∆. As the end-shortening ∆ and axial load P increase,
then for large values of k2 the layers interact through the elastic medium separating them giving
a geometrical constraint to their motion. This in turn leads to more complex folding patterns.
In this paper we investigate the folding patterns observed in this case . We will show that when
∆ and P are relatively small then the buckling patterns are sinusoidal. However, if k2 is large,
so that the two layers interact strongly, then as ∆ increases and P also becomes large, so that
P = O(k2) we will show that the buckling patterns become chevron in form. Thus this model
describes in one system, two of the main folding patterns observed in practice.

The layout of this paper is as follows. In Section 2 we construct a potential energy functional
W(u) for the system. This combines the work done in bending UB, into a surrounding foundation
UF and stretching the interlayer material UV as well as work done by the load P∆ in producing
the desired end-shortening. The potential energy functional per unit length is then given by

W =
1

2L

∫
W dx ≡

1
2L

∫ L

−L

EIu2
xx

(1 + u2
x)5/2 +

1
2

k1u2 +
1
2

k2h2

1 − 1√
1 + u2

x

2

−P
(√

1 + u2
x − 1

)
dx.

(2)
The resulting folding patterns profiles are given by finding the stable stationary functions of the
energy W, over all suitably regular functions u which satisfy the end-shortening constraint. In
this paper we will concentrate on studying those solution which are periodic in x. These are in
turn solutions of the Euler-Lagrange equation

δW
δu
≡
∂W
∂u
−

d
dx

(
∂W
∂ux

)
+

d2

dx2

(
∂W
∂uxx

)
= 0, (3)

subject to the end-shortening constraint. In particular they can be regarded as limits of the solu-
tions of the time dependent fourth order parabolic PDE (of Swift-Hohenberg type) which takes
the form

∂u
∂t

= −
δW
δu

(4)

with the constraint that the end-shortening per unit length (i.e axial strain) is given by E.
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In Section 3 we give a multiscale analysis of the initiation of the folding patterns of (3) when
the end-shortening per unit length (the axial strain) E is small. By using a carefully scaled
amplitude equation will show how the axial load PC and period `C of the periodic solutions
are selected in this case. We shall find that there is a critical value of k2h2 = k∗ where the
solution structure at the bifurcation changes from sub-critical if k2h2 < k∗ to super-critical when
k2h2 > k∗. In Section 4 a global analysis of the system is presented and in particular we look at
the solutions when the axial load P is large, with P = O(k2). By applying a rescaling and balance
argument combined with a phase-plane analysis of the full system, we deduce the existence of
chevron folding type structures in the limit of large k2 and P. These solutions manifest as near
heteroclinic connections in the (ux, uxx) phase-plane, connecting two flat solutions of the form
(ux, uxx) = (±v∗, 0) separated in the horizontal by regions of high curvature of width proportional
to 1/

√
P. In this limit we observe a trade off between work done in bending UB and the stretching

of the interlayer materials UV . In Section 5 we then translate this analysis into the original
physical coordinates and calculate the associated wavelength ` and load P in terms of the end
shortening per unit length E. In Section 6 these results are then compared to some numerical
calculations of both the fold initiation and of its development into full chevron folds. Finally, in
Section 7, we give some conclusions and suggestions for further work.

The main results of Sections 3–5 are summarised as follows

Theorem 1
(i) As the axial strain E increases from zero, we observe small amplitude sinusoidal-type solu-
tions of (3), with integer wave number n, at the critical axial load of

P = PC =
√

8EIk1

with period `L = L/(nπ) as close as possible close to

`C = 2π
(

2EI
k1

)1/4

.

When E is small the period remains pinned at the value `L and P increases linearly so that

P = PC + αE + O(E2),

where the value of α will be given explicitly and is positive for larger values of k2 and negative
for smaller values.

(ii) If k2 and P are large, then as E increase, there are solutions of (3) which for large axial load
P have chevron form with straight limbs in which, for most of the interval x ∈ [0, `], the value of
|u′| is constant, with

|u′| =

√
1

(1 − E)2 − 1.

The limbs are separated by small regions of high curvature of width O(1/
√

P). These solutions
have length ` = `C(1 − E), and occur at a load value of

P = k2h2
[
(1 − E)2 − (1 − E)3

]
.

(iii) The axial load takes a maximum value of P = 4k2h2/27 when E = 1/3.
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2. The Model and Energy formulation

To construct a model for multi-layer deformation we consider a representative part of the
periodic multilayered material described in the introduction in which the identical layers are
separated by a vertical distance h. To do this we consider a structure of two long thin linear
elastic layers, separated by a linear elastic filling material. We presume that these layers are then
part of a much larger periodic structure, which is ultimately embedded in a linear elastic Winkler
type foundation. This is presented in Figure 2. In a vertically periodic case we presume that both
layers are defined by identical copies of their centre-lines, where the upper layer is calculated
by translating the lower layer vertically upwards a distance h. Here h defines the natural normal
separation of the layers in the undeformed state. Throughout this work a 2-dimensional setting
is assumed, where both layers characterised by the fixed horizontal coordinate x and the angle
θ = θ(x) with the horizontal. The bottom layer is defined by the vertical displacement u(x), and
the top layer a translation of this, with displacement u(x) + h. We will consider a long layer of
rock of length 2L � 1 which is compressed by a horizontal load P to give a total end-shortening
∆ = 2LE, where E is the end-shortening per unit length or axial strain.

2.1. The total potential energy functional
A convenient way to determine the folding profile is to use an energy formulation. As the layer
shortens a distance ∆ = 2EL under the action of the load P the work done on the system P∆

is shared between work done in bending each layer (UB), against the foundation (UF) and by
compressing or stretching the elastic filling material (UV ) between the two layers.

2.1.1. Bending energy, UB

Classic bending theory [31, pp. 28] gives the bending over a small segment of a beam ds as
dUB = 1

2 EIκ ds, where κ is the curvature of the beam and EI is the bending stiffness of a single
layer. Integrating over the total length of the material, gives the bending energy of both layers
per unit length as

UB =
EI
2L

∫ L

−L
κ2 ds =

EI
2L

∫ L

−L

u2
xx(x)

(1 + u2
x(x))3

ds
dx

dx =
EI
2L

∫ L

−L

u2
xx(x)

(1 + u2
x(x))5/2 dx. (5)

The quadratic dependence on uxx implies that a sharp corner has very large bending energy, we
therefore assume that u has square integrable second derivatives, so that it has a locally bounded
bending energy. We observe that chevron folds are likely to have very large second derivatives.

2.1.2. Foundation energy, UF

In deformation, the layers compress the surrounding foundation and do work against it. We
will make the assumption that this foundation is a linear elastic Winkler foundation with elastic
modulus k1. Therefore the work done per unit length into the foundation due to a deflection u(x)
is given by

UF =
1

4L
k1

∫ L

−L
u2(x) dx (6)

More complex nonlinear elastic foundation models can be used, and have been extensively in-
vestigated in the engineering and mathematical literature ([19], [23]) and give rise to a plethora
of complex behaviour. Here however, we investigate the influence of the geometric nonlinearity
in the folding process and the role of this in fold selection through a heteroclinic connection. To
distill this behaviour we therefore consider only a linear elastic foundation.
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2.1.3. The geometric constraint, UV

The novel feature of this paper, which distinguishes this model from earlier analysis, is the
inclusion of the elastic material of modulus k2 between the two stiff layers. If k2 is small then
each of the layers will not feel the influence of the other and the system will behave as a single
layered material. However, if k2 is large then the inclusion of the filling material means that
each of the layers will feel the effects of the other’s deformation. This is crucial to our analysis.
In the initial state we will assume that the two stiff layers are perfectly horizontal, and that the
elastic layer fills the rectangular region of height h between them. As the stiff layers deform, so
this elastic layer is either stretched or compressed. We will assume that the elastic layer is free
to slide along the stiff layers. We now give a leading order calculation of the energy stored in
compressing or stretching this elastic filling material away from the natural normal separation.
The vertical separation between the two layers at the point x is given by h and the angle of the
tangent at x is given by θ(x). Therefore for a given x a first order approximation of the normal
separation between layers is given by

n = h cos θ(x) =
h√

1 + u2
x

.

The total work per unit length UV , done in compressing this layer from an initial separation of h
is then given by

UV =
1

4L
k2h2

∫ L

−L
(1 − cos(θ))2 dx.

We note that for a parallel folding, where normal separation is constant, and the rock layers are
not vertically periodic, then UV = 0.

2.1.4. Work done by the load
We define the shortening of each layer ∆ as the amount the end points approach each other

due to the deformation u(x)

∆ =

∫ L

−L
(1 − cos(θ(s)) ds =

∫ L−∆/2

−L+∆/2

√
1 + u2

x − 1 dx ≈
∫ L

−L

u2
x

2
dx (7)

where s is the arc-length. This end shortening is achieved by the axial load P acting on each layer
therefore the total work done on the system is P∆. There is an important engineering distinction
between two forms of loading dead and rigid. In the dead loading, P is the controlled parameter
and the end shortening 2∆ is the measured quantity. In rigid loading it is the other way round with
∆ given and P to be determined. Whilst both share the same equilibrium states, their stability are
generally different. For geological applications, rigid loading is more relevant, since the motion
of plates under tectonic action, causes a slow but constant shortening to rock systems, and we
will consider this form of loading in this paper.

2.2. Energy formulation

The total strain energy per unit length for the system is the sum of each contributing term seen
in the previous section. It is thus given by,

W(x, u) =
1

2L

∫ L

−L
W(x, u, ux, uxx) dx, (8)
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where

W =
EIu2

xx

(1 + u2
x)5/2 +

1
2

k1u2 +
1
2

k2h2

1 − 1√
1 + u2

x

2

− P
(√

1 + u2
x(x) − 1

)
. (9)

The natural space on which to define W is H2
loc(R), the space of all functions with second

derivatives in L2(K) for any compact set K ⊂ R. Finiteness of the first term (bending energy)
requires (at least) u ∈ H2

loc(R), and this condition naturally insures all other terms are well
defined. To consider repeating folding patterns, we augment W with the periodic boundary
conditions

u(0) = u(`), ux(0) = ux(`), uxx(0) = uxx(`) and uxxx(0) = uxxx(`). (10)

Here the period ` = 2π/ω is to be determined. Once known, we can seek periodic solutions over
the finite domain (0, `).
The application of the axial strain E implies that if we consider a solution in the interval s ∈
[−L, L] to be shortened by an amount 2EL then∫ L(1−E)

−L(1−E)

√
1 + u2

x dx = 2L. (11)

2.3. The governing equations

To derive the governing equations for the system we consider the fourth order gradient flow
given by

∂u
∂t

= −
δW
δu

= −
∂W
∂u

+
d
dx

(
∂W
∂ux

)
−

d2

dx2

(
∂W
∂uxx

)
. (12)

with the constraint that the end-shortening per unit length is given by E. Along this flow it is
immediate that

dW
dt

= −

∫ L

−L

(
δW
δu

)2

dx < 0. (13)

Hence we will seek stationary values of (12) which are in turn minimisers of the total energyW.
In our analysis we will firstly look at solutions of small amplitude which arise for small E. We
then consider how these solutions evolve as the axial strain E increases.

3. Fold initiation

3.1. Overview and reduced equation

To start our study, we consider a layer of rock of length 2L � 1 (assumed large compared with
the wavelength of any fold) compressed to have an axial strain of E = ∆/2L at an (a-priori
unknown) axial load P. When the axial strain is zero, the Euler-Lagrange equation (16) has the
trivial solution u(x) = 0. As the end shortening increases, non-zero sinusoidal periodic solutions
of frequency ω and period ` = 2π/ω occur for certain critical values of the load P = PC and
their amplitude increases in proportion to

√
E. In this section we will determine these critical

values of P and calculate the associated wavelength and amplitude of the solution as functions
of E, showing that for small deviations ω = ωC and does not vary, wheras P depends linearly
upon E. We will also show that the nature of the bifurcation depends upon the value of k2. If k2
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is sufficiently large, then as E increases so the amplitude of the soution and P increases and we
will consider the limit of large P in the next section.

Our initial analysis will make the assumption that u and |ux(x)| are small. This allows us to study
the deviation of the system from an initially undeformed state using a stabilty analysis associated
with an amplitude equation, we therefore consider the weakly nonlinear Lagrangian, achieved
by truncating terms at order u4

x given by

W = EIu2
xx

(
1 −

5
2

u2
x

)
+

1
2

k1u2 +
1
8

k2h2u4
x − P

(
1
2

u2
x −

1
8

u4
x

)
dx. (14)

At the same order of approximation, the end-shortening condition resulting from the axial strain
becomes ∫ L

−L

u2
x

2
dx = 2LE. (15)

The observed folding patterns are given by periodic stationary solutions u of the energyW and
satisfying the end-shortening constraint (15). To the order of accuracy considered above the
gradient flow equation (12) then becomes the nonlinear parabolic differential equation

−ut = EI
(
(2 − 5u2

x)uxxxx − 5u3
xx − 20uxuxxuxxx

)
+ Puxx −

3
2

(k2h2 + P)u2
xuxx + k1u. (16)

To give a stable solution we introduce the pinning condition

u(−L) = u′(−L) = u(L) = u′(L) = 0 (17)

and then solve (16).

3.2. Amplitude equation derivation

We study this reduced system by using the multi-scale stability analysis used commonly to study
the onset of periodic patterns [21], in which we set

u(x, t, X,T ) = A(X, t,T )eiωx + c.c (18)

where X,T are assumed to be slow variables to be defined presently. If |A| is small then to leading
order A satisfies the linear fourth order differential equation

−At = (2EIω4 − Pω2 + k1)A ≡ σA. (19)

It is well known [21] that for P larger than a critical value the observed steady states solutions
are also the most rapidly growing solutions of (19) over all possible values of the frequency ω.
These satisfy the simultaneous equations

2EIω4 − Pω2 + k1 = 0, and 8EIω3 − 2Pω = 0 (20)

Solving these gives the critical values

P = PC =
√

8EIk1, ωC =

√
PC

4EI
=

(
k1

2EI

)1/4

. (21)
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with the critical period

`C = 2π
(

2EI
k1

)1/4

. (22)

The resulting small amplitude |A| is then fixed by the linearised end-shortening condition (15) so
that

2L|A|2ω2
C = 2LE + O(1), (23)

and therefore for large L we have the following measure of the solution amplitude in terms of the
axial strain

|A| =

√
E

ωC
. (24)

This calculation describes the onset of patterns at the critical axial load P = PC , at infinitessi-
mally small values of A. We now co nsider a more sophisticated multi-scale analysis to consider
the more general case. For P close to PC , σ > 0, we expect patterns of the form (18) for |A|
small and ω near ωC to bifurcate from the basic state for P − PC � 1. To capture amplitude
and phase modulation of these patterns in this parameter range, we derive an envelope equation
on slow time and space scales. The amplitude equation tells us not only what the patterns look
like, but also gives us (in)stability information about the periodic patterns for certain parameter
ranges. This is useful, since it helps us to locate the range of ω for which we expect to see stable
patterns, without any implications from the boundary conditions.

To identify the appropriate temporal and spatial scales for the amplitude, and also the possible
phase corrections, of the patterns close to the critical values of PC and ωC , we consider the
dispersion relation (19) for P − PC = ε2 p, ω = ωC + εγK where at this stage the small variable ε
is simply a measure of the solution amplitude |A| that we use to identify the correct scalings of P
and ω. Then for ε � 1 we have

−σ ∼ 2EI(ω4
C + 4ω3

Cε
γK + 6ω2

Cε
2γK2) − (PC + ε2 p)(ω2

C + 2ωCε
γK + ε2γK2) + k1 (25)

Using the definition of ωc and Pc gives cancellation of the terms with coefficients that are O(εγ)
or larger. Then balancing the remaining (leading order) contributions yields

γ = 1, σ = O(ε2) (26)

This result implies that it is appropriate to look for multiple scale behavior of the form, u =

u(x, t, X,T ) for X = εx, T = ε2t, and P − PC = ε2 p, with ε2 related to the end-shortening
condition through the equation (24) so that

ε2 = E/ω2
C . (27)

With this ansatz, we have

∂nu
∂xn =

(
∂

∂x
+ ε

∂

∂X

)n

u,
∂u
∂t

=

(
∂

∂t
+ ε2 ∂

∂T

)
u, (28)

so that equation (16) has the form

−ut = L0u +

4∑
j=1

ε jN ju (29)
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where L0u = Lu with P replaced by Pc so that

L0u = 2EIuxxxx + PCuxx + k1u (30)

and the terms N ju may be nonlinear in u. Therefore we look for a perturbation expansion for u
of the form

u ∼ εu1 + ε2u2 + ε2u3 + . . . (31)

The ε scaling of u1 follows from the fact that we take P = PC + ε2 p, and we expect patterns with
small amplitude to bifurcate from the basic state with p > 0, see [21, pp. 285-305]. Furthermore,
from the linear analysis above we see that σ is real, so that we expect stationary periodic patterns
that bifurcate from the basic solution with evolution on the T time scale. Therefore we expect no
fast time t dependence for this solution, that is, u j = u j(x, X,T ).

Substituting (31) in (29) and collecting like powers of ε yields

O(ε) : −L0u1 = 0 (32)
O(ε2) : −L0u2 = N1u1 = 8EIu1xxxX − 2PCu1xX (33)
O(ε3) : −L0u3 = u1T + N2u1 + N1u2 (34)

As indicated from the dispersion relation (19) for σ = σ(ω, P) discussed above, we expect to
find stationary patterns of the form eiωC x with modulations on the long time scale T for P near to
PC . Therefore we conclude that

u1 = A(X,T )eiωC x + c.c. (35)

Furthermore, given the relationship between ωC and PC above, N1u1 = 0. Then we see that u2
satisfies the same linear equation as u1 and without loss of generality we can set u2 = 0. Then,

−L0u3 = u1T + 12EIu1xxXX + PCu1XX + pu1xx + EI[−5((u1x)2u1xxxx

−5(u1xx)3 − 20u1xu1xxu1xxx] −
3
2

(k2h2 + PC)(u1x)2u1xx (36)

Using the expression for u1 (35) yields terms of the form C(X,T )eimωC x for m = ±1,±3 on the
right hand side of (36). Then we have a solvability condition for u3 to eliminate the possibility
of an unphysical solution that grows linearly with x,∫ 2π/ωC

0
(u1T + N2u1)e±iωC xdx = 0 (37)

Thus we find the coefficient of eiωC x on the right hand side of (36) gives us the solvability condi-
tion which is the well-known Ginzburg Landau equation for A(X,T ) given by

AT = ω2
C pA + 2PC AXX + ω4

C[10EIω2
C −

3
2

(k2h2 + PC)]|A|2A (38)

Once again, note that at this stage we have not used the boundary condition u = 0, so (38) is
capturing the general slow time and space modulation of a periodic pattern with wave number
ωC .

10



One simple non-trivial solution of (38) is given by taking A = r0, where r0 satisfies the equation

ω2
C p + ω4

C[10EIω2
C −

3
2

(k2h2 + PC)]r2
0 = 0. (39)

These solutions correspond to pure periodic solutions for u(x). A further steady (in time) solution
of (38) is given by a heteroclinic connection, which is in turn asymptotic to the periodic solutions
of amplitude r0. These both correspond to the desired folding patterns.

A standard linear stability analysis of simple solutions of this type with a possible shift in wave
number A = r0eiω1X results in the well-known Eckhaus stability criterion for ω1 [15], Then, the
stability condition for solutions of (38) of the form u ∼ r0ei(ωC+εω1)X is

ω2
1 <

ω2
C

6PC
p (40)

Now, we consider how the boundary conditions contribute to the selection of certain periodic pat-
terns within the possibilities indicated by (38) and (40). With the boundary conditions u(±L) =

u′(±L) = 0 for L � 2π/ωC , we expect that the system selects periodic patterns u ∼ eiωx on
−L < x < L with quantized wave number n satisfying LωL = nπ for n an integer. Together with
the condition (40), this observation indicates that for a stable pattern to exist, the selected wave
number ωL must be close to ωC as ε � 1. This observation in turn selects the appropriate integer
n given by

n = integer part of
(LωC

π

)
and hence ωL =

nπ
L
. (41)

Additional analysis of the amplitude equation indicates that this wave number remains fixed in
the weakly nonlinear parameter range [8]. To see this, we consider the possibility of stable
amplitudes that vary in space A = R(X)eiΘ(X), which would give phase corrections to ωLX.
Substituting in (38), separating real and imaginary parts, and integrating the equations once
yields

R2Θ′(X) = Q1, (42)

2PC(R′)2 + 4PC
Q2

1

R
+ ω2

C pR2 +
ω4

C[20EIω2
C − 3(k2h2 + PC)]

4
R4 = Q2 (43)

for Q j, j = 1, 2 constant. With the boundary condition u = 0 it follows that R = 0 at some
value of X. Then, in order to have bounded solutions, we must have that Q1 = 0. As a result
Θ = constant, and in the weakly nonlinear regime, the wave number is pinned at the value
ωL = L/(nπ) for the integer n such that ωL is as close as possible to ωc.

We deduce that close to the critical point, the resulting solution takes the leading order form

u(x, X) = εR(X)eiΘeiωL x + c.c.

In particular for small values of E, apart from exponentially small corrections, we have the sym-
metric periodic solution

u(x) = 2εr0 cos(ωLx). (44)

It follows from the end-shortening condition that

εr0 =

√
E

ωL
. (45)
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From (39) and the condition that P = PC + ε2 p we then have that the axial load is given locally
by

P = PC + ω2
C

[
−10EIω2

C +
3
2

(k2h2 + PC)
]
ε2r2

0 = PC +
Eω2

C

ω2
L

[
−10EIω2

C +
3
2

(k2h2 + PC)
]

(46)

We note that there is a critical value of k2h2 = k∗ satisfying the identity

3
2

(k∗ + PC) − 10EIω2
C = 0, (47)

so that solutions exist in the super-critical range P > PC if k2 > k∗ and the sub-critical range
P < PC if k2h2 < k∗. As k2 � 1 for our system, it is only the super-critical case (for which the
Eckhaus stability condition applies) which is of interest to us in this paper. We note further that
for small values of E we have that P varies linearly with E but that ω is locally constant at ωL.
This situation changes for larger values of E and we study these in the next section.

4. Analysis of the fully nonlinear equation

4.1. Global bifurcations and large deviations
The analysis in the previous section establishes, for sufficiently large k2, the existence of solution
branches (u, P) parametrized by E with (locally) u and P increasing from the bifurcation point
(0, PC) with increasing E. In this section we now consider the fully nonlinear equation, without
assuming |ux(x)| is small, and study the evolution of these branches away from the bifurcation
points. Our starting point is therefore the fully nonlinear Lagrangian

W =
EIu2

xx

(1 + u2
x)5/2 +

1
2

k1u2 +
1
2

k2h2

1 − 1√
1 + u2

x

2

− P
(√

1 + u2
x(x) − 1

)
. (48)

We seek periodic energy minimising solutions of this Lagrangian (48), which we presume have
a wavelength `. This wavelength will be determined later as part of the solution, by using the
end-shortening condition and stability arguments. To do this analysis, it is convenient to initially
fix ` and to consider symmetric periodic solutions of period ` as functions of P, and to then find
the end shortening E.We will then return to determining P in terms of E.

It follows that total potential energy of the periodic solution over the interval [0, `] is given by

V(u, `) =

∫ `

0
W dx =

∫ `

0
EI

u2
xx

(1 + u2
x)5/2 +

1
2
`k1u2 +

1
2

k2h2

1 − 1√
1 + u2

x

2

(49)

−P
(√

1 + u2
x(x) − 1

)
dx, (50)

with the associated Euler-Lagrange equation

2EI
[

uxxxx

(1 + u2
x)5/2 − 10

uxuxxuxxx

(1 + u2
x)7/2 −

5
2

u3
xx

(1 + u2
x)7/2 +

35
2

u3
xxu2

x

(1 + u2
x)9/2

]
+k1u + P

[
uxx

(1 + u2
x)1/2 −

u2
xuxx

(1 + u2
x)3/2

]
− k2h2uxx

[
1

(1 + u2
x)3/2 −

1
(1 + u2

x)5/2

]
−k2h2u2

xuxx

[
3

(1 + u2
x)5/2 −

5
(1 + u2

x)7/2

]
= 0. (51)
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Periodic solutions of fourth order equations of the general form given by (51) have been
studied in depth by many authors, and we refer to the monograph of [24] for a review of the
genral theory for the existence, and certain aspects of the behaviour of, the periodic solutions of
fourth order problems. Consequently we will only give a short description of the existence of
the solutions for the equation in our case, as the main interest in this paper is the evolution of the
(symmetric) periodic solutions towards the Chevron type folding patterns.

In particular, we see immediately that the Euler-Lagrange equations given by (51) are invariant
under each of the reflectional symmetries u → −u and x → −x as well as translational symme-
tries in x. Our interest in this paper will be on solutions which inherit these symmetries both
because this is the form of the solutions on the primary solution branch, and also because his
study also significantly simplifies the subsequent analysis. Accordingly we fix the period ` of
the periodic solution and consider solutions with all such reflectional symmetries. The function
u(x) will then be composed of two symmetrical half waves, identical up to a change in sign. We
fix the phase of the first half wave by setting

u(0) = u′′(0) = u(`/2) = u′′(`/2) = 0, (52)

We also consider those solutions with the symmetry

u(x) = u(`/4 − x). (53)

On the half wavelength [0, `/2] such solutions will then take the form

u(x) =
∑
n odd

an sin(2nπx/`) (54)

We note that solutions of (51) which satisfy (52) and have the symmetry (53), can be extended
to periodic solutions of the form (54) by odd periodic continuation. It is thus sufficient to study
these for the case of ` fixed. We now establish the following

Lemma 1
Consider the solutions of the Euler-Lagrange equation (51 ) satisfying the boundary conditions
given by (52)

(i) There exists a global solution branches bifurcating from the trivial solution at the bifurcation
point (u, P) = (0, PC).,
(ii) The primary branch is symmetric about the centre-line of the domain, so that u(x) = u(`/4−x)
and thus the solutions on [0, `/2] can be odd-periodically extended to periodic solutions on the
whole real line.

Proof. (i) We set v = uxx, then (51) may be cast into the form

uxx = v, (55)

2EI
[
vxx − 10

uxvvx

(1 + u2
x)
−

5
2

v3

(1 + u2
x)

+
35
2

v3u2
x

(1 + u2
x)2

]
+k1u(1 + u2

x)5/2 + P
[
v(1 + u2

x)2 − u2
xv(1 + u2

x)
]
− k2h2v

[
(1 + u2

x) − 1
]

−k2h2u2
xv

[
3 −

5
(1 + u2

x)

]
= 0,
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with boundary conditions
u(0) = u(`/2) = v(0) = v(`/2) = 0. (56)

If L is then the compact integral operator given by the Greens function of the second derivative,
we then have from (55,56) that

u = Lv and 2EIv = L f (u, v, ux, vx; k1, k2, P) (57)

where f is the nonlinear function given above. It is immediate from the previous analysis that if
P = PC then this system has a simple eigenfunction given by

(uPC(x), vPC(x)) = (sin(ωC x),−ω2
C sin(ωC x)). (58)

The existence of a global solution branch bifurcating from the trivial solution then follows from
the application of the methods of bifurcation theory for a nonlinear problem of the form (57) with
a simple eigenfunction, as described in [7] Theorem 8.2. The required transversality condition
for this theorem is satisfied if

〈NPcφ, φ〉 , 0

where N is the ordinary differential equation given in (51). For this particular case this amounts
to the condition that ∫ `/2

0
sin2(ωC x) dx , 0

which is naturally satisfied.

(ii) As observed earlier, the differential equation with boundary conditions given by (55,56) is
invariant under the action of the reflectional symmetry u(x) → u(`/4 − x). This symmetry also
leaves the simple eigenfunction given by (58) invariant The result follows from the Equivari-
ant Branching Lemma [17], so that the bifurcating branch inherits the symmetry of the simple
eigenfunction (56).

4.2. Global analysis of the nonlinear equation in the limit of large k2 and P

We now study the behaviour of periodic solution branches, obtained by the periodic extension
of the solutions of (55,56), in the limit of large k2 and P = O(k2h2). To do this we note that the
Euler-Lagrange equation takes the form

d
dx

[
d
dx

(
∂W
∂uxx

)
−
∂W
∂ux

]
+ k1u = 0,

where the expression ∂W
∂ux

is linearly dependent upon P and k2 and is hence large. Furthermore the
higher order derivatives of u which will be expected to be large in boundary layers close to points
of high curvature, only arise in the expression d2

dx2

(
∂W
∂uxx

)
.Hence, in the limit of large P and k2, the

term k1u2 in the expression for W arises at a lower order. We also note that the terms involving uxx

and higher order derivatives will only be important at isolated points of high curvature over small
length scales. In particular we establish the existence of chevron type solutions using a phase
plane analysis. In this calculation we will assume that ` is constant and consider the question of
relating E to P.
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Consequently, if in the limit of large P and k2 we ignore the terms of the form k1u2 then to leading
order the Euler-Lagrange equation is given by

d
dx

[
d
dx

(
∂W
∂uxx

)
−
∂W
∂ux

]
= 0.

This expression has an immediate first integral given by

d
dx

(
∂W
∂uxx

)
−
∂W
∂ux

= C,

for a suitable constant C. It follows, after some manipulation, that we then have

2EIuxxx

(1 + u2
x)5/2 −

5EIu2
xxux

(1 + u2
x)7/2 +

Pux

(1 + u2
x)1/2 − k2h2ux

[
1

(1 + u2
x)3/2 −

1
(1 + u2

x)2

]
= C. (59)

Now, substituting v = ux into (59) and rearranging, gives the second order ODE

2EIvxx −
5EIv2

xv
(1 + v2)

+ Pv(1 + v2)2 − k2h2v
[
(1 + v2) − (1 + v2)1/2

]
= C(1 + v2)5/2. (60)

We can further simplify this equation using the following.

Lemma 2
On the primary symmetric periodic solution branch C = 0 and v thus satisfies the ordinary
differential equation

2EIvxx −
5EIv2

xv
(1 + v2)

+ Pv(1 + v2)2 − k2h2v
[
(1 + v2) − (1 + v2)1/2

]
= 0. (61)

Proof. On the primary solution branch we have the symmetry that u(x) = u(`/2 − x). Thus, if
x = `/4 we must have ux = uxxx = 0, and thus v = vxx = 0. It follows immediately from (60) that
C = 0.

We now establish the possible existence of the fold bifurcation on this branch.

Lemma 3
For each fixed `, the Equation (61) has no non-zero periodic solutions of period ` = 2π/ω, for
sufficiently large P.

Proof. If P is very large, so that P � k2h2, then by rewriting equation (61) as

2EIvxx −
5EIv2

xv
(1 + v2)

+ v(1 + v2)2
(
P − k2h2

[
1

1 + v2 −
1

(1 + v2)3/2

])
= 0. (62)
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and noting that 0 ≤ (1 + v2)−1 + (1 + v2)−3/2 ≤ 1, then (61) can be closely approximated by the
equation

2EIvxx −
5EIv2

xv
(1 + v2)

+ Pv(1 + v2)2 = 0. (63)

If we set s =
√

Px then this becomes

2EIvss −
5EIv2

sv
(1 + v2)

+ v(1 + v2)2 = 0, (64)

which we can write as the two-dimensional system in the phase-plane given by

dv
ds

= w, 2EI
dw
ds

=
5EIw2v
(1 + v2)

− v(1 + v2)2.

This system has a number of symmetries, in particular t → −t, v→ −v and t → −t,w→ −w, and
the only singular point is at the origin.These symmetries imply that all solutions in the phase-
plane are closed periodic orbits centred on the origin. If (v,w) are small then these orbits have
period 2π/

√
2EI. In contrast, if v and w are large then we can approximate it by

2EIvss −
5EIv2

sv
(1 + v2)

+ v(1 + v2)2 ≈ 2EIvss + v(1 + v2)2 = 0,

which has periodic solutions with a period which decreases (in proportion to 1/(1 + v2)) as the
amplitude of v increases. It follows from the continuity of the period of the periodic orbits that
there is a maximum period T of all of the periodic orbits in the phase-plane. In Figure 3 we show
the calculation of the half-period of the periodic solutions of (64) when 2EI = 1 as a function
of v′(0) = γ, taking v(0) = 0. In this figure we can clearly see this behaviour. It follows that as
s =
√

Px then the period of the solution in the x-variable is T/
√

P. For large P this must be less
than ` and hence cannot be an `-periodic solution of the original equation.

This result is fully consistent with the analysis of the next section which shows the existence of
a fold bifurcation in the solution.

4.3. Phase-plane calculations of the chevron-type solutions

Now, we consider the case when P and k2h2 are both large and of comparable size, with P <
4k2h2/27, and will give a phase-plane base construction of the periodic solution of (61). We will
show that in the phase-plane it is close to a heteroclinic orbit, corresponding to a chevron folding
pattern, in which v = du/dx is close to the constant values of ±v∗ , over most of the interval, with
small regions of high curvature at x = 0, `/2, ` where v = ux = 0. Initially we make the rescaling
of s =

√
Px to the differential equation (61) giving the system

dv
ds

= w, 2EI
dw
ds

=
5EIw2v
(1 + v2)

− v(1 + v2)2 + µv
[
(1 + v2) − (1 + v2)1/2

]
, (65)

where

µ =
k2h2

P
. (66)
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We now show that for large P and appropriate values of µ, that the system (65) has near hetero-
clinic solutions corresponding to the chevron-type solutions described above.

We firstly study the singular points of (65). As well as the point (v,w) = (0, 0) there are possible
further singular points with (v,w) ≡ (±v∗, 0) at the roots of the algebraic equation F(µ, v∗) = 0
where

−v(1 + v2)2 + µv
[
(1 + v2) − (1 + v2)1/2

]
≡ vF(µ, v). (67)

Close to these singular points, the behaviour of the solutions of (65) is given by the eigenvalues
λ± of its linearisation. A simple calculation shows that these are given by

λ±(µ, v∗) = ±
√

v∗Fv(µ, v∗). (68)

Thus, the eigenvalues are imaginary and the singular point is a center, if v∗Fv(µ, v∗) < 0, and the
eigenvalues are real and take opposite signs, so that the singular point is a saddle, if v∗Fv(µ, v∗) >
0. A simple calculation shows that

vFv = v2γ ≡ v2(−4(1 + v2) + µ(2 − 1/
√

1 + v2). (69)

Setting z2 = 1 + (v∗)2 it follows immediately that F(µ, v∗) = 0 if z satisfies the simple identity

z3 = µ(z − 1). (70)

A plot of z as a function of 1/µ = P/k2h2 is given in Figure 4 (a)
A simple analysis shows that this equation has no positive roots if µ < 27/4 (so that P >
4k2h2/27) , a fold bifurcation if µ = µF = 27/4 at which point the single root is given by
z = 3/2, and two real positive roots z1, z2 if µ > 27/4 when P < 4k2h2/27. For large µ (or
smaller P), these two roots are given to leading order by

z1 = 1 + 1/µ � z2 =
√
µ.

It follows from (69) that at these two roots we have

γ(z) = −4z2 + µ(2 − 1/z)

so that to leading order
γ(z1) = 2µ, γ(z2) = −2µ.

Hence the smaller root at z1 corresponds to a saddle-point and the larger root at z2 to a centre.
Exactly the same picture is given from symmetry when these roots are reflected. Hence, if
µ > 27/4 the phase plane takes the form illustrated in Figure 4 (b)
Note that z1 ≈ 1 + 1/µ implies that v1 ≈

√
2/µ. The implications of this analysis is that if µ > µF

so that
P <

4
27

k2h2

then there are two saddle points symmetric about the w-axis and, by symmetry, there exists a
heteroclinic connection between the two roots at v− ≈ −

√
2/µ and v+ ≈

√
2/µ. Consider now the

phase plane illustrated in Figure 4 (b). The periodic orbits close to the centre at the origin have
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small amplitude and a half-period (in s) of approximately π/
√

2EI. These solutions correspond
to the small amplitude sinusoidal periodic orbits close to the primary bifurcation points P1. As P
increases it follows from the identity s =

√
Px that the periodic orbits increase in period, and as

P gets very large they increase in amplitude and converge towards the heteroclinic connection.
On rescaling this corresponds to a chevron folding pattern in which the gradient of the solution
v(x) = u′(x) changes from v∗ to −v∗ over a region of width O(1/

√
P). We also note that the

predicted value of the fold PF is given when

PF/k2h2 = 4/27.

4.4. Kink band solutions

We can repeat this leading order calculation for the case of C > 0 in (60). The phase plane for
(73) then has fixed points at (v+, 0) and (−v−, 0) In this case we have near homoclinic solutions
which spend most of the period close to the fixed point at (v+, 0) with shorter periods close to the
point at (v−, 0). When integrated the function u(x) then has a kink-band form in which it increases
overall with periods of positive slope with gradient close to v+ and shorter periods of negative
slope with gradient close to −v−. It is intriguing to note that as well as chevron type solutions,
these kink-band like geometries are (at least locally) energy minimising arrangements of vertical
stacking identical layers, and at least geometrically are typical of kink bands observed in exposed
escarpments of folds as well as in experiments on layers of paper [25, 32, 20]. However, the
physical significance of these solutions in the context of this model is unclear; since contributions
of inter-layer shear are neglected, which is known to play a fundamental role in the initiation and
growth of kink bands [20]. We will study such kink bands, which also involve shear, in a future
paper.

4.5. The validity of the leading order solution

We briefly consider now the effects of omitting the term k1u in these calculations. It is easiest
to consider this with respect to the reduced model which has all of the essential features of the
original and has very similar solutions. With a simplified scaling this gives

u′′′′ + Pu′′ −
3
2

(P + k2h2)u′′(u′)2 + k1u = 0. (71)

This can be expressed as:

(v′′ + Pv −
1
2

(P + k2h2)v3)′ + k1u = 0, u′ = v. (72)

We follow the previous reasoning and assume that P is large and that v′′ may also be large. Thus
to leading order, envoking symmetry and periodicity, we have:

v′′ + Pv −
1
2

(P + k2h2)v3 = 0. (73)

The equation (73) admits small amplitude periodic solutions of period O(1/
√

P). It also admits
larger amplitude near heteroclinic solutions of period tending to infinity when the largest value
of v2 is

v2
max =

2P
P + k2h2 .
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The heteroclinic solution vH(x) and its integral uH(x) (of chevron form), are then (up to transla-
tion) given by

vH(x) =

√
2√

1 + k2h2/P
tanh(

√
Px/2), uH(x) =

8√
P + k2h2

log(cosh(
√

Px/2)). (74)

Consider now the problem (72). If the leading order solution for v is as above, then we will have
chevron type solutions for u of maximum amplitude vmax`/4 where ` is the period. Furthermore,
over one half-period we have that ∫ `/2

0
u dx =

∫ `

`/2
u dx = 0.

Hence the cumulative perturbative effect of u on the solution for v is both small (of order 1/P)
and averages to zero over any half-period.

5. End-shortening and wavelength selection for the chevron folds

The analysis of the previous section in identifying the relation between chevron folds and
near heteroclinic orbits gives a link through (70) between the axial load P and the slope u′ = v∗

of the fold. We now make clear the links in this case between P and the axial strain E, the solution
wavelength ` and the solution amplitude a.

5.1. Relations between wavelength, slope and amplitude

In the primary bifurcation at P = PC and E = 0 we observe a periodic solution u(x) of period
close to `C proportional to 1/

√
PC so that u′(0) = u′(`C/2) = u′(`C) and u(x) ≈ a cos(2πx/`)

with
√

a proportional to E or P−PC . As P and E increase, so the solution evolves to the chevron
fold in which u′(0) = u′(`/2) = u′(`) and we have

u′(x) ≈ −v∗ if 1/
√

P � x � `/2−1/
√

P and u′(x) ≈ v∗ if `/2+1/
√

P � x � `−1/
√

P.

To make this calculation slightly more precise we note that in the rescaled coordinates the
rescaled horizontal variable is s =

√
Px. The horizontal distance x ∈ [0,H] occupied by half of

the chevron fold is given by H = `/2 and in rescaled coordinates it takes a ‘time’ of

S =
√

P`/2 (75)

to traverse the orbit. As the orbit is close to a heteroclinic connection joining (−v∗, 0) to (v∗, 0) it
follows that if it approaches to within a distance ε of the fixed saddle-point, so that −v∗ + ε < v <
v∗−ε then it takesO(1) time to move in the phase-plane between the saddle-points, corresponding
to O(1/

√
P) in unscaled coordinates, and a time of O(log(1/ε)) to move in the part of the phase-

plane close to the saddle-points. It then follows from (75) that

log(1/ε) ∼
√

P`/2, ` ∼ log(1/ε)/
√

P

so that
ε ∼ e−

√
P`/2. (76)
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Thus we have that ε is very small for large P and that consequently the solution is very close to
the chevron form, of slope v = ±v∗. This to a certain extent justifies the previous analysis.

It is immediate that the amplitude a of the chevron fold is given by

a =
(` − O(1/

√
P))

4
(v∗ − O(ε)) . (77)

An example of a typical chevron fold (taken over 3 full periods), showing the limbs and the
region of high curvature is given in Figure 5

5.2. End-shortening
We will now assume that the long layer of length 2L under the effect of the increasing end-
shortening (and hence increasing load) buckles into the concertina shape illustrated in Figure 5
with N chevron patterns, each comprising 2 straight limbs of constant gradient u′. Here N is
initially unknown. The length of each such limb is then given by 2L/2N = L/N together with
a correction of order 1/

√
P which we will ignore for this section. The following lemma then

describes the geometry of the chevron fold.

Lemma 4
If we consider a pure chevron fold comprising N patterns, each with 2 straight limbs of slope
u′ = ±v∗, then

(i) The horizontal length of each straight limb is given by

L/(N
√

1 + u′2) so that the period of each chevron pattern is ` = 2L/(N
√

1 + u′2). (78)

(ii) The total end-shortening is independent of N and is given by

2LE = 2L − 2L/
√

1 + (v∗)2 = 2L(1 − 1/z) so that E =
z − 1

z
, (79)

where z is as given in the previous section and takes the value

z =
√

1 + (v∗)2. (80)

The proof of this lemma is immediate from the geometry of the fold. The significance of this
result is the fact that v∗ and hence z is determined from the nature of the heteroclinic orbit studied
in the previous section. It follows that (again ignoring terms of order 1/

√
P) we have

z =
1

1 − E
so that |u′| = v∗ =

√
1

(1 − E)2 − 1. (81)

Furthermore, from (70) we also have

z3 = µ(z − 1), µ =
k2h2

P
. (82)

It then follows from (82) that

1
(1 − E)3 = µ

[
1

(1 − E)
− 1

]
.
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Rearranging this expression, it follows that on a chevron fold we have the following relation
between P and E given by

P = k2h2
[
(1 − E)2 − (1 − E)3

]
. (83)

Note that under compression we expect to see E increase from zero to a maximum value of one.
The maximum value of the right hand side of (83) is given when

2(1 − E) = 3(1 − E)2

so that
E = 1/3 and P = 4k2h2/27, (84)

i.e. there is a maximum value of P = PF = 4k2h2/27 which will be observed as a fold bifurcation.

5.3. Wavelength selection

Although we can find P in terms of E, the value of N and hence of ` is unknown. We
conjecture that the total number of folds remains constant throughout the evolution of the chevron
folds, and hence N = n where n given by the expression (41) at the bifurcation point is given by
the integer part of LωC/π. In this case we conclude that

` =
2L

n
√

1 + (v∗)2
=

2L
n

(1 − E), (85)

with v∗ given by (80,82).

6. Numerical Results

6.1. Fold initiation

For the first calculation of the fold initiation we consider a solution u(x, t) of the time-dependent
Swift-Hohenberg equation

∂u
∂t

= −
δW
δu

:= − f (P, u) subject to the rigid loading constraint
1

2L

∫ L

−L
u′2 dx = E (86)

and let u and P evolve with time towards a steady solution for a fixed axial strain E. We solve (86)
using finite elements over a large-but-finite domain X := [−L, L]. In order to obtain a stable
solution it is necessary to impose a weak pinning of the solution given by taking

u(−L, t) = u(L, t) = 0, u′(−L, t) = u′(L, t) with L = 40,

The weak form is found by multiplying by a suitable test function v, integrating over the domain
X and then by parts, giving ∫

X
u̇v dx = −

∫
X

f (P, u)v dx. (87)

The domain X is discretized into N nodes xi = ih − L where h = 2L/N and i = 0, 1, . . . ,N. Since
the weak form contains second derivatives of u and v, the solution is interpolated with piecewise
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cubic shape functions. Each node has two degrees of freedom (ui and u′i) and the approximate
finite solution over the ith element x ∈ [xi, xi+1] is given by

uh(t) = ui(t)φi + ui+1(t)φi+1 + u′i(t)φN+i + u′i+1(t)φN+i+1 (88)

where if s = (x − xi)/(xi+1 − xi) then

φi = 2s3 − 3s2 + 1 φi+1 = s3 − 2s2 + s φN+i = −2s3 + 3s2 and φN+i+1 = s3 − s2 (89)

and all other φ j = 0 for x ∈ [xi, xi+1]. The nodal degrees of freedom are collected in a single
vector U(t) = (u1(t), . . . , uN−1(t), u′0(t), . . . , u′N(t))T , so that finite element solutions of (87) are
solutions of the system of equations

AU̇ = −F(P,U) such that
1

2L
UT CU = E (90)

where the matrices and vectors are defined as follows:

Ai j =

∫
X
φiφ j dx, Ci j =

∫
X
φ′iφ

′
j dx, Fi =

∫
X

f (P,U)φi dx. (91)

In order the generate a system of DAEs of order 1, we first by differentiate the constraint equation,
1

2L UT CU = E with respect to time so

UT CU̇ = 0. (92)

Thus the numerical reduction of the constrained Swift-Hohenberg equation (86) to a system of
DAEs is [

UT C 0
A 0

] [
U̇
Ṗ

]
=

[
0
−F

]
. (93)

Such index-1 DAEs can be solved using MATLAB’s function ode23s. In practise stationary
solution are achieved by providing an initial guess of the solution with the correct axial strain
E. The equation (93) is then solved over a long time until equilibrium is achieved. Letting
EI = k1 = 1 and taking k2h2 = 100, the results of this calculation are presented in Figures 6 and
7,where we plot the solution amplitude a, the axial load P and the frequency ω as functions of
E = ∆/L.
The results in Figure 6 are exactly as predicted by the weakly nonlinear analysis with PC =
√

8k1EI =
√

8 ≈ 2.828 and the linear dependence of P on E predicted by (46). In Figure 7 we
see the effects of the weak pinning. The value of ωC = (k1/2EI)1/4 = 0.8409 given by the initial
linear analysis is slightly less than the observed value at the bifurcation. However, noting that
the pinning length is L = 40 we have that LωC/π = 10.7. Hence from the expression (41) the
nearest integer wave number is n = 11. Consequently from (41) we have

ωL =
nπ
L

=
11π
40

= 0.8639

which is the observed value and is as predicted by the amplitude equation calculation in Section
3. As predicted, this value is pinned and stays very close to constant as E varies. This pinning
continues until E ≈ 0.07 For larger values of E we see a nonlinear change as predicted by the
fully nonlinear analysis
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6.2. Development of the chevron folds
We now make some computations of a half-period of the first solution branch (on which the so-
lution is positive) and consider the effects of taking both P and k2 large. It is difficult numerically
to use the finite element method for the fully nonlinear time dependent calculation. Accordingly
we will simplify our calculations by taking the half-period of the solution to be fixed at `/2 = 1
and consider the dead loading case in which P increases. This calculation is reasonable as our
primary objective is to show the development of the chevron folds in this case

The solution branches to (51) for a fixed half wavelength `/2 = 1 are readily computed from
the trivial state as P increases by using the collocation based continuation package for systems
of ODEs auto ([9]). In this calculation P is increased from zero until the bifurcation point at PC

is encountered. The solution branch is then switched and the solution continued into and through
the observed fold bifurcation. Alternatively the solution can be determined using the collocation
based Matlab routine bvp4c. In this case an initial guess is needed for the solution. We find that
the initial guess u(x) = a sin(πx) works well provided that a is taken to be the value given by
the Lyapunov-Schmidt solution approximation described in Section 3. The analysis of Section
4 guides us in the manner of the simplest discretisation of this system. We note that that fourth
order ODE problem has the form

d
dx

(
d
dx

(
∂W
∂uxx

)
−
∂W
∂ux

)
+ k1u = 0

with the first part of this expression being dominant. Accordingly we solve the system

d
dx

(
∂W
∂uxx

)
−
∂W
∂ux

= y,
dy
dx

= −k1u,

with
u(0) = u(1) = uxx(0) = uxx(1) = 0.

In Figure 8 we show two solution branches of the periodic solutions of this full system in the
two cases of (a) k2h2 < k∗ where locally P < PC and (b) k2h2 > k∗ where locally P > PC

(see equation (47)). Firstly we note that the local bifurcation analysis predicts that in this case
PC = 2π2 − 1/π2 = 19.8. Prominent in Figure 8 (b) is the predicted fold bifurcation at P = PF ,
indicating the non-existence of a periodic solution for sufficiently large P. We can compare this
figure with the theoretical Figure 4 (a) showing the location of the saddle-point in the phase
plane as a function of 1/µ = P/(k2h2) and we see close correspondence. By calculating PF for
increasing values of k2, Fig. 8 (right), we observe that as k2 → ∞ the ratio of 1/µF = PF/k2h2 →

1/µ∗ a constant close to the predicted value of 4/27.
In Figure 9 we show the solution profiles for a half-wavelength (x, u) (top row) and in the (ux, uxx)
phase-plane (bottom row) for increasing values of PC ≤ P ≤ PF (with each plot) and of k2h2

(from left to right). Firstly, observe as predicted, that all of these positive solutions have a reflec-
tional symmetry. Secondly, we see for moderate values of k2 the solution profile is approximately
sinusoidal for both small and moderate values of P. However, this situation changes significantly
when both k2h2 and P are both large. In particular we note that in the case of large k2 and large
P ' PF , Fig. 9 (right), solutions form a heteroclinic connection in ux leading to a chevron type
solution in (x, u), characterised by the expected straight limbs of slope ±v∗ connected by a re-
gion of large curvature over a small length-scale ε ≈ 1/

√
P. The phase-plane clearly shows the

evolution of the small amplitude periodic solution to the near heteroclinic orbit.
23



We also include a series of calculations made with the Matlab routine bvp4c for the particular
case of P = 600 and k2h2 = 10000 for which 1/µ = 0.06 and it follows from the earlier analysis
and formulas (80) and (82) that the saddle point occurs when z =

√
1 + u′2 = 1.0744, so that

the predicted maximum value of |u′| = 0.3929. In these calculations we find that the calculated
maximum value of |u′| = 0.3928 very close to the predicted value. The resulting functions
u(x), u′(x) and u′′(x) taken over 3 full periods (so that x ∈ [0, 6] ) and the resulting (u′, u′′) phase
plane are given in Fig. 10.
We can compare these figures with the chevron folds at Millook Haven shown in Fig. 11.

7. Concluding remarks

In this paper we present a simplified energy-based model, to investigate the role geometry
plays in fold pattern selection, when layers of rock are buckled from an initially flat state into
chevron folds. The novel feature, which distinguishes this model from earlier analysis, is the
inclusion of the elastic material of modulus k2 � 1 between the two stiff layers. By doing this
we are able to observe a smooth transition from sinusoidal to chevron type folding patterns as the
axial strain and axial load are increased, and we can predict many of the features of the resulting
chevron folds by using a phase-plane analysis. The overall argument leading to this solution
links the existence of the chevron folding patterns of straight limbs separated by small regions
of high curvature, to a near heteroclinic orbit in the (u′, u′′) phase plane in which |u′| is constant
over much of the range, apart from regions of with O(1/

√
P) � 1. This argument is reasonably

robust to the fine details of the model used. Indeed the key feature is the existence of a constant
(absolute) slope solution |u′| to the equation d/dx(∂W/∂ux)) in which we see a balance between
the axial load P the slope u′ and the elastic forces proportional to k2. We will develop more
sophisticated models including shear in a future paper, which will also look at the existence of
kink bands. However, we expect to see a similar link in these cases between heteroclinic (or
in the case of kink bands, homoclinic) orbits in the phase plane and many rock folding patterns
involving regions of constant slope separated by regions of high curvature.
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Folding in power-law viscous multi-layers 1801
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Figure 1. Folded, layered rocks from (a,b) northeastern Spain, (c,e) Leirvik (Hyllestad), Norway,
(f ) Almograve, Portugal, (d) Adamello, Italy, and (g) Kangaroo Island, Australia. The width of
(e) is about 150 cm and the width of (g) is about 25 cm; all other pictures have scales. (d,g)
Courtesy of Neil Mancktelow.

mechanism, e.g. folding of consolidated rock owing to tectonic compression or
folding of unconsolidated sediments owing to gravity sliding (i.e. slump folding),
and (v) the bulk deformation style, such as pure shear or simple shear.

In nature, multi-layer folds (figure 1) are more frequent than single-layer
folds, but researched significantly less than their single-layer equivalents. Here,
we study the mechanics of two-dimensional, finite-amplitude multi-layer folding
with the finite-element method. We use the fluid dynamics equations for slow
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Figure 1: Folded, layers of rocks (Left) Smooth folds at Adamello, Italy (Right) Chevron type folds observed folds at
Kangaroo Island, Australia. Pictures courtesy of Bruce Hobbs.
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Figure 2: (Left) Two identical, stiff layers separated by an elastic medium, considered as part of a much larger vertically
periodic multilayered system. It is assumed that the displacement of the two layers are related by the vector translation
(0, h). (Right) Elastic interlayer material is model by a series of linear elastic springs of stiffness k2 � 1, which is
constrained to remain perpendicular as the layers before.
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Figure 10: Solution profiles taken over 3 full periods. (top row) (x, u) (left) and (x, u′) (right), for P = 600 , k2h2 = 10000.
In each case EI = k1 = `/2 = 1. (bottom row) (x, u′′) (left) and (u′, u′′) (right), for P = 600 , k2h2 = 10000. In each case
EI = k1 = `/2 = 1.

Figure 11: Chevron folding at Millook Haven, Cornwall, UK. Note that the originally horizontal chevron folds have been
tilted to near vertical by a later tectonic folding event. One of the author’s lends scale to the picture.
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