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Abstract 19 

Carbohydrate and fat are the main substrates utilized during prolonged 20 

endurance-type exercise. The relative contribution of each is primarily 21 

determined by the intensity and duration of exercise, along with individual 22 

training and nutritional status. During moderate-to-high intensity exercise, 23 

carbohydrate represents the main substrate source. As endogenous 24 

carbohydrate stores (primarily in liver and muscle) are relatively small, 25 

endurance-type exercise performance/capacity is often limited by endogenous 26 

carbohydrate availability. Much exercise metabolism research to date has 27 

focused on muscle glycogen utilization with little attention to the contribution 28 

of liver glycogen. 13C magnetic resonance spectroscopy permits direct, non-29 

invasive measurements of liver glycogen content and has increased 30 

understanding of the relevance of liver glycogen during exercise. In contrast 31 

to muscle, endurance-trained athletes do not exhibit elevated basal liver 32 

glycogen concentrations. However, there is evidence that liver glycogenolysis 33 

may be lower in endurance-trained athletes compared to untrained controls 34 

during moderate-to-high intensity exercise. Liver glycogen sparing in an 35 

endurance-trained state may therefore partly account for training-induced 36 

performance/capacity adaptations during prolonged (>90 min) exercise. 37 

Ingestion of carbohydrate at a relatively high rate (>1.5 g/min) can prevent 38 

liver glycogen depletion during moderate-intensity exercise, independent of 39 

the type of carbohydrate (e.g. glucose vs sucrose) ingested. To minimize 40 

gastrointestinal discomfort, it is recommended to ingest specific combinations 41 

or types of carbohydrates (glucose plus fructose and/or sucrose). By co-42 

ingesting glucose with either galactose or fructose, post-exercise liver 43 



glycogen repletion rates can be doubled. There are currently no guidelines for 44 

carbohydrate ingestion to maximize liver glycogen repletion. 45 

 46 

Introduction 47 

Carbohydrate and fat are the primary substrates utilized during prolonged, 48 

endurance-type exercise activities in humans (91, 111). The major 49 

determinants of fuel selection are the intensity and duration of exercise (19, 50 

91, 111), in addition to training (37, 38, 112) and nutritional status (16, 45, 51 

121). Endogenous carbohydrates are stored as glycogen, primarily in muscle 52 

and liver. In contrast to endogenous fat stores (>100,000 kcal; >400 MJ for a 53 

75 kg individual with 15% body fat), glycogen stores are small (<3000 kcal; 13 54 

MJ) and so may limit the capacity for exercise tasks of a moderate-to-high 55 

intensity (~50-90% VO2max) lasting more than 45 min (3, 12, 18). The 56 

importance of muscle glycogen availability during prolonged exercise has 57 

received much attention over the last 50 years (13, 19). In contrast, the role of 58 

hepatic glycogen as a substrate source during exercise has been less well 59 

studied, largely due to the inaccessibility of tissue samples. This review 60 

provides an overview of liver glycogen metabolism during exercise, and the 61 

impact of nutritional strategies to modulate hepatic glycogen use and 62 

subsequent repletion. 63 

 64 

Historical Perspective on Liver Glycogen 65 

The role of carbohydrate-based fuels in manipulating the perception of effort 66 

during endurance-type exercise has been known for almost a century (63). 67 

The greater reliance on carbohydrate as a substrate source during exercise of 68 



a moderate-to-high intensity was already demonstrated in the 1930’s (20). 69 

The utilization and importance of muscle glycogen as a substrate source 70 

during exercise were demonstrated in the 1960’s following the re-introduction 71 

of the Bergstrom muscle biopsy technique (12, 13). Since then, there has 72 

been much focus on optimizing muscle glycogen availability in relation to 73 

human function. Presumably because of the methodological limitations when 74 

trying to assess liver glycogen content, only few data have been obtained on 75 

the use of liver glycogen during exercise. 76 

 77 

Whilst suggestions that liver glycogen contributes to blood glucose 78 

homeostasis have been made since at least 1855 (14), it wasn’t until the 79 

1960’s (9, 100) and 70's (39, 77-79) that researchers were able to take 80 

advantage of the “one-second” liver biopsy technique described by Menghini 81 

(71) to report on liver glycogen utilization in vivo in humans. It was 82 

demonstrated that fasting rapidly depleted liver glycogen content (100), with 83 

near complete depletion within 48 h of fasting, or following a (very) low 84 

carbohydrate diet (79). Only when sufficient carbohydrate was included in the 85 

diet did net repletion of liver glycogen stores begin (79). This was quite a 86 

novel finding since the prevailing theory held that gluconeogenesis was the 87 

major pathway for liver glycogen synthesis, so would rapidly restore liver 88 

glycogen stores even during fasting or carbohydrate intake restriction (5, 48). 89 

In humans, gluconeogenesis [from the major precursors: glycerol, glucogenic 90 

amino acids (e.g. alanine) and lactate] contributes ~55% of endogenous 91 

glucose production during the first 10 h of fasting (87). Prolonged fasting (64 92 

h) increases the relative contribution of gluconeogenesis to ~96% of 93 



endogenous glucose production, without drastically altering the absolute rate 94 

of gluconeogenesis (from ~7 μmol/kg/min to ~8.5 μmol/kg/min (87). The 95 

observation that some non-human species (rodents) can synthesize relatively 96 

large amounts of liver glycogen during fasting or carbohydrate intake 97 

restriction – presumably from gluconeogenesis – highlights the importance of 98 

studying liver glycogen physiology in vivo in humans (31, 42, 72, 75).  99 

 100 

It wasn’t until the late 1980’s and early 1990’s that 13C magnetic resonance 101 

spectroscopy (MRS) was employed as a non-invasive human liver glycogen 102 

measurement tool (60, 92). This non-invasive method allows repeated 103 

measures of liver glycogen content to be made, without inducing the 104 

catecholamine response that sometimes is induced by biopsy procedures in 105 

unaccustomed individuals (102). A theoretical limitation of the method is that 106 

only 13C are detected (since nuclei of 12C do not posses the magnetic moment 107 

required to align with or against the magnetic field). Therefore, consumption of 108 

diets differing strongly in the 13C/12C enrichment level of the various 109 

carbohydrates may influence the assessment of glycogen content and reduce 110 

the signal-to-noise ratio. Nevertheless, the differences in 13C abundance of C3 111 

and C4 plants and therefore foods is relatively small [1.09 vs 1.10 %13C for the 112 

C-1 position of glycosyl units in sugar beet vs sugar cane, respectively (43)] 113 

when compared to the large changes in liver glycogen concentrations with 114 

fasting, exercise and feeding (40, 44, 87). This large signal-to-noise ratio 115 

means that differences in carbon fixation between sources of carbohydrates 116 

can likely be neglected as a confounding factor in most study designs 117 

applying 13C MRS to assess (liver) glycogen content. 118 



 119 

Regulation of liver glycogen metabolism 120 

Liver glycogen metabolism is fundamental in the regulation of substrate 121 

selection. The most obvious role is in blood glucose homeostasis, with liver 122 

glycogen contributing ~45% to total endogenous glucose production during 123 

the initial periods of fasting (83, 92), thereby contributing heavily to the 124 

maintenance of euglycemia. In the postprandial state, the anatomical location 125 

of the liver allows for hepatic glycogen synthesis to buffer excess blood 126 

glucose being released into the periphery, attenuating post-prandial 127 

hyperglycemia. The vital physiological functions of liver glycogen require rapid 128 

metabolic regulation. It is not surprising that liver glycogenolysis and glycogen 129 

synthesis occur simultaneously (69, 82, 86), allowing rapid changes in 130 

glucose flux. Rates of liver glycogen turnover (glycogen cycling) in humans 131 

are not negligible. For example, it has been estimated that during net 132 

glycogen synthesis, glycogenolysis can occur at >57% of the rate of net 133 

synthesis (69). Similar to muscle glycogen, it has been suggested that a high 134 

liver glycogen concentration may directly stimulate liver glycogenolysis (87) 135 

and inhibit glycogen synthesis (35) thereby conforming to autoregulation.  136 

 137 

The clear importance of liver glycogen metabolism for metabolic control is 138 

evidenced both by hypoglycemia during fasting, and by postprandial 139 

hyperglycemia in individuals with various disorders of liver glycogen 140 

metabolism (66). A complete absence of liver glycogen synthase (glycogen 141 

storage disease type 0; GSD-0) is associated with an almost complete 142 

inability to store liver glycogen, excess hepatic lipid accumulation, fasting 143 



hypoglycemia and postprandial hyperglycemia (66). A deficiency of glucose-6-144 

phosphatase (GSD-1a) is associated with excessive liver glycogen 145 

accumulation and also produces fasting hypoglycemia (26). Therefore, both 146 

an inability to adequately synthesize or hydrolyze liver glycogen is associated 147 

with numerous metabolic abnormalities. 148 

 149 

In addition to assisting in the delivery and storage of glucose under fasting 150 

and postprandial conditions, liver glycogen may also assist with blood glucose 151 

homeostasis by modulating non-esterified fatty acid (NEFA) availability during 152 

periods of limited carbohydrate availability. In rodents, liver glycogen may 153 

partly regulate adipose tissue lipolysis during fasting whereby the increase in 154 

adipose tissue lipolysis correlates with the reduction in liver glycogen content 155 

(52). Overexpression of glycogen synthase 2 increases liver glycogen content 156 

and adipose tissue mass, while suppressing HSL phosphorylation in adipose 157 

tissue (52). Furthermore, knockdown of glycogen synthase 2 reduces liver 158 

glycogen and accelerates the loss of adipose tissue mass, which appears to 159 

be due to liver glycogen per se and not due to downstream metabolites in 160 

response to glycogenolysis (52). Interestingly, this regulation of adipose tissue 161 

lipolysis by liver glycogen is dependent on neural circuitry rather than 162 

hormonal milleu, since hepatic vagotomy suppresses the effect of liver 163 

glycogen depletion on adipose tissue lipolysis (52). This interaction between 164 

liver glycogen and adipose tissue would presumably assist in maintaining 165 

blood glucose homeostasis by allowing muscle and other organs access to 166 

NEFAs for oxidation and thereby allow for a reduction in blood glucose 167 

utilization. There is also evidence in humans of hepatic glycogen regulation by 168 



fatty acid and glycerol delivery, whereby NEFAs and glycerol can potently 169 

suppress net hepatic glycogenolysis by ~84% (98). Moreover, this does not 170 

appear to be solely due to glycerol delivery as a gluconeogenic precursor, 171 

since glycerol delivery alone only suppressed hepatic glycogenolysis by ~46% 172 

(98). This demonstrates the intricate crosstalk between liver and adipose 173 

tissue to maintain adequate substrate availability during extreme conditions.  174 

 175 

Hepatic glycogen regulation is also under the control of circulating insulin, 176 

glucagon, epinephrine and possibly norepinephrine concentrations (Figure 1). 177 

Hepatic glycogen synthesis rates are half-maximal at a portal vein insulin 178 

concentration of ~160 pmol/L and plateau above ~200 pmol/L (86). 179 

Nonetheless, even when hepatic glycogen synthase activity is maximal, other 180 

factors can further augment net hepatic glycogen synthesis rates. 181 

Hyperglycemia (10 mmol/L) augments net glycogen synthesis rates in the 182 

presence of hyperinsulinemia by suppressing glycogen phosphorylase activity 183 

(82). Suppression of glucagon secretion also results in higher hepatic 184 

glycogen synthase activity and thus elevates net hepatic glycogen synthesis 185 

rates by ~66% compared to fasting concentrations (86). 186 

 187 

Liver glycogen can be synthesized via either a direct pathway (glucose  188 

glucose-6-phosphate  glucose-1-phosphate  uridine diphosphate-glucose 189 

 glycogen), or via an indirect pathway through 3-carbon atom precursors 190 

and subsequent gluconeogenesis (64). In resting humans in the overnight 191 

fasted state, consumption of a substantive (824 kcal) mixed-macronutrient 192 

meal containing ~140 g (~1.82 g/kg BM) glucose, increases liver glycogen 193 



content through both direct (46-68% contribution in early and late postprandial 194 

periods) and indirect pathways (101). The average rate of net glycogen 195 

repletion from pre-feeding until peak liver glycogen concentration (~5 h 196 

postprandial) was 20 mmol/L/h (~6 g/h) (101). When subsequent meals are 197 

ingested, the proportion of liver glycogen synthesis via the direct pathway 198 

increases to ~77% (68). 199 

 200 

The catecholamine epinephrine may also be directly involved in liver glycogen 201 

regulation. In patients with skeletal muscle metabolic disorders such as 202 

McArdle’s disease (glycogen phosphorylase deficiency), epinephrine 203 

concentrations and hepatic glucose output are both more than two-fold higher 204 

during exercise, compared to healthy controls, which compensates for 205 

impaired muscle glycogen metabolism (119).  Epinephrine is a potent 206 

stimulator of hepatic glucose output both directly and indirectly (by reducing 207 

insulinemia). When infused at rates equivalent to that seen during moderate-208 

to-high intensity exercise (60-80% VO2max), epinephrine increases 209 

endogenous glucose production 2.5-fold above basal (32). Interestingly, this 210 

increase is almost entirely accounted for by hepatic glycogenolysis, which 211 

rises 4-fold above basal, whereas gluconeogenesis does not contribute 212 

substantially until >60 min of epinephrine infusion (32). During short-duration 213 

(20 min), high intensity (78% VO2peak) exercise however, the role of 214 

catecholamines is less clear, as α- and β-adrenergic antagonists do not alter 215 

endogenous glucose appearance (50). Norepinephrine is ~30-fold less potent 216 

at stimulating endogenous glucose production than epinephrine and is likely 217 

to play little if any role in hepatic glycogen regulation (25, 39, 70). Sympathetic 218 



hepatic neurons are also unlikely to play a major role in liver glycogenolysis 219 

during exercise, as liver transplant recipients (assumed to have no hepatic 220 

innervation) have similar exercise-induced endogenous glucose appearance 221 

rates compared to controls of kidney transplant recipients (62). This suggests 222 

that hepatic neurons may not play a major role in endogenous glucose 223 

appearance in healthy humans. Whether the balance between 224 

gluconeogenesis and glycogenolysis is regulated by innervation remains to be 225 

determined. 226 

 227 

Training status, muscle and liver glycogen content 228 

Both acute (13) and chronic (10) exercise drastically alter muscle glycogen 229 

availability. Supercompensation of muscle glycogen occurs after a single bout 230 

of exercise and is specific to the muscle that was recruited during exercise 231 

(13). Endurance-type exercise training leads to a chronic upregulation of 232 

muscle glycogen concentrations in the basal state, with availability increased 233 

by 20-66%, compared to concentrations observed in the untrained state (10, 234 

44, 67, 97, 117). Insulin sensitivity may play a role in this effect since insulin 235 

resistance is strongly associated with impaired muscle glycogen storage (81), 236 

and thus individuals with type 2 diabetes (T2D) display little variation in 237 

muscle glycogen content with feeding throughout a day (67). Interestingly, this 238 

is despite no structural differences in fasting muscle glycogen contents 239 

between T2D and healthy, age- and bodyweight-matched controls (67). 240 

Therefore, insulin sensitivity may be more tightly coupled to muscle glycogen 241 

turnover rather than absolute muscle glycogen content. 242 

 243 



Higher basal muscle glycogen availability, in combination with a reduced 244 

reliance on muscle glycogen as a substrate source during prolonged 245 

endurance-type exercise, may postpone the point at which muscle glycogen 246 

depletion contributes to fatigue. However, in the trained athlete, higher 247 

absolute and relative exercise intensities can be maintained for a prolonged 248 

period of time (28), making it still possible to reach a critically low level of 249 

muscle glycogen. Therefore greater muscle glycogen storage may, at least 250 

partly, be responsible for greater performance/capacity during prolonged 251 

endurance-type exercise.  252 

 253 

Liver glycogen stores do not appear to differ following prolonged endurance-254 

type exercise training nor with differing insulin sensitivity. Following the 255 

ingestion of mixed-macronutrient meals containing carbohydrate, there is no 256 

detectable difference in net liver glycogen synthesis in individuals with insulin 257 

resistance (81) or T2D (67). T2D patients, however, display a 50% higher 258 

contribution from indirect pathways, at the expense of direct pathways of liver 259 

glycogen synthesis (21). Moreover, by combining data from studies including 260 

both muscle and liver glycogen data in humans in the overnight fasted state 261 

(44, 67, 97), it is apparent that basal liver and muscle glycogen stores 262 

respond similarly to insulin resistance but differently to endurance training 263 

(Figure 2). Whilst the archetypal adaptation in muscle of a ~66% increase in 264 

fasting glycogen concentration is observed (Figure 2A), there is no difference 265 

in fasting liver glycogen concentrations across the spectrum of insulin 266 

sensitivity (Figure 2B). These findings are also supported by the lack of 267 

change in liver glycogen storage with acute exercise in the presence of 268 



enhanced muscle glycogen storage (85). Future work should seek to establish 269 

whether endurance-type exercise training alters liver glycogen storage in the 270 

early postprandial period, which would have implications for endurance 271 

performance in competitive events when pre-event meals are consumed. It is 272 

also interesting to note that the liver has a ~5-fold higher glycogen 273 

concentration than in muscle in untrained individuals, and that the diameter of 274 

glycogen in liver is also ~7-fold larger than glycogen in muscle (1). Since liver 275 

glycogen content (in the overnight fasted state) does not appear to be 276 

elevated in endurance trained athletes when compared to healthy controls, 277 

this cannot contribute to the enhanced performance/capacity seen with 278 

endurance-type exercise training. 279 

 280 

Liver glycogen metabolism during exercise 281 

Liver glycogenolysis during exercise has been estimated using numerous 282 

methods. These include arteriovenous difference (AVdiff), stable isotope and 283 

radioisotope tracers, and 13C magnetic resonance spectroscopy (MRS). AVdiff 284 

and stable-/radio-isotope tracers provide an indirect estimate of net 285 

glycogenolysis by subtracting estimated rates of gluconeogenesis (by 286 

gluconeogenic precursor tracer incorporation into glucose) from estimates of 287 

endogenous glucose production (by isotope tracer dilution). These methods 288 

are subject to inherent assumptions, some of which include estimating the 289 

fractional contribution of a certain precursor to total gluconeogenesis, the 290 

inability to account for other endogenous sources of glucose (73, 99), and the 291 

inability to account for liver glycogen that is either converted to lactate (95) or 292 

oxidized within the liver before entering the systemic circulation. Hepatic VO2 293 



increases from ~60 mL/min at rest to 135 mL/min during exercise (34, 76, 294 

120), therefore liver metabolic rate and glucose utilization will increase which 295 

may augment liver glycogen utilization. Liver glycogen that is hydrolysed and 296 

oxidized as glucose within the liver would not be detected by indirect methods 297 

such as AVdiff or stable/radio-isotope techniques. Since 13C MRS allows for a 298 

direct assessment of liver glycogen content (46), it can be used to assess net 299 

liver glycogenolysis in humans during exercise. However, 13C MRS alone 300 

cannot be used to determine turnover, therefore since all methods have 301 

(different) limitations, combining methods would be a suitable strategy to best 302 

understand liver glycogen metabolism. In order to gain insight into liver 303 

glycogenolysis during exercise we performed a review of the literature 304 

(PubMed, March 2016) including the search terms ‘glycogenolysis’, 305 

‘gluconeogenesis’, ‘glucose’, ‘glycogen’ ‘liver’ and ‘hepatic’. Studies were 306 

limited to healthy humans only, studied during exercise in a fasted state 307 

(Table 1). The vast majority of studies have been performed on adult males 308 

during cycling-based exercise, with five studies reporting data from females 309 

(38, 51, 84, 89, 90) and only one study using treadmill-based exercise (84). 310 

Where studies had estimated rates of gluconeogenesis and endogenous 311 

glucose production, the difference between the two was assumed to be net 312 

liver glycogenolysis. In order to adequately assess the relationship between 313 

exercise intensity, training status and liver glycogenolysis, only studies that 314 

reported sufficient information to derive absolute (W) and relative (% 315 

VO2peak) exercise intensities during cycling were included in linear 316 

regression analyses. Despite differences in methodologies and their inherent 317 



assumptions, combining data across studies provides a remarkably consistent 318 

picture regarding net liver glycogenolysis during exercise (Figure 3).  319 

 320 

In untrained individuals, rates of liver glycogenolysis markedly increase in the 321 

transition from low to high intensity exercise, when expressed as either 322 

absolute (Figure 3A) or relative (Figure 3B) intensities. The acceleration of 323 

liver glycogenolysis with increasing exercise intensity is dampened in 324 

endurance-trained athletes (Figure 3C and 2D) when compared to healthy, 325 

untrained controls. This attenuation of liver glycogenolysis at higher exercise 326 

intensities in trained athletes appears robust, since the difference in the 327 

gradient of the line between trained vs untrained remains (and is in fact 328 

augmented) if only studies that are of comparable exercise intensities are 329 

included (data not shown). The attenuation of liver glycogenolysis in 330 

endurance-trained athletes is likely to have implications for endurance 331 

performance/capacity. For example, trained cyclists sustain ~82% VO2peak 332 

(~300 W) during 120 min time trials (103). The rate of liver glycogenolysis at 333 

this relative intensity would be 6.9 vs 5.3 mg/kg/min in untrained vs trained 334 

cyclists, respectively (Figures 2C vs 2D, respectively). When assuming liver 335 

volume to be ~1.8 L (40), liver glycogen content would reach critically low 336 

levels (>70% depletion) by 118 min of exercise at 80% VO2peak in untrained 337 

individuals, leading to an inability to maintain blood glucose homeostasis 338 

and/or premature fatigue. Endurance-trained athletes, having a similar starting 339 

liver glycogen concentration after overnight fasting (Figure 2), would not 340 

reach a critically low liver glycogen content until 153 min of exercise, 341 

performed at 80% VO2peak, due to the lower rate of liver glycogenolysis. 342 



Consistent with this reasoning, inhibition of adipose tissue lipolysis during 343 

exercise by nicotinic acid impairs prolonged (120 min) cycling time trial 344 

performance/capacity (~2.4%) and the decline in power output coincides with 345 

a decline in plasma glucose concentrations occurring between 80 and 120 346 

min (103). Inhibition of adipose tissue lipolysis accelerates plasma glucose 347 

utilization exercise intensities above (49, 80), but not below ~60% VO2max 348 

(114, 116). Therefore considering most race-pace intensities are >80% 349 

VO2max, these findings are consistent with the idea that enhanced liver 350 

glycogen depletion through reducing NEFA and glycerol availability (98), 351 

leads to a decline in plasma glucose concentrations and impaired 352 

performance/capacity in the absence of carbohydrate ingestion.  353 

 354 

The mechanisms by which endurance-type exercise training influences liver 355 

glycogen utilization during exercise are most likely due to changes in the 356 

hormonal response to exercise. An acute bout of prolonged exercise results in 357 

a rise in plasma glucagon, epinephrine and norepinephrine, and a reduction in 358 

plasma insulin concentrations (23). Endurance type exercise training blunts 359 

the rise in glucagon (22), norepinephrine and epinephrine (23) and lessens 360 

the decline in plasma insulin during moderate intensity exercise (60% 361 

VO2peak) (23). During maximal exercise however, endurance trained athletes 362 

display a greater rise in epinephrine, norepinephrine and glucagon 363 

concentrations compared to untrained controls (61). This suggests that a 364 

blunted hormonal response to exercise with endurance-type exercise training 365 

is only observed when exercise is performed at the same absolute intensity 366 

and/or a moderate intensity. Since liver glycogen metabolism has only been 367 



studied at exercise intensities <80%VO2max (Table 1), it is unknown whether 368 

the exaggerated hormonal response seen in endurance-trained athletes alters 369 

liver glycogen utilization during maximal exercise. 370 

 371 

We propose that endurance-type exercise training reduces both liver and 372 

muscle glycogen use during exercise at equivalent absolute, as well as 373 

relative workloads, which may contribute to improved endurance 374 

performance/capacity. Whilst liver glycogen concentrations do not seem to 375 

differ between endurance-trained and untrained individuals, endurance-376 

trained athletes utilize less liver glycogen during moderate-to-high intensity 377 

exercise (60-80 %VO2max). The lower rate of liver glycogenolysis in the 378 

endurance-trained state likely contributes to the greater endurance 379 

performance/capacity by facilitating the maintenance of (high) carbohydrate 380 

oxidation rates and blood glucose homeostasis during the latter stages of 381 

exercise. 382 

 383 

Nutrition and liver glycogen metabolism during exercise 384 

From a quantitative perspective, carbohydrates form the most important fuel 385 

source during prolonged moderate-to-high intensity (>60% VO2max) 386 

endurance-type exercise. Consequently, in the absence of exogenous 387 

carbohydrate delivery, endogenous liver and muscle glycogen stores are 388 

lowered by 40-60% within 90 min of exercise at 70% VO2peak (18, 97). 389 

Carbohydrate ingestion during prolonged exercise improves 390 

performance/capacity (118). Mechanisms suggested to explain the 391 

improvement in exercise tolerance include maintenance of euglycemia, 392 



maintenance of (high) carbohydrate oxidation rates, and sparing of muscle 393 

glycogen (19, 108). Muscle glycogen sparing has been demonstrated by 394 

some (96, 109, 110), but not all studies (27, 36, 47, 58), which is likely 395 

attributed to the timing of measurements performed (96), and the type of 396 

exercise and/or muscle fiber type recruitment (110). 397 

 398 

Studies using stable isotope or radioisotope tracers to assess hepatic glucose 399 

output have demonstrated that moderate glucose ingestion (~0.6-0.8 g/min) 400 

can suppress (17), and large amounts (~3 g/min) even abolish hepatic 401 

glucose output during exercise (59). Based upon these findings, it has also 402 

been suggested that carbohydrate ingestion during exercise inhibits liver 403 

glycogenolysis and as such, attenuates the decline in liver glycogen content 404 

(19). This was recently tested with the application of 13C magnetic resonance 405 

spectroscopy to assess net changes in liver glycogen content during exercise 406 

with or without carbohydrate ingestion (44). Whereas liver glycogen content 407 

was reduced by 50% during 3 hours of cycling, exogenous carbohydrate 408 

ingestion (1.7 g/min glucose or sucrose) fully prevented a net decline in liver 409 

glycogen content (44). Therefore, when attempting to prevent or reduce liver 410 

glycogen depletion during endurance-type exercise, it is advisable to 411 

consume exogenous carbohydrate.  412 

 413 

It remains unknown whether carbohydrate ingestion during exercise 414 

influences liver glycogen turnover. Based on previous literature, a relatively 415 

high rate of glucose ingestion (1.7 g/min) would suppress endogenous 416 

glucose appearance by anywhere from 60% to complete suppression (17, 417 



59). No research to date has established whether liver glycogenolysis occurs 418 

during exercise with carbohydrate ingestion at rates similar to those 419 

recommended for performance/capacity in prolonged endurance-type 420 

exercise (0.5-1.5 g/min). Whilst there are no detectable net changes in liver 421 

glycogen concentration when large amounts of carbohydrates are ingested, 422 

the ingested carbohydrates could either be stored as de novo glycogen and/or 423 

directly released into the systemic circulation as glucose or lactate. 424 

  425 

Post-exercise liver glycogen synthesis 426 

The impact of endogenous glycogen stores on endurance 427 

performance/capacity makes rapid post-exercise glycogen repletion a priority 428 

when performance/capacity needs to be restored within a limited time-frame 429 

(e.g. within 24 h). Such rapid repletion of endogenous glycogen stores is 430 

important during multi-day tournaments and stage-races. Post-exercise 431 

muscle glycogen repletion rates can be accelerated with ample carbohydrate 432 

ingestion (1.2 g/kg BM/h) (8, 15, 115). It is also becoming increasingly 433 

apparent that glucose-fructose mixtures are unlikely to further augment post-434 

exercise muscle glycogen repletion over glucose (polymers) alone (40, 106, 435 

122). However, when ingesting such large amounts of carbohydrates (>1.2 436 

g/kg BM/h) during the early stages of post-exercise recovery, the ingestion of 437 

specific combinations and types of carbohydrates (glucose plus fructose 438 

and/or sucrose) seem to be better tolerated than the ingestion of glucose 439 

(polymers) only (40). 440 

 441 



In contrast to the wealth of data pertaining to skeletal muscle, only a handful 442 

of studies have investigated the impact of carbohydrate ingestion on post-443 

exercise liver glycogen repletion (18, 29, 30, 40, 74). When only glucose 444 

(polymers) are ingested, maximum liver glycogen repletion rates are ~13 445 

mmol/L/h, which translates to ~4 g of liver glycogen per hour (18, 29, 40). 446 

Interestingly this appears to be independent of the amount of carbohydrate 447 

ingested within the range of 0.25-1.5 g/kg BM/h (18, 29, 30, 40). The reported 448 

liver glycogen repletion rates following post-exercise glucose (polymer) 449 

feeding tend to be substantially lower than the ~20 mmol/L/h (~6 g/h) liver 450 

glycogen repletion rates reported at rest following a mixed-macronutrient meal 451 

(101). It could be speculated that fat and protein co-ingestion with 452 

carbohydrate might further augment net liver glycogen synthesis by providing 453 

gluconeogenic precursors (from glycerol and some amino acids). 454 

Furthermore, the greater post-prandial insulin release following the ingestion 455 

of a mixed meal may augment net glucose uptake and storage in liver 456 

glycogen (4, 16, 113, 115). 457 

 458 

Since fructose and galactose are preferentially metabolized by the liver at rest 459 

(7, 41, 78), co-ingestion of either fructose or galactose with glucose can 460 

further augment post-exercise liver glycogen repletion rates (18, 29, 40). The 461 

ingestion of fructose (including sucrose) (18, 29, 40) or galactose (29, 30) with 462 

glucose can nearly double liver glycogen repletion rates from ~13 to ~25 463 

mmol/L/h (from ~ 4 to ~8 g/h), largely independent of the total amount of 464 

carbohydrate ingested (Figure 4A). The magnitude of liver glycogen depletion 465 

however, may also modulate liver glycogen repletion rates (Figure 4B) (35). 466 



Co-ingesting fructose alongside glucose likely accelerates liver glycogen 467 

repletion due to faster intestinal absorption of glucose-fructose mixtures when 468 

compared to the ingestion of either glucose or fructose in isolation (54, 56, 469 

57). Moreover, combined ingestion of glucose with fructose enhances fructose 470 

absorption (107) via mechanism(s) that remain to be elucidated. The greater 471 

intestinal absorption rate following combined ingestion of glucose plus 472 

fructose, making use of both apical membrane transport proteins (SGLT1 and 473 

GLUT5 (6, 88)) also accounts for the reduction in gastrointestinal discomfort 474 

when large amounts of carbohydrate are ingested (29, 55). 475 

 476 

To directly compare liver and muscle glycogen repletion rates post-exercise, 477 

measurements of both muscle and liver glycogen concentration within the 478 

same individual are required. To date, this has only been performed in vivo in 479 

humans in two studies, following ingestion of either a low- (0.25/kg BM/h) (18) 480 

or a high-carbohydrate ingestion rate (1.5 g/kg BM/h) (40). When ample 481 

amounts of carbohydrate were ingested (1.5 g/kg BM/h) as a glucose-fructose 482 

mixture, glycogen repletion rates were shown to be substantially higher in liver 483 

than muscle, at least when expressed per unit volume: ~19 vs ~11 mmol/L/h 484 

in liver vs muscle, respectively (40). However, when expressed as time to 485 

complete restoration of glycogen stores, liver repletion may take considerably 486 

longer than muscle glycogen repletion. For example, cycling to exhaustion at 487 

70% VO2max can reduce liver and muscle glycogen concentrations from ~386 488 

to ~170 mmol/L [~874 to ~385 mmol/kg DM assuming a liver density of 1.06 489 

g/cm3 (94) and a wet-to-dry mass ratio of 2.4 (77)] and from ~159 to ~62 490 

mmol/L [~600 to ~240 mmol/kg DM assuming a muscle density of 1.112 491 



g/cm3 (123) and a wet-to-dry mass ratio of 4.28 (53)], respectively (18). The 492 

restoration of these glycogen concentrations at exhaustion back to baseline 493 

would require 11 vs 9 h for the liver vs muscle. This is in contrast to data from 494 

rodents, which suggest that post-exercise liver glycogen restoration is more 495 

rapid than muscle (24).  496 

 497 

Current evidence suggests that glucose-fructose mixtures further enhance 498 

post-exercise liver glycogen repletion rates over glucose (polymer) ingestion 499 

only, whilst also reducing gastrointestinal discomfort. Co-ingestion of other 500 

macronutrients with carbohydrate may modulate post-exercise liver glycogen 501 

repletion but more work will be required to understand the impact of nutrition 502 

on liver glycogen metabolism both during, as well as after exercise. 503 

 504 

Conclusions  505 

Liver glycogen is both an important substrate store and also represents a 506 

strong signal facilitating appropriate fuel selection to support prolonged 507 

endurance-type exercise. Changes in liver glycogen metabolism following 508 

endurance-type exercise training include a reduction in net glycogenolysis 509 

during moderate-to-high intensity exercise in the fasted state, at the same 510 

absolute as well as the same relative workload, without an upregulation of 511 

basal liver glycogen content. Nonetheless, this adaptation can be of sufficient 512 

magnitude to explain the ergogenic effects of exercise training. In the absence 513 

of carbohydrate ingestion, liver glycogen stores are substantially depleted 514 

within 90 min of moderate-to-high intensity exercise. Ingesting carbohydrate in 515 

the form of either glucose or sucrose (glucose-fructose) lessens – and can 516 



even fully prevent - the decline in liver glycogen content during endurance-517 

type exercise, which is likely to be a key aspect in positively influencing 518 

exercise performance/capacity.  519 

 When rapid replenishment of liver glycogen stores is an aim, ingestion 520 

of glucose plus fructose allows more rapid liver glycogen repletion rates when 521 

compared to the ingestion of glucose only. There is currently a lack of 522 

evidence on the appropriate type and amount of ingested carbohydrate 523 

necessary to prevent liver glycogen depletion during exercise, or to maximize 524 

post-exercise liver glycogen repletion. Further work is warranted to assess the 525 

impact of co-ingesting other macronutrients on liver glycogen metabolism. 526 
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Figure 1. Regulation of liver glycogen metabolism under conditions of fasting, 
feeding and exercise. Glycogen synthesis is stimulated by insulin and 
inhibited by glucagon (and indirectly by epinephrine through insulin inhibition) 
(86). Glycogenolysis is stimulated by glucagon and epinephrine, and inhibited 
by insulin, glucose and non-esterified fatty acids (NEFA) (32, 82, 98). 
Gluconeogenesis is stimulated by glucagon and epinephrine and inhibited by 
insulin (32). The role of norepinephrine in hepatic glycogen metabolism is 
likely to be minimal in humans (25, 39, 70). Green lines indicate stimulation, 
red lines indicate inhibition.  



 
 

Figure 2. Liver (A) and muscle (B) glycogen concentrations in humans after 
an overnight fast in the resting state. Data are means ± 95%CI. Data 
extracted from Macauley et al. (67), Gonzalez et al. (44) and Stevenson et al. 
(97). For comparison to biopsy literature, muscle glycogen concentrations 
equate to 262 ± 19, 262 ± 35 and 434 ± 39 mmol/kg DM [assuming a muscle 
density of 1.112 g/cm3 (123) and a wet-to-dry mass ratio of 4.28 (53)] in type 2 
diabetes, healthy controls and endurance-trained, respectively. Liver glycogen 
concentrations equate to 670 ± 70, 738 ± 111 and 636 ± 96 mmol/kg DM 
[assuming a liver density of 1.06 g/cm3 (94) and a wet-to-dry mass ratio of 2.4 
(77)] in type 2 diabetes, healthy controls and endurance-trained, respectively. 



 

 
Figure 3. Net liver glycogenolysis rate as a function of absolute (A and C) 

and relative (B and D) exercise intensity in healthy untrained controls (A and 

B) and endurance-trained (C and D) humans. See Table 1 for details of 

studies. Dashed lines represent 95% CI. 



Figure 4. Post-exercise liver glycogen repletion rates during short-term recovery (4-6 hours) with varying types of carbohydrate 

ingestion plotted against carbohydrate ingestion rate (A) or liver glycogen content post-exercise (B). Data were extracted from 

references (18), (29) and (40). Where values were reported as mmol/L/h (30), liver volume was assumed to be 1.8 L to convert to 

g/h.
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Table 1. Studies estimating liver glycogenolysis during endurance-type exercise in healthy humans. 

Article n Participants Exercise 

mode 

Exercise 

Duration 

(min) 

Exercise 

intensity 

(% VO2peak) 

[W] 

Net liver 

glycogenolysis 

(mg/kg/min) 

Method 

Wahren et 

al. 1971 

(120) 

10 Untrained 

(M) 

Cycling 

 

40 26 

[65] 

3.24 Splanchnic arteriovenous difference 

(total precursors) 

 9 Untrained 

(M) 

Cycling 

 

40 

 

52 

[130] 

5.09 

6 Untrained 

(M) 

78 

[196] 

8.22 

Ahlborg et 

al. 1974 (2) 

6 Untrained 

(M) 

 

Cycling 

 

40 

 

32 

[80] 

3.40 Splanchnic arteriovenous difference  

(total precursors) 

 

Sestoft et al. 

1977 (93) 

5 Untrained 

(M) 

Cycling 35 50 

[122] 

0.95 Splanchnic arteriovenous difference  

(total precursors) 



Stanley et al. 

1988 (95) 

7 Trained 

(M) 

Cycling 50 43 

[101] 

2.72 Isotope tracers 

([13C]- & [14C]-lactate incorporation into 

glucose) 

Coggan et 

al. 1995 (23) 

6 Untrained 

(M) 

Cycling 120 

 

60 

[126] 

6.31 Isotope tracers 

([13C]-bicarbonate 

incorporation into [13C]-glucose) 

6 Trained 

(M) 

Cycling 120 

 

45 

[126] 

3.30 Isotope tracers 

([13C]-bicarbonate 

incorporation into [13C]-glucose) 

Friedlander 

et al. 1997 

(37) 

 

19 Untrained 

(M) 

 

Cycling 60 46 

[90] 

3.95 Isotope tracers 

([13C]-glucose recycling rate) 

65 

[152] 

4.50 

19 Trained 

(M) 

Cycling 60 59 

[153] 

4.13 Isotope tracers 

([13C]-glucose recycling rate) 

65 

[177] 

5.25 



Lavoie et al. 

1997 (65) 

5 Untrained 

(M) 

Cycling 120 40 

[NR] 

4.87 Isotope tracers (2,3,4,6,6-2H]-glucose and L-

[1,2,3-13C]-alanine incorporation into glucose) 

Friedlander 

et al. 1998 

(38) 

17 Untrained 

(F) 

Cycling 60 

 

45 

[45] 

4.21 Isotope tracers 

([13C]-glucose recycling rate) 

63 

[79] 

5.37 

17 Trained 

(F) 

Cycling 60 

 

50 

[79] 

4.48 Isotope tracers 

([13C]-glucose recycling rate) 

65 

[113] 

5.68 

Bergman et 

al. 2000 (11) 

9 Untrained 

(M) 

Cycling 60 45 

[86] 

3.60 Isotope tracers 

(6,6-2H2]-glucose and L-[3-13C]-lactate into 

glucose) 65 

[152] 

5.46 

9 Trained 

(M) 

Cycling 60 54 

[149] 

3.68 Isotope tracers 

(6,6-2H2]-glucose and L-[3-13C]-lactate into 

glucose) 65 5.35 



[174] 

Casey et al. 

2000 (18) 

6 Trained 

(M) 

Cycling 83 70 

[NR] 

12.03 13C magnetic resonance spectroscopy at 

natural abundance 

Trimmer et 

al. 2001 

(104) 

8 Trained 

(M) 

Cycling 90 

 

45 

[125] 

3.36 Isotope tracers 

(6,6-2H2]-glucose and 2-[13C]-glycerol) 

65 

[196] 

5.26 

Trimmer et 

al. 2002 

(105) 

8 Trained 

(M) 

Cycling 90 

 

45 

[125] 

2.90 Isotope tracers 

(6,6-2H2]-glucose and 2-[13C]-glycerol with 

mass isotopomer distribution analysis) 65 

[196] 

4.60 

Roef et al. 

2002 (90) 

6 Untrained 

(F/M) 

Cycling 90 15 

[39] 

1.21 Isotope tracers 

(6,6-2H2]-glucose and 2H2O by incorporation of 

2H from pyruvate into glucose at C-6) 

Roef et al. 

2003 (89) 

7 Untrained 

(F/M) 

Cycling 240 34 

[46] 

2.11 Isotope tracers 

(6,6-2H2]-glucose and 2H2O by incorporation of 

2H from pyruvate into glucose at C-6) 



Petersen et 

al. 2004 (84) 

6 Untrained 

(F/M) 

Running 50 35 

[-] 

1.54 13C magnetic resonance spectroscopy at 

natural abundance 

70 

[-] 

2.89 

Stevenson et 

al. 2009 (97) 

9 Trained 

(M; high-

glycemic 

index diet) 

Cycling 90 70 

[247] 

3.17 13C magnetic resonance spectroscopy at 

natural abundance 

9 Trained 

(M; low-

glycemic 

index diet) 

Cycling 90 70 

[247] 

2.90 13C magnetic resonance spectroscopy at 

natural abundance 

Huidekoper 

et al. 2013 

(51) 

4 Untrained 

(F/M) 

Cycling 90 55 

[142] 

3.51 Isotope tracers 

(6,6-2H2]-glucose and 2H2O by incorporation of 

2H into glucose at C-5) 

Emhoff et al. 

2013 (33) 

6 Untrained 

(M) 

Cycling 60 68 

[161] 

4.50 Isotope tracers 

(6,6-2H2]-glucose and L-[3-13C]-lactate into 



glucose) 

6 Trained 

(M) 

Cycling 60 75 

[159] 

5.70 Isotope tracers 

(6,6-2H2]-glucose and L-[3-13C]-lactate into 

glucose) 67 

[234] 

5.70 

68 

[234] 

4.00 

Gonzalez et 

al. 2015 (44) 

14 Trained 

(M) 

Cycling 180 56 

[165] 

4.20 13C magnetic resonance spectroscopy at 

natural abundance 

Webster et 

al. 2016 

(124) 

7 

 

Trained 

(M) 

Cycling 120 72 

[202] 

5.30 Isotope tracers 

(6,6-2H2]-glucose and 2H2O by incorporation of 

2H into glucose at C-1,3,4,5,6 and 6) 

7 Trained 

(M; low 

habitual 

carbohydrate 

intake) 

Cycling 120 72 

[203] 

3.20 Isotope tracers 

(6,6-2H2]-glucose and 2H2O by incorporation of 

2H into glucose at C-1,3,4,5,6 and 6) 

F, females; M, males; NR, not reported. 


