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Abstract. Two questions often come up when the author discusses inte-
gration: what is the complexity of the integration process, and for what
special values of parameters is an unintegrable function actually inte-
grable. These questions have not been much considered in the formal
literature, and where they have been, there is one recent development
indicating that the question is more delicate than had been supposed.

Keywords: Integration, complexity, parameters

1 Introduction

The author is often asked two questions about integration.

1. “What is the complexity of integration?”.
2. “My integrand f(x, a) is unintegrable. For what special a is it integrable?”

These questions have rather different answers for purely transcendental inte-
grands and for algebraic function (or mixed) integrands. In fact, they are essen-
tially unexplored for mixed integrands, given the difficulties of the two special
cases.

Integration of f(x), in the sense of determining a formula F (x) such that
F ′(x) = f(x), is a process of differential algebra. There is then a question of
whether this formula actually corresponds to a continuous function R → R.
This is an important question in terms of usability of the results, but a rather
different one than we wish to consider here: see [7].

2 Transcendental Integration

In order to use differential algebra, the integrand f is written (itself a non-trivial
procedure: see [9], generally known as the Risch Structure Theorem) in a suit-
able field K(x, θ1, . . . , θn) where each θi is transcendental over K(x, θ1, . . . , θi−1)
with K(x, θ1, . . . , θi) having the same field of constants as K(x, θ1, . . . , θi−1) and
each θi being either:

l) a logarithm over K(x, θ1, . . . , θi−1), i.e. θ′i = η′i/ηi for ηi ∈ K(x, θ1, . . . , θi−1);
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e) an exponential overK(x, θ1, . . . , θi−1) , i.e. θ′i = η′iθi for ηi ∈ K(x, θ1, . . . , θi−1).

This process may generate special cases: for example exp(a log x) lives in such a
K(x, θ1, θ2) with θ′1 = 1

x (θ1 corresponds to log x) and θ′2 = a
xθ2 (θ2 corresponds

to exp(a log x)), except when a is rational, when in fact we have xa. However, this
is generally not what is meant by the “special values” question, and in general
we assume that parameters are not in exponents.

2.1 Elementary Transcendental Functions

Here we have a decision procedure, as outlined in [8]. The proof of the procedure
proceeds by induction on n, the ingenuity lying in the induction hypothesis: we
suppose that we can:

a) “integrate in K(x, θ1, . . . , θn−1)”, i.e. given g ∈ K(x, θ1, . . . , θn−1), either
write

∫
gdx as an elementary function over K(x, θ1, . . . , θn−1), or prove that

no such elementary function exists;

b) “solve Risch differential equations in K(x, θ1, . . . , θn−1)”, i.e. given elements
F, g ∈ K(x, θ1, . . . , θn−1) such that exp(F ) is transcendental overK(x, θ1, . . . ,
θn−1) (with the same field of constants), solve y′+F ′y = g for y ∈ K(x, θ1, . . . ,
θn−1), or prove that no such y exists.

We then prove that (a) and (b) hold for K(x, θ1, . . . , θn).

2.2 Logarithmic θn

If θn is logarithmic, the proof of part (a) is a straightforward exercise building on
part (a) for K(x, θ1, . . . , θn−1) : see, e.g. [3, §5.1]. Unintegrability manifests itself
as the insolubility of certain equations, and any special values of the parameters
will be found as special values rendering these equations soluble.

It is also straightforward (though as far as the author knows, not done) to
prove that, if all θi are logarithmic, then the degree in each θi of the integral is
no more than it is in the integrand, and that the denominator of the integral is
a divisor of the denominator of the integrand. Hence, in the dense model, the
integral is, apart from coefficient growth, not much larger than the integrand,
and the compute cost is certainly polynomial.

In a sparse model, the situation is very different.∫
logn xdx = x logn x− nx logn−1 x+ · · · ± n!x,

so an integrand requiring Θ(log n) bits can require Ω(n) bits for the integral.
The same is true for

∫
xn logn xdx, but

∫
xn logn(x+1)dx shows that Ω(n2) bits

can be required. As far as the author knows, it is an open question whether the
problem is even in EXPSPACE, though it probably is.
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2.3 Exponential θn

Here the problem is different. Suppose θn = exp(F ).
∫
g exp(F )dx = y exp(F )

where y′+F ′y = g (and can be nothing else if it is to be an elementary function).
Hence solving (a) in K(x, θ1, . . . , θn) reduces (among other things) to solving
(b) in K(x, θ1, . . . , θn−1). In general, the solution to (b) proceeds essentially by
undetermined coefficients, which is feasible as y′ + F ′y is linear in the unknown
coefficients. Before we can start this, we need to answer two questions: what is
the denominator of y, and what is the degree (number of unknown coefficients)?
In general, the answers are obvious: if the denominator of g has an irreducible
factor p of multiplicity k, y′ will have the same, so the denominator of y will
have a factor of (at most) pk−1, and F ′ can only reduce this. Similarly, if g has
degree d, y′ will have degree at most d, so y will have degree d+ 1, and again F ′

can only reduce this. The complication is when there is cancellation in y′+F ′y,
so that this has lower degree, or smaller denominator, than its summands. [8]
shows how to resolve this problem, and does not pay it much attention, not
being interested in the complexity question.

In [2] it is noted that these complications come from what one might loosely
call “eccentric” integrands. For example

y′ +

(
1 +

5

x

)
y = 1 (1)

has solution

y =
x5 − 5x4 + 20x3 − 60x2 + 120x− 120

x5
, (2)

(and in general y′ +
(
1 + n

x

)
y = 1 will have a solution with denominator xn)

but this comes from ∫
exp(x+ 5 log x)dx, (3)

which might be more clearly expressed as∫
x5 exp(x)dx. (4)

However, the integrand in (3) has total degree 1, whereas that in (4) has total
degree 6, consistent with the degrees in (2). Ultimately, the point is that the dense
model is not applicable when we can move things into/out of the exponents at
will.

We do have a result [2, Theorem 4] which says that, provided K(x, θ1, . . . , θn)
is exponentially reduced (loosely speaking, doesn’t allow “eccentric” integrands)
then we have natural degree bounds on the solutions of (b) equations. As stated
there, “this is far from being a complete bounds on integrals, but it does indicate
that the worst anomalies cannot take place” here.

Again, the complexity is still an open question, but the author is inclined to
conjecture that it is no worse than EXPSPACE.

What of special values of parameters? These come in two kinds.
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1. As in the logarithmic case, we can get proofs of unintegrability because
certain equations are insoluble. For example (x+ a) exp(−bx2 + cx) is inte-
grable if, and only if, c = −2ab, and this equation arises during the undeter-
mined coefficients process.

2. More complicated are those that change the “exponentially reduced” nature
of the integrand. For example,

∫
exp(x+ a log x)dx does not have an ele-

mentary expression except when a is a non-negative integer, when we are in
a similar position to (3). These values are similar to those that change the
Risch Structure Theorem expression of the integrand.

3 Algebraic Functions

The integration of algebraic functions [1, 11] is a more complex process. If f ∈
K(x, y) where y is algebraic over K(x), the integral, if it is elementary, has to
have the form v0 +

∑
ci log(vi), where v0 ∈ K(x, y), the ci are algebraic over K,

and the vi ∈ L(x, y) where L is the extension of K by the ci (and possibly more
algebraic numbers added by the algorithm, though these should be irrelevant).
So far, this is the same as the integration of rational functions, and the challenge
is to determine the ci and vi.

3.1 The logarithmic part

Looked at from the point of view of analysis, the
∑
ci log(vi) term is to represent

the logarithmic singularities in
∫
fdx, which come from the simple poles of f :

in a power series world ci would be the residue at the pole corresponding to vi.
Hence an obvious algorithm would be

1. Compute all the residues rj at all the corresponding poles pj (which might
include infinity, and which might be ramified: the technical term would be
“place”). Assume 1 ≤ j ≤ m.

2. Let ci be a Z-basis for the rj , so that rj =
∑
αi,jci.

3. For each ci, let vi be a function ∈ L(x, y) with residue αi,j at pj for 1 ≤ j ≤ m
(and nowhere else). The technical term for this residue/place combination
is “divisor”, and a divisor with a corresponding function vi is termed a
“principal divisor”.

* Returning “unintegrable” if we can’t find such vi.
4. Having determined the logarithms this way, find v0 by undetermined coeffi-

cients.

The problem with the correctness of this algorithm is a major feature of algebraic
geometry. It is possible that Di is not a principal divisor, but that 2Di, or 3Di

or . . . is principal. In this case, we say that Di is a torsion divisor, and the
corresponding order is referred to as the torsion of the divisor. If, say, 3Di is
principal with corresponding function vi, then, although not in L(x, y), 3

√
vi

corresponds to the divisor Di, and we can use ci log 3
√
vi, or, more conveniently

and fitting in with general theory, ci
3 log vi as a contribution to the logarithmic

part.
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3.2 Complexity

There are three main challenges with complexity theory for algebraic function
integration.

1. The first is that it is far from clear what the “simplest” form of an integral
of this form is. The choice of ci is far from unique, and a “bad” choice of ci
may lead to large αi,j and complicated vi.

2. The second is that the rj are algebraic numbers, and there are no known
non-trivial bounds for the rj , or the αi,j .

3. The third is that there is very little known about the torsion. This might
seem surprising to those who know some algebraic geometry, and have heard
of, say, Mazur’s bound [6]. This does indeed show that, if the algebraic curve
defined by y is elliptic (has genus 1) and the divisor is defined over Q, then
the torsion is at most 12. The trouble is that this requires the divisor to be
defined over Q, and not just f . For elliptic curves, a recent survey of the
known bounds is given in [10].

Hence it appears unrealistic to think of complexity bounds in the current state
of knowledge.

4 Two meis culpis about algebraic integration and
parameters

In the author’s thesis (see the expanded version in [1]) we considered the ques-
tion of whether f(x, u)dx, an algebraic function of x, could have an elementary
integral for specific values of u, even if the uninstantiated integral were not
elementary.

4.1 The claim

We began [1, pp. 89–90] with a rehearsal of the ways in which substituting a value
for u could change the working of the integration algorithm, and how these could
be detected, i.e. given such an unintegrable f(x, u) how one might determine the
specific u values for which the integrand might have an elementary integral.

1. The curve can change genus: look at the canonical divisor.
2. The [geometry of the] places at which residues occur can change: look at

values of u for which numerator/denominator cancel, or roots coincide.
3. The dimension of the space of residues can collapse.
4. A divisor may be a torsion divisor for a particular value of u, even though

it is not a torsion divisor in general. These cases can be detected by looking
at the roots of SUM in FIND_ORDER_MANIN.

5. the algebraic part may be integrable for a particular u, though not in general.
Hence the contradicting equation in FIND_ALGEBRAIC_PART collapses.
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As a potential example of case 3, consider

1

x
√
x2 + 1

+
1

x
√
x2 + u2

whose residues are ±1,±u and therefore every rational u is a special case.

Lemma 1 ([1, Lemma 6, page 90]). Let the Z-module of residues ri of f(x, u)
have dimension k, and suppose there are values (u1, . . . , uk) such that f(x, ui)
has an elementary logarithmic part (not in cases 1,2,4,5) and such that the set
of vectors {(ri(ua) : 1 ≤ i ≤ k)1 ≤ a ≤ k} is of dimension k. Then f(x, u)dx
has an elementary logarithmic part.

Proof: some (n, 0 . . . , 0) can be expressed as a linear combination with integer
coefficients of the (ri(ua)). Hence the divisor d1 must be a torsion divisor, as
nd1 is a sum of torsion divisors. Similarly the other di.

We suppose f(x, u) depends algebraically on u (else it’s a new transcenden-
tal).

Theorem 1 ([1, Theorem 7, page 90]). If f(x, u)dx is not elementarily in-
tegrable, then there are only finitely many values ui of u for which f(x, ui)dx
has an elementary integral.

Proof. Case 3 is the hard one. Lemma 6 disposes of the case where k values
generate a full-dimensional space, so there is a linear relationship between the
ri(ua) which is not true in general, but which is true infinitely often. But the
ri(ua) are algebraic in u (proposition 5) and this means we have an algebraic
expression which is not identically zero, but which has infinitely many roots, and
this establishes the required contradiction.

4.2 The first problem

[4] observes that
xdx

(x2 − u2)
√
x3 − x

is not elementarily integrable, but is inte-

grable whenever the point (u, ?) is of order at least three on the curve y2 = x3−x,
and this can be achieved infinitely often, at the cost of extending the number
field. The simplest example is u = i, when (i, 1− i) is of order 4 and we have∫

xdx

(x2 + 1)
√
x3 − x

=
1 + i

16
ln

(
x2 + (2 + 2 i)

√
x3 − x+ 2 ix− 1

x2 − (2 + 2 i)
√
x3 − x+ 2 ix− 1

)

+
1− i
16

ln

(
x2 + (2− 2 i)

√
x3 − x− 2 ix− 1

x2 − (2− 2 i)
√
x3 − x− 2 ix− 1

)

Unfortunately neither Maple (2016) nor Mathematica (10.0) nor Reduce (build
3562) can actually integrate this elementarily.

The full problem is treated in [5]. It seems that the arguments in [1] are
implicitly assuming a fixed number field, but a full analysis awaits the publication
of [5].
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4.3 The second problem

The assertion that the case of transcendental u is trivial, if true at all, is certainly
not trivial, and probably false, if we also allow transcendental constants in f ,
for they and u can then “collide”. [4].
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