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A stability/instability trichotomy for non-negative Lur’e systems*

Adam Bill 1, Chris Guiver 2, Hartmut Logemann 1 and Stuart Townley 2

Abstract— We identify a stability/instability trichotomy for
a class of non-negative continuous-time Lur’e systems. Asymp-
totic as well as input-to-state stability concepts (ISS) are con-
sidered. The presented trichotomy rests on Perron-Frobenius
theory, absolute stability theory and recent ISS results for
Lur’e systems.

I. INTRODUCTION

Let A = (aij) ∈ R
n×n and b, c ∈ R

n and consider the
corresponding single-input single-output non-negative linear
system

ẋ = Ax+ bu, x(0) = ξ ∈ R
n
+; y = cTx. (1)

We assume that

(A1) A is Metzler, b, c ∈ R
n
+ and b, c 6= 0 holds.

We recall that A = (aij) is Metzler if aij ≥ 0 for i 6= j
(all off-diagonal elements are non-negative).

System (1) is said to be non-negative if (A1) holds and
u ≥ 0. Non-negative systems of the form (1) occur naturally
in biological, ecological and economic contexts.

We impose the following assumptions.

(A2) A is Hurwitz.

(A3) There exist non-negative numbers α and κ such that
αI +A+ κbcT is primitive.

Recall that (A3) means that the matrix (αI+A+κbcT )k

is a positive matrix for some k ∈ N.
In the following, let G denote the transfer function of (1),

that is, G(s) := cT (sI −A)−1b.
Lemma 1.1: Assume that (A1)-(A3) hold. Then G(0) >

0 and ‖G‖H∞ = G(0).
A proof of Lemma 1.1 can be found in [1].

Applying nonlinear non-negative feedback u = f(y) to
(1), where f : R+ → R+ is locally Lipschitz, leads to the
following non-negative Lur’e system

ẋ = Ax+ bf(cTx), x(0) = ξ ∈ R
n
+. (2)

We assume that the following assumption holds.

(A4) f : R+ → R+ is locally Lipschitz and f(0) = 0.

Whilst absolute stability of Lur’e systems is a classical
topic in control theory (see, for example, [2], [3], [8]), it
seems that non-negative Lur’e systems have not received
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much attention (see however [7] which provides an analysis
of the stability properties of a class of non-negative discrete-
time Lur’e systems).

Assuming that (A1)-(A4) hold, we set

p :=
1

G(0)
,

and consider the following three cases.

Case 1. f(z)/z ≤ p for all z > 0.

Case 2. infz>0 f(z)/z > p.

Case 3. There exists y∗ > 0 such that f(y∗) = py∗ and
∣

∣

∣

∣

f(z)− f(y∗)

z − y∗

∣

∣

∣

∣

≤ p for all z > 0, z 6= y∗.

The condition in Case 3 means that the graph of f is
“sandwiched” between the straight lines l1 and l2 given by
l1(z) = pz and l2(z) = 2py∗ − pz, see Figure 1.

z

f(z)

l2

l12py∗

f

0 y∗

Fig. 1. Case 3: graph of f “sandwiched” between the lines l1 and l2.

II. LYAPUNOV STABILITY RESULTS

In this section, we present results which describe the
stability/instability properties in each of three cases, where
“stability” is interpreted in the sense of Lyapunov.

Let x(· ; ξ) denote the unique maximally defined forward
solution of (2) with maximal interval of existence [0, ωξ),
where 0 < ωξ ≤ ∞.

The proposition below relates to Case 1. It follows from
well known results in absolute stability theory, see, for
example, [3].

Proposition 2.1: Assume that (A1)-(A4) hold.

(a) If f(z)/z ≤ p for all z > 0, then the equilibrium 0 is
stable in the large in the sense that there exists Γ ≥ 1 such
that, for every ξ ∈ R

n
+, ωξ = ∞ and

‖x(t; ξ)‖ ≤ Γ‖ξ‖ ∀ t ≥ 0.
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(b) If f(z)/z < p for all z > 0, then the equilibrium 0
is globally asymptotically stable. In particular, for every
ξ ∈ R

n
+, ωξ = ∞ and x(t; ξ) → 0 as t→ ∞.

(c) If supz>0 f(z)/z < p, then the equilibrium 0 is globally
exponentially stable, that is, there exist N ≥ 1 and ν > 0
such that, for every ξ ∈ R

n
+, ωξ = ∞ and

‖x(t; ξ)‖ ≤ Ne−νt‖ξ‖ ∀ t ≥ 0.

In Case 2, the solutions of (2) diverge to ∞ for every non-
zero initial condition. More precisely, we have the following
result.

Theorem 2.2: Assume that (A1)-(A4) hold and
infz>0 f(z)/z > p. Let ξ ∈ R

n
+, ξ 6= 0, be such

that the solution x(t; ξ) exists for all t ≥ 0. Then

lim
t→ωξ

xi(t; ξ) = ∞ ∀ i ∈ {1, . . . , n},

where xi(· ; ξ) denotes the i-th component of x(· ; ξ).

We proceed to consider Case 3.

Theorem 2.3: Assume that (A1)-(A4) hold.

(a) If there exists y∗ > 0 such that f(y∗) = py∗ and
∣

∣

∣

∣

f(z)− f(y∗)

z − y∗

∣

∣

∣

∣

≤ p ∀ z ≥ 0, z 6= y∗

then x∗ = −pA−1by∗ ∈ R
n
+ is an equilibrium of (2) and

x∗ is stable in the large in the sense that there there exists
Γ ≥ 1 such that, for every ξ ∈ R

n
+, ωξ = ∞ and

‖x(t; ξ)− x∗‖ ≤ Γ‖ξ − x∗‖ ∀ t ≥ 0.

(b) If there exists y∗ > 0 such that f(y∗) = py∗ and
∣

∣

∣

∣

f(z)− f(y∗)

z − y∗

∣

∣

∣

∣

< p ∀ z > 0, z 6= y∗

then 0 and x∗ = −pA−1by∗ ∈ R
n
+ are the only equilibria of

(2) and x∗ is globally asymptotically stable in the sense that
x∗ is stable in the large (see statement (a) of this theorem)
and, for every ξ ∈ R

n
+ such that ξ 6= 0, ωξ = ∞ and

x(t; ξ) → x∗ as t→ ∞.

(c) If there exists y∗ > 0 such that f(y∗) = py∗,
∣

∣

∣

∣

f(z)− f(y∗)

z − y∗

∣

∣

∣

∣

< p ∀ z > 0, z 6= y∗

and

lim sup
y→y∗

∣

∣

∣

∣

f(z)− f(y∗)

y − y∗

∣

∣

∣

∣

< p,

and if

lim inf
z→0

f(z)

z
> p, (3)

then 0 and x∗ = −pA−1by∗ ∈ R
n
+ are the only equilibria

of (2) and x∗ is “semi-globally” exponentially stable in the
sense that, for every compact set K ⊂ R

n
+ with 0 /∈ K,

there exists N ≥ 1 and ν > 0 such that, for every ξ ∈ K,
ωξ = ∞ and

‖x(t; ξ)− x∗‖ ≤ Ne−νt‖ξ − x∗‖ ∀ t ≥ 0.

(d) If (3) holds and there exists y∗ > 0 such that f(y∗) =
py∗ and, for every ε > 0,

sup
z≥ε, z 6=y∗

∣

∣

∣

∣

f(z)− f(y∗)

z − y∗

∣

∣

∣

∣

< p,

then 0 and x∗ = −pA−1by∗ ∈ R
n
+ are the only equilibria

of (2) and x∗ is “quasi-globally” exponentially stable in the
sense that, for every δ > 0 there exist N ≥ 1 and ν > 0
such that, for every ξ ∈ R

n
+ with ‖ξ‖ ≥ δ, ωξ = ∞ and

‖x(t; ξ)− x∗‖ ≤ Ne−νt‖ξ − x∗‖ ∀ t ≥ 0. (4)
We remark that “global” exponential stability of x∗ (in the
sense that there exist N ≥ 1 and ν > 0 such that (4) is
satisfied for all ξ ∈ R

n
+ with ξ 6= 0) does not hold. This

is an immediate consequence of the following result which
follows from continuity properties of the flow generated by
the Lur’e system (2).

Proposition 2.4: Assume that (A1)-(A4) hold and that
there exists y∗ > 0 such that f(y∗) = py∗. Then, for every
sequence (tn) in R+ with tn → ∞ as n→ ∞, there exists
a sequence (ξn) in R

n
+ with ξn 6= 0 and ξn → 0 as n→ ∞

and such that

lim
n→∞

‖x(tn; ξn)− x∗‖

‖ξn − x∗‖
= 1,

where x∗ = −pA−1by∗.
Discrete-time results similar to statement (b) of Proposition
2.1, Theorem 2.2 and statement (b) of Theorem 2.3 can be
found in [7].

Proofs of the results in Section II can be found in [1].

III. INPUT-TO-STATE STABILITY RESULTS

Finally, we investigate the stability behaviour of (2)
subject to non-negative disturbances, that is, we analyze
input-to-state stability (ISS) properties of the forced Lur’e
system

ẋ = Ax+ b(f(cTx) + d), x(0) = ξ ∈ R
n
+, (5)

where d : R+ → R+ is locally essentially bounded. The
unique maximally defined forward solution of (5) is denoted
by x(· ; ξ, d).

For an overview of ISS theory, the reader is referred to
[6]. We recall some terminology and notation relating to
comparison functions. Let K denote the set of all continuos
functions ϕ : R+ → R+ such that ϕ(0) = 0 and ϕ is
strictly increasing. Moreover, define K∞ := {ϕ ∈ K :
lims→∞ ϕ(s) = ∞}. We denote by KL the set of functions
in two variables ψ : R+ × R+ → R+ with the following
properties: ψ(· , t) ∈ K for all t ≥ 0, and ψ(s, ·) is
nonincreasing with limt→∞ ψ(s, t) = 0 for all s ≥ 0.

The following proposition is a consequence of recent ISS
results for Lur’e systems, see [4], [5].

Proposition 3.1: Assume that (A1)-(A4) hold. If there
exists ρ ∈ K∞ such that

f(z) ≤ pz − ρ(z) ∀ z ≥ 0,
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then the equilibrium 0 of the unforced Lur’e system (2) is
ISS in the sense that there exist ψ ∈ KL and ϕ ∈ K such
that for all ξ ∈ R

n
+ and all non-negative d ∈ L∞

loc(R+),
x(· ; ξ, d) is defined on R+ and

‖x(t; ξ, d)‖ ≤ ψ(‖ξ‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0.
The following theorem shows that, under suitable assump-
tions, the equilibrium x∗ has stability properties which are
similar to ISS.

Theorem 3.2: Assume that (A1)-(A4) hold and that there
exists y∗ > 0 such that f(y∗) = py∗ and

∣

∣

∣

∣

f(z)− f(y∗)

z − y∗

∣

∣

∣

∣

< p ∀ z > 0, z 6= y∗, (6)

Furthermore, assume that (3) holds and

pz − f(z) → ∞ as z → ∞. (7)

Then 0 and x∗ = −pA−1by∗ ∈ R
n
+ are the only equilibria

of the unforced Lur’e system (2) and x∗ is “quasi ISS” in
the sense that, for every δ > 0, there there exist ψ ∈ KL
and ϕ ∈ K such that for all ξ ∈ R

n
+ with ‖ξ‖ ≥ δ and all

non-negative d ∈ L∞
loc(R+), x(· ; ξ, d) is defined on R+ and

‖x(t; ξ, d)−x∗‖ ≤ ψ(‖ξ−x∗‖, t)+ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0.
(8)

To relate the conditions (6) and (7) to those in Proposition
3.1, we note that if (6) and (7) hold, then, for every ε > 0,
there exists ρ ∈ K∞ such that

|f(z)−f(y∗)| ≤ p|z−y∗|−ρ(|z−y∗|) ∀ z ≥ ε, z 6= y∗.

The proof of Theorem 3.2 is based on Proposition 3.1 and
the following lemma.

Lemma 3.3: Assume that (A1)-(A4) hold. If (3) is satis-
fied and there exists y∗ > 0 such that f(y∗) = py∗ and (6)
holds, then, for every δ > 0, there exist constants η > 0
and τ ≥ 0 such that for all ξ ∈ R

n
+ with ‖ξ‖ ≥ δ and all

non-negative d ∈ L∞
loc(R+), x(· ; ξ, d) is defined on R+ and

cTx(t; ξ, d) ≥ η ∀ t ≥ τ.
This lemma also plays a key roll in the proof of statements
(b)-(d) of Theorem 2.3 (with disturbance d = 0). Detailed
proofs of Proposition 3.1, Theorem 3.2 and Lemma 3.3 can
be found in [1].

Finally, it follows from Proposition 2.4 that “global” ISS
of x∗ (in the sense that there exist ψ ∈ KL and ϕ ∈ K
such that (8) is satisfied for all ξ ∈ R

n
+ with ξ 6= 0 and all

non-negative d ∈ L∞
loc(R+)) does not hold.
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