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Controllability for positive discrete—time linear systems witbspive state*
Chris Guivet and Stuart Townley

Abstract— Controllability of componentwise nonnegative whereA, B andz® are componentwise nonnegative under
discrete-time linear systems is considered. The key difference the constraint that just the state must remain nonnegative.
here from the well-established positive systems theory is We denote such a framework in [8] pesitive state control-

that we permit the case where the input takes negative labilt d . le of wh this f K
values, provided that the state remains nonnegative. Such a ability and our primary exampie of where this framewor

framework is very natural, moreover necessary, in situations IS Necessary is population ecology. Here matrix models
such as population ecology to describe the control actions of are often used (see, for example, Caswell [9] or Cushing

harvesting or culling. Th_e present contribution summarises [10]) with the nonnegative state denoting a stage- or
recently pgbllsheq materla_l by the authors and considers a age-structured population, and the conteoldenoting a
novel application in low-gain PI control. . .
conservation strategy or a form of pest control or harvgstin
There are many papers (including, for example, [11]-[14])
. INTRODUCTION where the model (1) is suitable for describing the addition
or removal of individuals from a population and for a full
Controllability is a fundamental concept in control theorydescription of these actions we require thatcan take
and the formulation used presently dates back to Kalmaregative values.
[1]. For finite-dimensional, linear, time-invariant, cont-
ous time systems the notions of reachability, controlighil We present a selection of results from [8], without proof,
and null controllability are all equivalent. When thé that demonstrate that under a certain assumption, the prob-
operator in (1) is invertible then the same is true for diere !em of positive state controllability is equivalent to poss
time systems. As is well-known, part of their appeal lies innput controllability of a related positive system. We refe
the interplay between analytic and algebraic concepts. FHte reader to [8] for proofs of these results. We present two
instance, the existence of a control steering the system t¥@mples from population ecology that seek to a) highlight

desired state is equivalent to the reachability matrix hgwi the possible uses of the theory and b) demonstrate the seem-
full rank. ingly non-trivial ‘middle ground’ between positive state

and positive input controllability of positive linear sgsts.
In many physically motivated systems the state and inpiNovel to this contribution, we also consider the implicato
variables cannot take negative values, for example, dr positive state control in describing which nonnegative
ingestion and metabolism. Componentwise nonnegativity ieference vectors are candidate asymptotic outputs of the
a property that, somewhat problematically, is @opriori ~ system
respected by controllability in its most general form. The
neepd to undérstand contrtglllability for su%h systems, and of *(t 1) = Az(t) + Bu(t), 2(0) = z teNy, (2)
course other similar concepts, motivated the development  ¥(t) = Cz(?), 7

of positive systems .theory and there now exist Sever@\'/herezél is Schur (that is, stable). The motivation for such
textbooks on the subject (for example, [2]-[5]). Natur,allya result is in PI control of MIMO positive state systems,

controllability,_ that isp(_)sif[ive input controllability in such for regulating the output of (2) to a desired reference. Pl
a framework is more limited than the general case, but tI”E?ontrol has recently been suggested as a possible tool for

situat_ion is well understood ([.6.]’ [7] and the refer(_ance opulation management [15] in the case of SISO systems.
therein). A key feature of positive systems theory is th roofs of these later results are in preparation [16].
notion that both the state and the input variables must be
nonnegative.

[l. POSITIVE STATE CONTROLLABILITY
Here we present recently published results [8] pertaining t
the controllability of the discrete-time linear system A. Definitions

x(t+1) = Az(t) + Bu(t), =(0)=2°, teNy, (1) )
Forn € N, R’} denotes the nonnegative orthantit and
* This work is supported by EPSRC grant EP/1019456/1. e; € R" is theit? standard basis vector. For vectarsand

'Environment and Sustainability Institute, College of Emgir  matricesX. = > 0 (also0 < z) and X > 0 (also0 <
ing Mathematics and Physical Sciences, University of ExeRen- X) d t ' — twi - ti t_ Th - . t
ryn Campus, Cornwall, TR10 9FE, UK,C. gui ver @x. ac. uk, ) denotes componentwise nonnegativity. The superscrip

s. b. t ownl ey@x. ac. uk. T denotes matrix transposition. For nonnegative vectors



x1,%2,..., 2, € R} welet(zy,zs,...,2x)+ C R} denote is not there”. Such a notion is one of state feedback, and
their nonnegative linear span. For nonnegative matrice®te isnotthe case for positive input control. There adding
Xi, Xo, .., Xy € R we let (X, Xo,..., Xp)+ CR} a nonnegative quantity to something already nonnegative
denote the nonnegative linear span of their columns. can only make things larger. By decomposiAgnto A +

BF, then negative controlg in Ax + Bu can be absorbed
We are interested in the pa{d, B) € R"*" x R"™™ a5 Az 4+ B(Fz + u). Lemma 2.3 provides a constructive
generating the controlled system (1) wheteB > 0 and  characterisation of assumptiqA) and demonstrates that

the stater is nonnegative. In order to formalise reachability(A) holds if, and only if,(A) holds for a specified” that
and null controllability, both with nonnonegative statee W can be computed.

introduce the following definitions.

Lemma 2.3:Assumption(A) holds for (A, B) € R™*"™ x
Definition 2.1: Given the pai(4, B) € R"*" xR™ ™ with  gnxm with A, B > 0 if, and only if, there exisin rows of
A, B >0, we say thater € R} is positive state reachable B such that then x m submatrix, denoted3, formed by

in finite time if there exists a control sequence that stdes t taking thesen rows fromB is a positive monomial matrix
statex of (A, B) from 0 to z in N steps and additionally and

maintains nonnegativity of:. The collection of all such A—BBlA>0. 3)

xr € R is called the positive state reachable set (in finite - T

time). We say thatA, B) is positive state reachable in finite Here A4 is formed of them rows of A that appear inB.

time if this set isR’} . Consequently(A) holds if, and only if, it holds withF =
- , B~ 1A sothatd := A — BF > 0.

We note that the positive state reachable set is a convex cone

of the linear spac®™ overR, and not a linear subspace. Remark 2.4: (i) We comment here thq#\) holds forany

A > 0 in the single input casdB = b = ce,,

¢; > 0 and the corresponding multiple input version

case whenB is a combination ofe;, that is, B =

[ciy€iys-- -, e, | TOr positivec;, . These two cases

are arguably the most important for applications.

Definition 2.2: Given the pair(4, B) € R"*"™ x R»*™
with A, B > 0, we say thatry € R} is positive state null
controllable in finite time if there exists a control sequenc
that steers the stateof (A4, B) from z, to 0 in N steps and
additionally maintains nonnegativity of The collection of
all suchzy € R is called the positive state null controllable (ji) Lemma 2.3 provides an algorithm for checking as-
set (in finite time). We say thdt4, B) is positive state null sumption(A). First, we see thaB containing annxm
controllable in finite time if this set IRQL_ monomial submatrix is necessary f¢A). Second,
there are then only finitely mang (formed from the

As the underlying system (1) is linear, the natural notion monomial rows ofB) to check whethefA) holds by

of positive state controllability is (more or less) the camb verifying whetherd — BB~1A > 0.

nation of positive state reachability and positive staté nu -

controllability, and is addressed in [8]. The following corollary interprets Lemma 2.3 in the single
input case.

B. Results .
Corollary 2.5: Let A > 0 with i*" row denoted by; and

Theorem 2.6 provides a recipe (under a certain assumptioﬁ): b be given by

for describing the positive state reachable set and set of n

positive state null controllable states by relating noratieg b= Z cipei, With ¢;, >0.

state trajectories with possibly nonpositive inputs of pag k=1

(A, B) to nonnegative state trajectories with no”negativﬁssumption(A) holds for

) LS (A,b) if, and only if, there exists
inputs of a related system. Our key assumption is the

following: U € {i1,...,ix} such that
T-—M>0 Vi;e{i in} (4)
(A) Given the pain(A, B) € R™*™ x R™*™ with A, B > 0 i w = j Tyeeeyint,

there existsF” € R™*™ such that withA := A — BF both N
A>0andifveR?,weR™ satisfy Av + Bw > 0 then ~and in this casg’ = 7 = o Whereiy is as in (4).
w > 0.

B Theorem 2.6:Let the pair (A, B) satisfy (A) and denote
The idea of assumptio(®) is that, roughly speaking, the A := A — BF'. The state trajectories ¢f4, B) from initial
quantity that can be removed from the statg) by the statexz, € R’ with nonnegative state are precisely the
input u(t), while keeping the state(t + 1) nonnegative, state trajectories ofA, B) from initial statez, € R? with
is proportional tox(t) itself; “you cannot take away what nonnegative control.



With the above characterisation we obtain the followingpositive input control and is sometimes sufficient to fully
corollaries by appealing to existing positive input result describe positive state control, as illustrated in ExardpBe
for instance [6, pp. 41-42, Proposition 1, Proposition 2].

Corollary 2.7: Let the pair(A, B) satisfy(A). The positive Il. POSITIVE OUTPUTS WITH POSITIVE STATE

state reachable set of the pdir, B) in finite time is

precisely Here we consider the outputs of the input-state-output
U (B,AB,...,AN"'B), . (5) system (2) specified byl € R"*", B € R"™, C €
NeN R™>m™ with A, B,C > 0. Assuming that'(A) < 1 (that is,

< . " A is Schur) then it is well-known that
where A is as in(A). The positive state reachable set of the )

pair (4, B) in infinite time is precisely tlim y(t) = G(l)tlim u(t),
— 00 —00
| (B, AB,...,AN-1B) . (6) whereG is the transfer function of the tripléA, B, ().
NeN If G(1) is invertible then for the output to aymptotically

track a prescribed refereneethen obviouslyu = G=*(1)r
is a suitable input (or limit of an input). Since it is not
—1 . m
that every reachable state is reachable in at most clear thatG _(1)7 Z. 0 for genere_llr € RI, we thus
steps, where: is the dimension ofd. It is known ([6 seek to describe which nonnegative referencesan be
p. 42]) that this is not the case for positive Systemstracked asymptotically whilst preserving nonnegativity o
Ee state? These results are motivated by a desire to describ

and by Corollary 2.7 we see that the same is tru | trol for MIMO itive stat ; th ted
for positive state reachability. Example 4.2 contain control for positive state systems, with suggeste

a pair(4, B) that is positive state reachable, but Onlyappllc_apons in population management [15] a manuscript
in infinite time. containing proofs of these results is in preparation [163. W

introduce some notation.

Remark 2.8: (i) For standard reachability of single-input
systemg A, B) the Cayley-Hamilton Theorem implies

(ii) Clearly, classical positive input reachability of the
nonnegative pair(A, B) pair implies positive state
reachability of(A, B). This is apparent from Corollary
2.7 as for eachV € N

Definition 3.1: For (4, B,C) € R™*™ x R™*™ x R™*",
we say that- € RP is trackableif there exists a convergent
input w such that the outpuj of (2) has limitr. Supposing

~ ~ further thatA, B,C' > 0, we say that- € R, is trackable
(B,AB,...,AN"'B), C(B,AB,...,AN"'B), .  with positive statéf r is trackable and moreover the state
z(t) of (2) is componentwise nonnegative for every Nj.
We call the set of such the set of trackable outputs of
(A, B, C) with positive state.

Example 4.5 contains a pafd, B) where the above
inclusion is strict.

Corollary 2.9: Let the pair(A, B) satisfy(A). The positive
state null controllable set of the paid, B) in finite time
is precisely

Lemma 3.2:Suppose thafA, B,C) € R™*"™ x R"™*™ x
R™*™ with A,B,C > 0 andr(A) < 1. Then for each
F € R7™ such thatd :== A — BF > 0, it follows
that G i5(1) = C(I — A)"'B > 0 and the set of
The set of positive null controllable states in infinite timetrackable outputs of 4, B, C') with positive state contains
is precisely B . (Geipg(1)+-

R” N (ker A" + E(A)), (8)

o _ ) When the(A, B) component of (2) satisfyA) then we can
where E(A) is the sum of (generalised) eigenspaces COE‘ay more.

responding to the stable eigenvalues 4f (that is, the

eigenvalues\ of A with [A| < 1). Lemma 3.3:Using the notation and assumptions of Lemma
3.2, if additionally (A, B) satisfy assumptiofA) then the

- etz ; set of trackable outputs dfA4, B, C) with positive state is
when A = A + BF with A,F > 0 then, even with-

= recisely equal tdG ;5(1)) .
out assumptior(A), every state trajectory ofA, B) with P yeq 4Geip(D)+
honnegative controls a state trajectory of A, B) with  The next result provides a recipe for enlarging the guar-
nonnegative state (this is one of the implications in Theore anteed set of possible trackable outputs with positiveestat

2.6). Consequently, the positive input reachable set of thearticularly in the case that assumptigh) fails.
pair (A, B) is asubsetof the positive state reachable set of

the pair (A, B). Although not giving the complete picture Lemma 3.4:Using the notation and assumptions of Lemma
of positive state control, this connection can be used &2, for each” € R™"*™, F' > (0 such thatd := A— BF >
an intermediate stage between positive state control afdt follows that (Gcap(1))+ € (G ip(1))+ -

R} Nker A™. 7

Remark 2.10:It is important to note that gived, B > 0,



Remark 3.5:

() Lemma 3.3 demonstrates that, under astormed from rows one and two, and rows two and three of

sumption (A), the largest possible set for tracking B respectively. Taking the corresponding submatrices from

with positive state iSG . ;5(1))+, whereA is as in
assumption(A).

(ii) A straightforward adjustment to the proof of Lemma

3.4 demonstrates that the s€tSc45(1))+ have a

monotonically decreasing nested structure with respect _
to the partial ordering of componentwise nonnegativity

on A, in that
0< 41 <Ay = (Geoa,s(1)+ € (Goa,B(1))+ -

Therefore, the largest possible trackable set with pos-

itive state over all nonnegativa is equal to(C'B)
and is attained wherl = 0.

IV. EXAMPLES

Example 4.1: Checking assumpti¢h): Consider the sys-
tems

2 1 2 1
(@) Ay=10 3 4|, b= 10|,
1 1 2 1
2 1 2] 1
(b) Ay=10 3 4|, b= 10|,
11 3 1
2 1 2] 10
(c) A3=10 3 4|, B=|0 1
11 2] 30

Assumption(A) holds in(a), fails in (b) and holds in(c).
We proceed to prove these claims. Foy, if we take f{ :=
1 1 2] so that

) 1 00
A=Ay —bff =10 3 4], 9)
00 0

then whenever € R}, w € R are such thatl, v +bw > 0,
by inspection of the third component we see that> 0,
which by definition is(A). Alternatively, withi; = 1 and
io = 3 we compute

rm—rs=[2 1 2]—[1 1 2]=[1 0 0]>0.
Thus Corollary 2.5 applies withy, = is = 3, so thatf; =

[1 2 2],asin (9). However, repeating this procesgtin
gives

rm-r3=[2 1 2]—-[1 1 3]=[1 0 -1]#0,

and also that'; — r; # 0. We conclude from Corollary
2.5 that(A) does not hold for(b). For (¢) we note thatB
contains two2 x 2 positive monomial submatrices

10

0 1
m=lo 3] e i)

As gives

0 3 4
Al_{o 3 4} and AQ‘L 1 2}’

from which we compute

0 0 0
A3 —BB7'A; =0 0 0] >0,
0 3 1
[0 -1 -2
and A3 —BB;'A, =10 0 0| #0.
0 0 0

We conclude thaA) holds for (c) with ' =[313].

Example 4.2: Reachability in infinite tim€onsider the3 x
3 nonnegative matrix and control vector

al 1 0
A= 0 ay 1 5 b:€3,
0 0 as

with 1 > a; > 0 andas > 0. By Corollary 2.5 it follows
that (A) applies to the paifA,b) with F' = fT the third
row of A. A calculation shows thatlb = e; and fork > 2

=1 )" (10)

Akp = [(k—1)af~? af 0]

The positive state reachable set in+ 1 steps is all
nonnegative linear combinations of these vectors, which
here is strictly increasing with increasirigand notedoes
notincludee; for finite k. However, by noting that fok > 2
1
(k= 1)ay?

ask — oo, it follows that the pair(A,b) is positive state
reachable in infinite time.

ARp=[1 2y 0] S,

Example 4.3: Positive state reachability withd): Con-
sider the paird = [3 1], B =[1{] with

(B,AB), = <E (1)] ’ B ﬂ>+ '

An induction argument shows that the positive input reach-
able space igeq, e + e2)+; the areaR in Figure 1. The

(11)

9 a1t e
///
//
//
4
//
// R
//
//
A >
Z1
Fig. 1. Positive input reachable set (depictg)l of the pair(A, B) in
(12).



pair (A4, B) in this example do not satisfy assumptiph)  which models a population partitioned into discrete, iasre
(as B contains n® x 2 monomial submatrices). However, ing age-stages. Correspondingfy,> 0 denote reproductive

taking F' = B gives rates ands; > 0 denote survival rates, the latter as
- ) 0 0 proportions are each no greater than one. For ecologically
A=A-BF=A-B"= {O J >0, meaningful models [18], we shall always assume that the

Leslie matrix (14) hassy,...,sp-1 > 0, f1,...,fn > 0

and so the positive state reachable set contains and there exists at least oriec {1,2,...,n} such that

(B, AB), — 11 ’ 0 0 _R2. fi > 0. Noting that then x n positive diagonal matrix
Loofrfr o/, 11 1
We conclude that, although assumpti@) does not hold, T = diag (1’ 15180 sy. -~8n1) )

the pair(A, B) is positive state reachable in finite time. Note
that in this instance the choidé = B is in no sense unique;
the same conclusions are reached for the pAirB) with
F=[19asheredA=A—-BF =[9] >0.

hasT~! > 0 for single input positive state controllability
with b = e; it is sufficient to consider the similarity
transformed pai{T ' AT, T—1b). This is becaus@ AT
has the same structure @swith ones on the subdiagonal
Notwithstanding the above, it is true thatf, > F, then @nd top row with entrieg; > 0 (which we abuse notation
A, := A—BF, < A— BF, =: A, and thus for eackh ¢ N  and write asf;) andT'e; = ¢;e;, for somee; > 0. Conse-
- - - - qguently, when considering controllability with positiveate

(B, A3B, ..., A3B)+ € (B, AiB,..., A{B) . there is no loss of generality in assuming that a Leslie matri
Consequently, to describe positive state control for a pahass; = 1 for eachj.
(A, B) when assumption(A) fails, the above suggests . ) ] ]
consideringA := A — BF, where F is chosen as (com- We consider the (transformed) pam,b) and S|.ngle input
ponentwise) large as possible so thdt > 0. Such a © = €, j € {1,2,...,n}. Assumption(A) is always
process can simplify calculations considerably. For examp satisfied for such a pair, with’ = f* the j*" row of A.
consider the paiel = [% i }J and B = h 8} with When j = 1 so thatb = ¢; it follows that A is nilpotent
11 4 2 19 6 > with A" = 0. The positive state reachable set is therefore

12)

<B,AB7AQB>+—< L0 5 1 256 (b, Ab,... A"7b) | = (er,e0,...,en)4 = R,

106 1 33 7 _ . -
and by Corollary 2.7 the paifA, b) is positive state reach-

ChoosingF = BT gives A := A — BF = {(8) % 5} >0 so able. Furthermore,
that A"=0, = R}nkerA"=R7,

110 0 00
(B,AB,A’B), ={( |1 0 2 0 4 0 . (13) and SO the pair(A,b) is positive state nulllgontrollable.
10 309 0 In this very special case it follows that positive state con-
_ ) + i trollability and standard controllability coincide: th@ique
\r;vgtr:isfees gztrllgsﬁeﬁ??\gngfs?géirg??lgl)\lzm?jn?lg:EZI 'i':] ttrr]‘i‘?:ontrol u that steers: between any two nonnegative states
9 f n steps is such that the state remainsRifi. Such a

example the difference between positive state control angho| can take negative values and thus is not permitted
positive input control is that in the former the directions in a positive input framework

and 2e; + 3es have been ‘decoupled’.

For example, consider the pair=[2 3], b = e;. Trivially

e is reachable from zero with positive state in one step and
the controlu(0) = 1, u(1) = —2 steers the state from zero

to e, in two steps. The resulting state trajectories are plotted
in Figure 2(a). By taking suitable linear combinations of
these inputs all ofR? can be reached with nonnegative
state. If we restrict attention t0A, b) with only positive
inputs, then the positive input reachable space is spanned
by b = e; and Ab = 2e; + eq, and is depicted in Figure

Example 4.4: Positive state null controllabilityFrom
Corollary 2.9 it follows that for a paifA, B) satisfying
(A), e; is positive state null controllable ik steps if, and
only if, A* hasith column zero.

Example 4.5: Positive state controllability for Leslie mat
ces: We recall that amn x n Leslie [17] matrix has the
following structure

fi oo o 2(b): note that not all oR?2 is reachable. Even in this very
st 0 ... 0 simple example there is a difference between positive state
A=10 s 0 : (14) controllability and classical positive input controllétyi.

: " . For b = e;, j > 1 the situation is somewhat different.
0O ... 0 s,1 O Assumption(A) holds with ' = f7 the j* row of A and



T e T state controllable; that the state can transition betwegn a

two nonnegative states (including zero) whilst remaining
in R%}! Leslie matrices of course have a very simple
structure, but already the results presented here deratastr
the differences that arise between positive state conirdl a
positive input control.

b . . . .
@ o ) . Example 4.6: Positive outputs with positive staBansider
the input-state-ouput system (2) specified by the triple:
Fig. 2. (a) Positive state trajectories steering the statéAb) to e1
andeg respectively. (b) The positive input reachable space ofptistive A= 0.7 12 B = 1 0 C = L1 . (15)
system(A, b) is the area between the dashed vecband Ab = 2e; +es. 02 0]’ 0 0.25|° 0 1

The dotted linew is parallel tolimy,_, .. A*b and so here the positive input . ) ) j
reachable set is not all @2 but is attained in finite time. Note thatA is a Leslie matrix withr(A4) = 0.9521 < 1

and that in the context of a population model, the first and
second observations are total abundance and abundance of
we note that the characteristic polynomialéfis given by the second stage class, respectively. Intuitively, when th
i1 statex is nonnegative them;(t) > y»(t) for eacht € N.
m_ katnfk’ By Lemr'n'a 3.2, the setlof trackable outputs (of, B, C)
— with positive state contains

which follows easily from, for example, the expression on 1)y, — <[%g %ﬂ> _ <{48 15]> (16)
[5, p. 121]. Consequently, by [8, Lemma 2.12] the positive 3 1l/4 8 31/,
state reachable set of the pdid,b) is achieved in finite

time; indeed, inn steps. However, the paf, b) is not, in : ; ;
’ : ' ’ ' note that(A, B) satisfy assumptiogA) with F = [9-7 1.2],
general, positive state reachable. In the case3 andb = e (4, B) fy ptiogA) [6:5 "]

o L . sothatd := A—BF = 0. Thus, by Corollary 3.3, it follows
e the positive state reachable set in finite time is contalne[ﬂoat the set of trackable outputs 4, B, C') with positive
In ) )

state is equal to

Geanhs = (B0 = (|5 1]) -

4

which is the darker region graphed in Figure 3. However, we

o 0 f2 f3+ fif
(b,Ab,Azb>+:< 11,071, 0 >

0 1 0 n

If fo > 0 thenes cannot be steered to whilst maintaining
nonnegative state (in finite time), but the vectersand e,
can (in the former case provided thatfs + f3 > 0). For
positive state null controllability we see that

ft fife+fs fifs 1
0 0

which is the lighter region sketched in Figure 3, and is much
‘larger’, than that in (16). Indeed, we could not expect the
region to be any larger, as then the inequalityt) > y-(t)
would be violated.

A~2 = 0 s A3 = flle% . 08

0 0 0
The important term here ig;, reproduction of individuals go'e
in the first stage class. If; = 0 then 43 = 0 and so every 04

state can be steered to zero with nonnegative state. However

if f1, f2, f3 > 0 then the top row ofd® is positive and thus 0'2/
0

there are no nontrivial positive state null controllablatss = 06 os
in finite time! u

. . . . Fig. 3. Sets of trackable outputs dfA, B,C) with positive state
The above conclusions are biologically sensible. When staffere (4, B, C') are given by (15). The darker region {&/(1)), but

i > 1 is controlled then the structure of means that it is underestimates the set of possible outputs. The lighteomegiexactly the
not possible to remove individuals from the earlier stag@®t of trackable outputs dfd, 5, C') with positive state.

classes. Consequently the later stage clasges > i can

be steered to (these terms appeatdith), but also with a Example 4.7:Discrete time matrix models for the invasive
contribution from stages one to— 1. Wheni = 1 then it weedCirsium vulgare(spear thistle) in Nebraska, USA, are

follows that all stages are positive state reachable. considered in [19], and also [20, Section 3.1]. Here time-
steps correspond to years and a four stage model is used

What is most remarkable in the = e; case is that for with states one to four corresponding to the seed bank,
Leslie matrices, the paifA,b) is in fact fully positive small plants, medium plants and large plants respectively



(see [19]). The nominal uncontrolled system hagyiven then a more accurate model is
by N
0 0 fi fo z(t+1) = A(z(t) + bu(t)) = Az(t) + Abu(t), t € Ny,
st 0 f3 fa L
A= 0 sy s3 0 A7) and so we replacé = e, by Ab = [fo f1 0 sﬁ}T
0 s4 85 Sg Corollary 2.5 can be applied to check whether assumption
(A) holds for the pair(A, Ab). Of rows one, two and

with four (the nonzero rows ofib) the only possible candidate
51 =0.0077, s2=0.12, s3=0.11, s4=0.02, ‘smallest’ row of A (in the sense of (4)) is the first (as rows
s5 = 0.27, se =0.17, f1 =93.1, f,=423, (18) two and four have nonzero entries that are zero in the first
= = row). A straightforward calculation shows th@&) holds

fs =614, fa=306. with F = 7 = [00 fi/f 1] if, and only f,

As with Leslie matrices, the; denote survival and growth s s ~ B

parameters and thg; are reproductive values. We note fifs < fofs and fise < foss. (20)

that ass, > 0, small plants can grow into large plants . o )
in one year. Furthermoref, f, > 0 means that in a given Both of these conditions are satisfied for the parameters in

year both medium and large plants can produce seeds tt&8)- Therefore, ifF" = f =00 fi/f21] then
germinate and grow into small plants (in addition to seeds

that germinate the following year). 00 - Of 7 0
~ T S1 0 f3 — i
o A:=A— ApfT = J2 >0,
The uncontrolled population is unstable as the spectral 0 s9 S3 0
radius ofA is r(A) = 1.57 > 1. We first seek to reduce the 0 s4 5— fiss
weed population by using an additive management strategy, f2

so that the system is of the form (1). As a managemerihd hence positive state control for the péit, Ab) is
strategy we add or remove large plants so tHat b = es.  precisely positive input control for the pair, 4b). As the
When this action is performed (shortlppeforethe census fourth column of A is zero, we have that — eq is null

or measurement (so-called pre census) then the resultiggntrollable (in finite time) and as(A) = 0.1153 < 1,
model is well described by (1). Here assumpt{@&) holds every state is positive state null controllable in infinite
with F = f* the fourth row ofA so thatA := A—bf" is time. The above observations suggest that when control

given by L actions act on large weeds, organising these actions to take
0 0 Jil Ji2 place post census is preferable to pre census. This is not
A= |51 0 fs Jfa _ biologically surprising because, loosely speaking, thetfo
0 s2 s3 O stage class is the most reproductive and the post census
00 0 0 control strategy limits to a greater extent reproduction in

As A* has no zero columns for any € N we see that this stage class.

no state is null controllable in finite time. HerdA) = ina)y suppose that the state of (1) is unknown and instead
1.0024 > 1 and althoughA is not primitive (or even

; . < ; . .. _only access to some output is available for making
irreducible),r(A) is a simple eigenvalue and the following management decisions and we seek to regulate this output

limit holds ~ to some chosen reference. We use the low-gain PI controller
i Ak vl 19 0
Pl (T(A))kxo T oTw (19) z(t+1) = Az(t) + Bu(t), z(0) =z
y(t) = Cz(t

where v and w are left and right eigenvectors of

corresponding ta(A) respectively (which are both positive

once positively scaled and satisfy w # 0). Whenzg > 0 - K

and zo # 0 the right hand side of (19) is positive and u(t) = —ky(t) + sat (z (¢

hence there are no non-trivial states that are positive stat

null controllable in infinite time. Equivalently, the neget for ¢ € No, where £, K € C™*™ and k,g > 0 are

control u(t) = —fTz(t) does notstabilise any nonzero matrix and scalar gains respectively and is the diagonal

initial population. Furthermore, the characterisationnir saturation nonlinearity, saturating at both zero and some

Theorem 2.6 shows that this systerannotbe stabilised chosen upper limitd/;. It is well-known that PI control of

by positive state control. MIMO systems subject to a saturating input can suffer from
so-called activator saturation or integrator windup [24dl a

If instead the control action is in fact performed (shortly}he termFE in (21) is a static anti-windup component. Anti-

after the census or measurement (so called post censugjndup controllers are well studied and we refer the reader



to [22] for an overview. The system (21) is considered in[3]
[16] where it is proven that under the following assumptions

Ay == A—kBC >0, r(4;) <1, 0(KGps 5(1) CCT, [
(C{ the open right half complex plane) and choice of

E =gKG(1), (5]
then there existg* > 0 such that for allg € (0,¢*), all
re(Goa, (1) withr <Gz (1)U and all(z?,2?) € 6]

R} xR, the outputy of (21) converges te and moreover
the stater remains nonnegative.

As a demonstration of the theory, we apply the above resul’!
to A given by (17)-(18), withB and C' given by

100 0 1 00110 8]
B_[O 0 1 0]’ C_[O 00 1}’ (22)

andg = 0.1,k = 0.11, K = G_', (1), seeking to control
k
an initial population distribution with|z°||; = 10° to

10
_ [p002002) _ 025 ol
| 55994 | TCAB 0.5 [11]
The results are plotted in Figure 4.
[12]
Saturated inputs 1 States
¢ [13]
s 10'N
z, :1039\
En e 10 [14]
Oy\k_“ 10!
710 50 100 1?0 200 250 300 muﬂ 50 10; 1?& - 72;0‘ - 72;07 - ;OO
[15]
Outputs Back calculation error
1200, 3.
1000 3
200 2.5 [16]
\:; 600 ‘:; i
= * 1.5]
400 1
200 0.5] [17]
% 50 100 1?0 200 250 300 0 50 100 1§0 200 250 300 [18]
. . . [19]
Fig. 4. Low-gain PI control (21) applied to the weed model (1Z8) and
(22). The outputs converge to the chosen refereneehilst maintaining
nonnegativity of the state. The backtracking erroeis- sat (z.) — xc.
Note the semi-log scale on the state plot. [20]
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