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Controllability for positive discrete–time linear systems with positive state*

Chris Guiver1 and Stuart Townley1

Abstract— Controllability of componentwise nonnegative
discrete-time linear systems is considered. The key difference
here from the well-established positive systems theory is
that we permit the case where the input takes negative
values, provided that the state remains nonnegative. Such a
framework is very natural, moreover necessary, in situations
such as population ecology to describe the control actions of
harvesting or culling. The present contribution summarises
recently published material by the authors and considers a
novel application in low-gain PI control.

I. I NTRODUCTION

Controllability is a fundamental concept in control theory
and the formulation used presently dates back to Kalman
[1]. For finite-dimensional, linear, time-invariant, continu-
ous time systems the notions of reachability, controllability
and null controllability are all equivalent. When theA
operator in (1) is invertible then the same is true for discrete-
time systems. As is well-known, part of their appeal lies in
the interplay between analytic and algebraic concepts. For
instance, the existence of a control steering the system to a
desired state is equivalent to the reachability matrix having
full rank.

In many physically motivated systems the state and input
variables cannot take negative values, for example, drug
ingestion and metabolism. Componentwise nonnegativity is
a property that, somewhat problematically, is nota priori
respected by controllability in its most general form. The
need to understand controllability for such systems, and of
course other similar concepts, motivated the development
of positive systems theory and there now exist several
textbooks on the subject (for example, [2]–[5]). Naturally,
controllability, that ispositive input controllability, in such
a framework is more limited than the general case, but the
situation is well understood ([6], [7] and the references
therein). A key feature of positive systems theory is the
notion that both the state and the input variables must be
nonnegative.

Here we present recently published results [8] pertaining to
the controllability of the discrete-time linear system

x(t+ 1) = Ax(t) +Bu(t) , x(0) = x0 , t ∈ N0 , (1)
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whereA, B andx0 are componentwise nonnegative under
the constraint that just the state must remain nonnegative.
We denote such a framework in [8] aspositive state control-
lability and our primary example of where this framework
is necessary is population ecology. Here matrix models
are often used (see, for example, Caswell [9] or Cushing
[10]) with the nonnegative statex denoting a stage- or
age-structured population, and the controlu denoting a
conservation strategy or a form of pest control or harvesting.
There are many papers (including, for example, [11]-[14])
where the model (1) is suitable for describing the addition
or removal of individuals from a population and for a full
description of these actions we require thatu can take
negative values.

We present a selection of results from [8], without proof,
that demonstrate that under a certain assumption, the prob-
lem of positive state controllability is equivalent to positive
input controllability of a related positive system. We refer
the reader to [8] for proofs of these results. We present two
examples from population ecology that seek to a) highlight
the possible uses of the theory and b) demonstrate the seem-
ingly non-trivial ‘middle ground’ between positive state
and positive input controllability of positive linear systems.
Novel to this contribution, we also consider the implications
of positive state control in describing which nonnegative
reference vectors are candidate asymptotic outputs of the
system

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t) ,

}

t ∈ N0 , (2)

whereA is Schur (that is, stable). The motivation for such
a result is in PI control of MIMO positive state systems,
for regulating the output of (2) to a desired reference. PI
control has recently been suggested as a possible tool for
population management [15] in the case of SISO systems.
Proofs of these later results are in preparation [16].

II. POSITIVE STATE CONTROLLABILITY

A. Definitions

For n ∈ N, Rn
+ denotes the nonnegative orthant inRn and

ei ∈ Rn is the ith standard basis vector. For vectorsx and
matricesX, x ≥ 0 (also 0 ≤ x) and X ≥ 0 (also 0 ≤
X) denotes componentwise nonnegativity. The superscript
T denotes matrix transposition. For nonnegative vectors



x1, x2, . . . , xk ∈ Rn
+ we let〈x1, x2, . . . , xk〉+ ⊆ Rn

+ denote
their nonnegative linear span. For nonnegative matrices
X1, X2, . . . , Xk ∈ Rn×n

+ we let 〈X1, X2, . . . , Xk〉+ ⊆ Rn
+

denote the nonnegative linear span of their columns.

We are interested in the pair(A,B) ∈ Rn×n × Rn×m

generating the controlled system (1) whereA,B ≥ 0 and
the statex is nonnegative. In order to formalise reachability
and null controllability, both with nonnonegative state, we
introduce the following definitions.

Definition 2.1: Given the pair(A,B) ∈ Rn×n×Rn×m with
A,B ≥ 0, we say thatxT ∈ Rn

+ is positive state reachable
in finite time if there exists a control sequence that steers the
statex of (A,B) from 0 to xT in N steps and additionally
maintains nonnegativity ofx. The collection of all such
xT ∈ Rn

+ is called the positive state reachable set (in finite
time). We say that(A,B) is positive state reachable in finite
time if this set isRn

+.

We note that the positive state reachable set is a convex cone
of the linear spaceRn overR, and not a linear subspace.

Definition 2.2: Given the pair(A,B) ∈ Rn×n × Rn×m

with A,B ≥ 0, we say thatx0 ∈ Rn
+ is positive state null

controllable in finite time if there exists a control sequence
that steers the statex of (A,B) from x0 to 0 in N steps and
additionally maintains nonnegativity ofx. The collection of
all suchx0 ∈ Rn

+ is called the positive state null controllable
set (in finite time). We say that(A,B) is positive state null
controllable in finite time if this set isRn

+.

As the underlying system (1) is linear, the natural notion
of positive state controllability is (more or less) the combi-
nation of positive state reachability and positive state null
controllability, and is addressed in [8].

B. Results

Theorem 2.6 provides a recipe (under a certain assumption)
for describing the positive state reachable set and set of
positive state null controllable states by relating nonnegative
state trajectories with possibly nonpositive inputs of thepair
(A,B) to nonnegative state trajectories with nonnegative
inputs of a related system. Our key assumption is the
following:

(A) Given the pair(A,B) ∈ Rn×n ×Rn×m with A,B ≥ 0
there existsF ∈ Rm×n such that withÃ := A−BF both
Ã ≥ 0 and if v ∈ Rn

+, w ∈ Rm satisfy Ãv + Bw ≥ 0 then
w ≥ 0.

The idea of assumption(A) is that, roughly speaking, the
quantity that can be removed from the statex(t) by the
input u(t), while keeping the statex(t + 1) nonnegative,
is proportional tox(t) itself; “you cannot take away what

is not there”. Such a notion is one of state feedback, and
note isnot the case for positive input control. There adding
a nonnegative quantity to something already nonnegative
can only make things larger. By decomposingA into Ã +
BF , then negative controlsu in Ax+Bu can be absorbed
as Ãx + B(Fx + u). Lemma 2.3 provides a constructive
characterisation of assumption(A) and demonstrates that
(A) holds if, and only if,(A) holds for a specifiedF that
can be computed.

Lemma 2.3:Assumption(A) holds for (A,B) ∈ Rn×n ×
Rn×m with A,B ≥ 0 if, and only if, there existm rows of
B such that them ×m submatrix, denotedB, formed by
taking thesem rows fromB is a positive monomial matrix
and

A−BB−1A ≥ 0 . (3)

Here A is formed of them rows of A that appear inB.
Consequently,(A) holds if, and only if, it holds withF =
B−1A so thatÃ := A−BF ≥ 0.

Remark 2.4: (i) We comment here that(A) holds forany
A ≥ 0 in the single input caseB = b = ciei,
ci > 0 and the corresponding multiple input version
case whenB is a combination ofei, that is, B =
[ci1ei1 , . . . , cimeim ] for positive cik . These two cases
are arguably the most important for applications.

(ii) Lemma 2.3 provides an algorithm for checking as-
sumption(A). First, we see thatB containing anm×m

monomial submatrix is necessary for(A). Second,
there are then only finitely manyB (formed from the
monomial rows ofB) to check whether(A) holds by
verifying whetherA−BB−1A ≥ 0.

The following corollary interprets Lemma 2.3 in the single
input case.

Corollary 2.5: Let A ≥ 0 with ith row denoted byri and
B = b be given by

b =

n
∑

k=1

cikeik with cik > 0 .

Assumption(A) holds for(A, b) if, and only if, there exists
ik ∈ {i1, . . . , in} such that

rij −
cijrik

cik
≥ 0, ∀ ij ∈ {i1, . . . , in} , (4)

and in this caseF = fT =
rik
cik

, whereik is as in (4).

Theorem 2.6:Let the pair (A,B) satisfy (A) and denote
Ã := A−BF . The state trajectories of(A,B) from initial
state x0 ∈ Rn

+ with nonnegative state are precisely the
state trajectories of(Ã, B) from initial statex0 ∈ Rn

+ with
nonnegative control.



With the above characterisation we obtain the following
corollaries by appealing to existing positive input results,
for instance [6, pp. 41–42, Proposition 1, Proposition 2].

Corollary 2.7: Let the pair(A,B) satisfy(A). The positive
state reachable set of the pair(A,B) in finite time is
precisely

⋃

N∈N

〈B, ÃB, . . . , ÃN−1B〉+ , (5)

whereÃ is as in(A). The positive state reachable set of the
pair (A,B) in infinite time is precisely

⋃

N∈N

〈B, ÃB, . . . , ÃN−1B〉+ . (6)

Remark 2.8: (i) For standard reachability of single-input
systems(A,B) the Cayley-Hamilton Theorem implies
that every reachable state is reachable in at mostn

steps, wheren is the dimension ofA. It is known ([6,
p. 42]) that this is not the case for positive systems,
and by Corollary 2.7 we see that the same is true
for positive state reachability. Example 4.2 contains
a pair(A,B) that is positive state reachable, but only
in infinite time.

(ii) Clearly, classical positive input reachability of the
nonnegative pair(A,B) pair implies positive state
reachability of(A,B). This is apparent from Corollary
2.7 as for eachN ∈ N

〈B,AB, . . . , AN−1B〉+ ⊆ 〈B, ÃB, . . . , ÃN−1B〉+ .

Example 4.5 contains a pair(A,B) where the above
inclusion is strict.

Corollary 2.9: Let the pair(A,B) satisfy(A). The positive
state null controllable set of the pair(A,B) in finite time
is precisely

Rn
+ ∩ ker Ãn. (7)

The set of positive null controllable states in infinite time
is precisely

Rn
+ ∩ (ker Ãn + E(Ã)), (8)

whereE(Ã) is the sum of (generalised) eigenspaces cor-
responding to the stable eigenvalues ofÃ (that is, the
eigenvaluesλ of Ã with |λ| < 1).

Remark 2.10:It is important to note that givenA,B ≥ 0,
when A = Ã + BF with Ã, F ≥ 0 then, even with-
out assumption(A), every state trajectory of(Ã, B) with
nonnegative controlis a state trajectory of(A,B) with
nonnegative state (this is one of the implications in Theorem
2.6). Consequently, the positive input reachable set of the
pair (Ã, B) is a subsetof the positive state reachable set of
the pair(A,B). Although not giving the complete picture
of positive state control, this connection can be used as
an intermediate stage between positive state control and

positive input control and is sometimes sufficient to fully
describe positive state control, as illustrated in Example4.3.

III. POSITIVE OUTPUTS WITH POSITIVE STATE

Here we consider the outputsy of the input-state-output
system (2) specified byA ∈ Rn×n, B ∈ Rn×m, C ∈
Rm×n, with A,B,C ≥ 0. Assuming thatr(A) < 1 (that is,
A is Schur) then it is well-known that

lim
t→∞

y(t) = G(1) lim
t→∞

u(t) ,

whereG is the transfer function of the triple(A,B,C).
If G(1) is invertible then for the output to aymptotically
track a prescribed referencer then obviouslyu ≡ G−1(1)r
is a suitable input (or limit of an input). Since it is not
clear thatG−1(1)r ≥ 0 for generalr ∈ Rm

+ , we thus
seek to describe which nonnegative referencesr can be
tracked asymptotically whilst preserving nonnegativity of
the state? These results are motivated by a desire to describe
PI control for MIMO positive state systems, with suggested
applications in population management [15]. a manuscript
containing proofs of these results is in preparation [16]. We
introduce some notation.

Definition 3.1: For (A,B,C) ∈ Rn×n × Rn×m × Rm×n,
we say thatr ∈ Rp is trackableif there exists a convergent
input u such that the outputy of (2) has limitr. Supposing
further thatA,B,C ≥ 0, we say thatr ∈ Rp

+ is trackable
with positive stateif r is trackable and moreover the state
x(t) of (2) is componentwise nonnegative for everyt ∈ N0.
We call the set of suchr the set of trackable outputs of
(A,B,C) with positive state.

Lemma 3.2:Suppose that(A,B,C) ∈ Rn×n × Rn×m ×
Rm×n with A,B,C ≥ 0 and r(A) < 1. Then for each
F ∈ Rn×m

+ such thatÃ := A − BF ≥ 0, it follows
that GCÃB(1) = C(I − Ã)−1B ≥ 0 and the set of
trackable outputs of(A,B,C) with positive state contains
〈GCÃB(1)〉+.

When the(A,B) component of (2) satisfy(A) then we can
say more.

Lemma 3.3:Using the notation and assumptions of Lemma
3.2, if additionally(A,B) satisfy assumption(A) then the
set of trackable outputs of(A,B,C) with positive state is
precisely equal to〈GCÃB(1)〉+.

The next result provides a recipe for enlarging the guar-
anteed set of possible trackable outputs with positive state,
particularly in the case that assumption(A) fails.

Lemma 3.4:Using the notation and assumptions of Lemma
3.2, for eachF ∈ Rn×m, F ≥ 0 such thatÃ := A−BF ≥
0 it follows that 〈GCAB(1)〉+ ⊆ 〈GCÃB(1)〉+ .



Remark 3.5: (i) Lemma 3.3 demonstrates that, under as-
sumption (A), the largest possible set for tracking
with positive state is〈GCÃB(1)〉+, whereÃ is as in
assumption(A).

(ii) A straightforward adjustment to the proof of Lemma
3.4 demonstrates that the sets〈GCAB(1)〉+ have a
monotonically decreasing nested structure with respect
to the partial ordering of componentwise nonnegativity
on A, in that

0 ≤ A1 ≤ A2 ⇒ 〈GCA2B(1)〉+ ⊆ 〈GCA1B(1)〉+ .

Therefore, the largest possible trackable set with pos-
itive state over all nonnegativeA is equal to〈CB〉+
and is attained whenA = 0.

IV. EXAMPLES

Example 4.1: Checking assumption(A): Consider the sys-
tems

(a) A1 =





2 1 2
0 3 4
1 1 2



 , b =





1
0
1



 ,

(b) A2 =





2 1 2
0 3 4
1 1 3



 , b =





1
0
1



 ,

(c) A3 =





2 1 2
0 3 4
1 1 2



 , B =





1 0
0 1
1

2
0



 .

Assumption(A) holds in (a), fails in (b) and holds in(c).
We proceed to prove these claims. For(a), if we takefT

1 :=
[

1 1 2
]

so that

Ã1 := A1 − bfT
1 =





1 0 0
0 3 4
0 0 0



 , (9)

then wheneverv ∈ Rn
+, w ∈ R are such that̃A1v+ bw ≥ 0,

by inspection of the third component we see thatw ≥ 0,
which by definition is(A). Alternatively, with i1 = 1 and
i2 = 3 we compute

r1 − r3 =
[

2 1 2
]

−
[

1 1 2
]

=
[

1 0 0
]

≥ 0 .

Thus Corollary 2.5 applies withik = i2 = 3, so thatf1 =
[

1 2 2
]

, as in (9). However, repeating this process in(b)
gives

r1 − r3 =
[

2 1 2
]

−
[

1 1 3
]

=
[

1 0 −1
]

� 0 ,

and also thatr3 − r1 � 0 . We conclude from Corollary
2.5 that(A) does not hold for(b). For (c) we note thatB
contains two2× 2 positive monomial submatrices

B1 =

[

1 0
0 1

]

and B2 =

[

0 1
1

2
0

]

.

formed from rows one and two, and rows two and three of
B respectively. Taking the corresponding submatrices from
A3 gives

A1 =

[

2 1 2
0 3 4

]

and A2 =

[

0 3 4
1 1 2

]

,

from which we compute

A3 −BB−1
1 A1 =





0 0 0
0 0 0
0 1

2
1



 ≥ 0 ,

and A3 −BB−1
2 A2 =





0 −1 −2
0 0 0
0 0 0



 � 0 .

We conclude that(A) holds for (c) with F = [ 2 1 2
0 3 4 ].

Example 4.2: Reachability in infinite time:Consider the3×
3 nonnegative matrix and control vector

A =





a1 1 0
0 a1 1
0 0 a2



 , b = e3 ,

with 1 > a1 > 0 and a2 ≥ 0. By Corollary 2.5 it follows
that (A) applies to the pair(A, b) with F = fT the third
row of A. A calculation shows that̃Ab = e2 and fork ≥ 2

Ãkb =
[

(k − 1)ak−2
1 ak−1

1 0
]T

. (10)

The positive state reachable set ink + 1 steps is all
nonnegative linear combinations of these vectors, which
here is strictly increasing with increasingk and notedoes
not includee1 for finite k. However, by noting that fork ≥ 2

1

(k − 1)ak−2
1

· Ãkb =
[

1 a1

k−2
0
]T

→ e1 ,

as k → ∞, it follows that the pair(A, b) is positive state
reachable in infinite time.

Example 4.3: Positive state reachability without(A): Con-
sider the pairA = [ 2 1

1 2 ], B = [ 1 1
1 0 ] with

〈B,AB〉+ =

〈[

1 1
1 0

]

,

[

3 2
3 1

]〉

+

. (11)

An induction argument shows that the positive input reach-
able space is〈e1, e1 + e2〉+; the areaR in Figure 1. The

x1

x2

R

e1 + e2

Fig. 1. Positive input reachable set (depictedR) of the pair(A,B) in
(11).



pair (A,B) in this example do not satisfy assumption(A)
(asB contains no2× 2 monomial submatrices). However,
takingF = B gives

Ã := A−BF = A−B2 =

[

0 0
0 1

]

≥ 0 ,

and so the positive state reachable set contains

〈B, ÃB〉+ =

〈[

1 1
1 0

]

,

[

0 0
1 0

]〉

+

= R2
+ .

We conclude that, although assumption(A) does not hold,
the pair(A,B) is positive state reachable in finite time. Note
that in this instance the choiceF = B is in no sense unique;
the same conclusions are reached for the pair(A,B) with
F = [ 1 0

1 1 ] as hereÃ = A−BF = [ 0 0
0 2 ] ≥ 0.

Notwithstanding the above, it is true that ifF1 ≥ F2 then
Ã1 := A−BF1 ≤ A−BF2 =: Ã2 and thus for eachk ∈ N

〈B, Ã2B, . . . , Ãk
2B〉+ ⊆ 〈B, Ã1B, . . . , Ãk

1B〉+ .

Consequently, to describe positive state control for a pair
(A,B) when assumption(A) fails, the above suggests
consideringÃ := A − BF , whereF is chosen as (com-
ponentwise) large as possible so thatÃ ≥ 0. Such a
process can simplify calculations considerably. For example,
consider the pairA =

[

2 1 1
1 3 1
1 1 4

]

andB =
[

1 1
1 0
1 0

]

with

〈B,AB,A2B〉+ =

〈





1 1 4 2 19 6
1 0 5 1 25 6
1 0 6 1 33 7





〉

+

. (12)

ChoosingF = BT gives Ã := A − BF =
[

0 0 0
0 2 0
0 0 3

]

≥ 0 so
that

〈B, ÃB, Ã2B〉+ =

〈





1 1 0 0 0 0
1 0 2 0 4 0
1 0 3 0 9 0





〉

+

. (13)

We see by inspection of columns two and three in the
matrices of the right hand sides of (12) and (13) that in this
example the difference between positive state control and
positive input control is that in the former the directionse1
and2e2 + 3e3 have been ‘decoupled’.

Example 4.4: Positive state null controllability:From
Corollary 2.9 it follows that for a pair(A,B) satisfying
(A), ei is positive state null controllable ink steps if, and
only if, Ãk hasith column zero.

Example 4.5: Positive state controllability for Leslie matri-
ces: We recall that ann × n Leslie [17] matrix has the
following structure

A =

















f1 f2 . . . . . . fn
s1 0 . . . 0

0 s2 0
...

...
. . .

. . .
0 . . . 0 sn−1 0

















, (14)

which models a population partitioned into discrete, increas-
ing age-stages. Correspondingly,fi ≥ 0 denote reproductive
rates andsi ≥ 0 denote survival rates, the latter as
proportions are each no greater than one. For ecologically
meaningful models [18], we shall always assume that the
Leslie matrix (14) hass1, . . . , sn−1 > 0, f1, . . . , fn ≥ 0
and there exists at least onei ∈ {1, 2, . . . , n} such that
fi > 0. Noting that then× n positive diagonal matrix

T = diag

(

1,
1

s 1

,
1

s1s2
, . . . ,

1

s1 . . . sn−1

)

,

hasT−1 ≥ 0 for single input positive state controllability
with b = ei it is sufficient to consider the similarity
transformed pair(T−1AT, T−1b). This is becauseT−1AT

has the same structure asA with ones on the subdiagonal
and top row with entrieŝfi > 0 (which we abuse notation
and write asfi) andT−1ei = ciei, for someci > 0. Conse-
quently, when considering controllability with positive state
there is no loss of generality in assuming that a Leslie matrix
hassj = 1 for eachj.

We consider the (transformed) pair(A, b) and single input
b = ej , j ∈ {1, 2, . . . , n}. Assumption (A) is always
satisfied for such a pair, withF = fT the jth row of A.

When j = 1 so thatb = e1 it follows that Ã is nilpotent
with Ãn = 0. The positive state reachable set is therefore

〈b, Ãb, . . . Ãn−1b〉+ = 〈e1, e2, . . . , en〉+ = Rn
+ ,

and by Corollary 2.7 the pair(A, b) is positive state reach-
able. Furthermore,

Ãn = 0, ⇒ Rn
+ ∩ ker Ãn = Rn

+ ,

and so the pair(A, b) is positive state null controllable.
In this very special case it follows that positive state con-
trollability and standard controllability coincide: the unique
control u that steersx between any two nonnegative states
in n steps is such that the state remains inRn

+. Such a
control can take negative values and thus is not permitted
in a positive input framework.

For example, consider the pairA = [ 2 2
1 0 ], b = e1. Trivially

e1 is reachable from zero with positive state in one step and
the controlu(0) = 1, u(1) = −2 steers the state from zero
to e2 in two steps. The resulting state trajectories are plotted
in Figure 2(a). By taking suitable linear combinations of
these inputs all ofR2

+ can be reached with nonnegative
state. If we restrict attention to(A, b) with only positive
inputs, then the positive input reachable space is spanned
by b = e1 andAb = 2e1 + e2, and is depicted in Figure
2(b): note that not all ofR2

+ is reachable. Even in this very
simple example there is a difference between positive state
controllability and classical positive input controllability.

For b = ej , j > 1 the situation is somewhat different.
Assumption(A) holds withF = fT the jth row of A and



x1

x2

x(1)

x(2)

(a)

x1

x2

b

Ab

ww

(b)

Fig. 2. (a) Positive state trajectories steering the state of (A, b) to e1
ande2 respectively. (b) The positive input reachable space of thepositive
system(A, b) is the area between the dashed vectorsb andAb = 2e1+e2.
The dotted linew is parallel tolimk→∞ Akb and so here the positive input
reachable set is not all ofR2

+
but is attained in finite time.

we note that the characteristic polynomial ofÃ is given by

tn −

j−1
∑

k=1

fkt
n−k ,

which follows easily from, for example, the expression on
[5, p. 121]. Consequently, by [8, Lemma 2.12] the positive
state reachable set of the pair(A, b) is achieved in finite
time; indeed, inn steps. However, the pair(A, b) is not, in
general, positive state reachable. In the casen = 3 andb =
e2 the positive state reachable set in finite time is contained
in

〈b, Ãb, Ã2b〉+ =

〈





0
1
0



 ,





f2
0
1



 ,





f3 + f1f2
0
0





〉

+

.

If f2 > 0 then e3 cannot be steered to whilst maintaining
nonnegative state (in finite time), but the vectorse1 ande2
can (in the former case provided thatf1f2 + f3 > 0). For
positive state null controllability we see that

Ã2 =





f2
1 f1f2 + f3 f1f3
0 0 0
0 0 0



 , Ã3 = f1Ã
2
1 .

The important term here isf1, reproduction of individuals
in the first stage class. Iff1 = 0 thenÃ3 = 0 and so every
state can be steered to zero with nonnegative state. However,
if f1, f2, f3 > 0 then the top row ofÃ3 is positive and thus
there are no nontrivial positive state null controllable states
in finite time!

The above conclusions are biologically sensible. When state
i > 1 is controlled then the structure ofA means that it is
not possible to remove individuals from the earlier stage
classes. Consequently the later stage classesej , j > i can
be steered to (these terms appear inÃjb), but also with a
contribution from stages one toi − 1. When i = 1 then it
follows that all stages are positive state reachable.

What is most remarkable in theb = e1 case is that for
Leslie matrices, the pair(A, b) is in fact fully positive

state controllable; that the state can transition between any
two nonnegative states (including zero) whilst remaining
in Rn

+! Leslie matrices of course have a very simple
structure, but already the results presented here demonstrate
the differences that arise between positive state control and
positive input control.

Example 4.6: Positive outputs with positive state:Consider
the input-state-ouput system (2) specified by the triple:

A =

[

0.7 1.2
0.2 0

]

, B =

[

1 0
0 0.25

]

, C =

[

1 1
0 1

]

. (15)

Note thatA is a Leslie matrix withr(A) = 0.9521 < 1
and that in the context of a population model, the first and
second observations are total abundance and abundance of
the second stage class, respectively. Intuitively, when the
statex is nonnegative theny1(t) ≥ y2(t) for eacht ∈ N.
By Lemma 3.2, the set of trackable outputs of(A,B,C)
with positive state contains

〈G(1)〉+ =

〈[

20 25

4
10

3

5

4

]〉

+

=

〈[

48 15
8 3

]〉

+

, (16)

which is the darker region graphed in Figure 3. However, we
note that(A,B) satisfy assumption(A) with F = [ 0.7 1.2

0.8 0 ],
so thatÃ := A−BF = 0. Thus, by Corollary 3.3, it follows
that the set of trackable outputs of(A,B,C) with positive
state is equal to

〈GCÃB(1)〉+ = 〈CB〉+ =

〈[

1 1

4

0 1

4

]〉

+

,

which is the lighter region sketched in Figure 3, and is much
‘larger’, than that in (16). Indeed, we could not expect the
region to be any larger, as then the inequalityy1(t) ≥ y2(t)
would be violated.

Fig. 3. Sets of trackable outputs of(A,B,C) with positive state
where (A,B,C) are given by (15). The darker region is〈G(1)〉+, but
underestimates the set of possible outputs. The lighter region is exactly the
set of trackable outputs of(A,B,C) with positive state.

Example 4.7:Discrete time matrix models for the invasive
weedCirsium vulgare(spear thistle) in Nebraska, USA, are
considered in [19], and also [20, Section 3.1]. Here time-
steps correspond to years and a four stage model is used
with states one to four corresponding to the seed bank,
small plants, medium plants and large plants respectively



(see [19]). The nominal uncontrolled system hasA given
by

A =









0 0 f̃1 f̃2
s1 0 f̃3 f̃4
0 s2 s3 0
0 s4 s5 s6









, (17)

with

s1 = 0.0077, s2 = 0.12, s3 = 0.11 , s4 = 0.02,

s5 = 0.27, s6 = 0.17, f̃1 = 93.1, f̃2 = 423 ,

f̃3 = 6.74, f̃4 = 30.6 .

(18)

As with Leslie matrices, thesi denote survival and growth
parameters and thẽfi are reproductive values. We note
that ass4 > 0, small plants can grow into large plants
in one year. Furthermore,̃f3, f̃4 > 0 means that in a given
year both medium and large plants can produce seeds that
germinate and grow into small plants (in addition to seeds
that germinate the following year).

The uncontrolled population is unstable as the spectral
radius ofA is r(A) = 1.57 > 1. We first seek to reduce the
weed population by using an additive management strategy,
so that the system is of the form (1). As a management
strategy we add or remove large plants so thatB = b = e4.
When this action is performed (shortly)before the census
or measurement (so-called pre census) then the resulting
model is well described by (1). Here assumption(A) holds
with F = fT the fourth row ofA so thatÃ := A− bfT is
given by

Ã =









0 0 f̃1 f̃2
s1 0 f̃3 f̃4
0 s2 s3 0
0 0 0 0









.

As Ãk has no zero columns for anyk ∈ N we see that
no state is null controllable in finite time. Herer(Ã) =
1.0024 > 1 and althoughÃ is not primitive (or even
irreducible),r(Ã) is a simple eigenvalue and the following
limit holds

lim
k→∞

Ãk

(r(Ã))k
x0 =

vTx0

vTw
w , (19)

where vT and w are left and right eigenvectors of̃A
corresponding tor(Ã) respectively (which are both positive
once positively scaled and satisfyvTw 6= 0). Whenx0 ≥ 0
and x0 6= 0 the right hand side of (19) is positive and
hence there are no non-trivial states that are positive state
null controllable in infinite time. Equivalently, the negative
control u(t) = −fTx(t) does notstabilise any nonzero
initial population. Furthermore, the characterisation from
Theorem 2.6 shows that this systemcannot be stabilised
by positive state control.

If instead the control action is in fact performed (shortly)
after the census or measurement (so called post census),

then a more accurate model is

x(t+ 1) = A(x(t) + bu(t)) = Ax(t) +Abu(t), t ∈ N0 ,

and so we replaceb = e4 by Ab =
[

f̃2 f̃4 0 s6
]T

.
Corollary 2.5 can be applied to check whether assumption
(A) holds for the pair(A,Ab). Of rows one, two and
four (the nonzero rows ofAb) the only possible candidate
‘smallest’ row ofA (in the sense of (4)) is the first (as rows
two and four have nonzero entries that are zero in the first
row). A straightforward calculation shows that(A) holds
with F = fT = [ 0 0 f̃1/f̃2 1 ] if, and only if,

f̃1f̃4 ≤ f̃2f̃3 and f̃1s6 ≤ f̃2s5 . (20)

Both of these conditions are satisfied for the parameters in
(18). Therefore, ifF = fT = [ 0 0 f̃1/f̃2 1 ] then

Ã := A−AbfT =











0 0 0 0

s1 0 f̃3 −
f̃1f̃4
f̃2

0

0 s2 s3 0

0 s4 s5 −
f̃1s6
f̃2

0











≥ 0 ,

and hence positive state control for the pair(A,Ab) is
precisely positive input control for the pair(Ã, Ab). As the
fourth column ofÃ is zero, we have thatx = e4 is null
controllable (in finite time) and asr(Ã) = 0.1153 < 1,
every state is positive state null controllable in infinite
time. The above observations suggest that when control
actions act on large weeds, organising these actions to take
place post census is preferable to pre census. This is not
biologically surprising because, loosely speaking, the fourth
stage class is the most reproductive and the post census
control strategy limits to a greater extent reproduction in
this stage class.

Finally, suppose that the state of (1) is unknown and instead
only access to some outputy is available for making
management decisions and we seek to regulate this output
to some chosen reference. We use the low-gain PI controller

x(t+ 1) = Ax(t) +Bu(t) , x(0) = x0

y(t) = Cx(t) ,

xc(t+ 1) = xc(t) + gK(r − y(t))

− E(xc(t)− sat xc(t)) , xc(0) = x0
c

u(t) = −ky(t) + sat (xc(t)) ,































(21)

for t ∈ N0, where E,K ∈ Cm×m and k, g > 0 are
matrix and scalar gains respectively andsat is the diagonal
saturation nonlinearity, saturating at both zero and some
chosen upper limitsUi. It is well-known that PI control of
MIMO systems subject to a saturating input can suffer from
so-called activator saturation or integrator windup [21] and
the termE in (21) is a static anti-windup component. Anti-
windup controllers are well studied and we refer the reader



to [22] for an overview. The system (21) is considered in
[16] where it is proven that under the following assumptions

Ãk := A−kBC ≥ 0, r(Ãk) < 1 , σ(KGCÃkB
(1)) ⊆ C+

0 ,

(C+
0 the open right half complex plane) and choice of

E = gKG(1) ,

then there existsg∗ > 0 such that for allg ∈ (0, g∗), all
r ∈ 〈GCÃkB

(1)〉+ with r ≤ GCÃkB
(1)U and all(x0, x0

c) ∈
Rn

+×Rm
+ , the outputy of (21) converges tor and moreover

the statex remains nonnegative.

As a demonstration of the theory, we apply the above result
to A given by (17)–(18), withB andC given by

B =

[

0 0 0 1
0 0 1 0

]

, C =

[

0 1 1 0
0 0 0 1

]

, (22)

andg = 0.1, k = 0.11, K = G−1

CÃkB
(1), seeking to control

an initial population distribution with‖x0‖1 = 105 to

r =

[

209.1902
5.5994

]

= GCÃkB
(1)

[

0.25
0.5

]

.

The results are plotted in Figure 4.
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Fig. 4. Low-gain PI control (21) applied to the weed model (17), (18) and
(22). The outputs converge to the chosen referencer whilst maintaining
nonnegativity of the state. The backtracking error ise = sat (xc) − xc.
Note the semi-log scale on the state plot.
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