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Non-linear quantum-classical 
scheme to simulate non-
equilibrium strongly correlated 
fermionic many-body dynamics
J. M. Kreula1, S. R. Clark2,3 & D. Jaksch1,4

We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of 
strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic 
limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a 
digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to 
self-consistency via a classically computed feedback loop where quantum gate errors can be partly 
accounted for. We analyse the performance of the scheme in an example case.

Next generation scalable quantum devices1,2 promise a step change in our ability to do computations. Direct 
quantum simulation3–5 using highly controllable quantum systems6–8 has already led to numerous insights into 
many-body quantum physics, despite limitations in the size of the simulated system.

Recently, quantum computer simulations of strongly correlated fermion models have been proposed9,10. We 
suggest a hybrid quantum-classical scheme to simulate non-equilibrium dynamics of the Hubbard model in a 
Bethe lattice directly in the thermodynamic limit. Our scheme implements the non-equilibrium extension of the 
well-established dynamical mean-field theory (DMFT) method (for extensive reviews of DMFT, see, e.g. refs 11 
and 12). Instead of the traditional all-classical method, the proposed scheme uses a digital quantum simulator 
to efficiently solve the DMFT impurity problem, the parameters of which are iterated to self-consistency via a 
classically computed feedback loop. This setup promises an exponential speed-up over the best currently-known 
Hamiltonian-based classical algorithms. We show how quantum gate errors can be partly accounted for in the 
feedback loop, improving simulation results. The scheme also avoids the sign problem in classical quantum Monte 
Carlo methods and works for all interaction strengths, unlike classical methods based on perturbation theory. 
Presently, non-equilibrium DMFT is one of the most promising methods to study time-dependent phenomena 
in high-dimensional correlated lattice models, and could thus be of interest for current efforts to develop scalable 
quantum technologies1,6,13,14. Examples of applications of non-equilibrium DMFT include the dielectric break-
down of Mott insulators15, damping of Bloch oscillations16, and thermalization after parameter quenches17,18.

Further to this, driven strongly correlated quantum materials are now being extensively investigated exper-
imentally. A large motivation for this is the possibility of manipulating correlated phases of matter with strong 
pulses of light, such as photodoping of Mott insulators19 or inducing superconductivity20. The underlying physical 
mechanisms are, however, still poorly understood. Even the dynamical behaviour of conceptually simple and 
commonly used quantum lattice models is yet not fully grasped. Solving these model systems could elucidate 
physical phenomena underlying currently unexplained experimental results. A standard example of this kind of 
idealised model for non-equilibrium problems is the time-dependent Hubbard Hamiltonian
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In this model, electrons with spin projections σ  = ↓ ,↑  move only between adjacent lattice sites i and j with 
timedependent ‘hopping’ energy v(t), where t denotes time. This process is described in the first sum, which is 
over all nearest-neighbour sites, with fermionic creation and annihilation operators σ

†ĉi ,  and σĉ j , , respectively. The 
electrons interact with Coulomb repulsion U(t) only if they occupy the same lattice site i, given in the latter term 
by the product of the number operators =↓ ↓ ↓

†^ ^ ^n c ci i i, , ,  and =↑ ↑ ↑
†^ ^ ^n c ci i i, , , .

This and similar models are extremely challenging to study numerically due to the exponential growth of the 
Hilbert space with system size. One thus often resorts to mean field approximations which typically consider only 
a single lattice site and replace interactions with its neighbourhood by a mean field Λ . This turns a linear quantum 
problem in an exponentially large Hilbert space into a much smaller but non-linear problem where Λ  needs to be 
determined self-consistently. Such mean field approximations become increasingly accurate with the number of 
nearest neighbours. A classic example of this approach is the Weiss theory of ferromagnetism21. For mean field 
theory to be applicable to strongly correlated Fermi systems in thermal equilibrium, the mean field Λ σ(t) has to be 
dynamical to account for correlations between interactions with the environment that are separated by t in time, 
as schematically shown in Fig. 1a,b.

This highly successful approach is called DMFT11. DMFT can be extended to non-equilibrium systems12 by 
letting Λ σ(t, t′ ), which is often called hybridization function, depend on two interaction times t and t′  explicitly. 
Note that non-local spatial fluctuations can be included in DMFT by going beyond the single-site approximation 
and considering a cluster of isolated sites22,23, but this is beyond the scope of this work.

In general, it is a complex task to determine Λ σ(t, t′ ) and the related local single-particle Green’s function 
′ = − ′σ σ σˆ ˆ†G t t i c t c t( , ) ( ) ( )  (where   is the time-ordering operator), describing the response of the many-body 

system after a localized removal and addition of a particle at times t  and t′. Commonly used numerical methods 
for solving the non-equilibrium DMFT problem include continuous-time quantum Monte Carlo, which suffers 
from a severe dynamical sign problem, and perturbation theory which can only address the weak and strong 
coupling regimes12.

In infinite dimensions, the system can also be explicitly mapped onto a single impurity Anderson model 
(SIAM)24

Figure 1. (a) In non-equilibrium DMFT a fermionic quantum lattice model is replaced by a single impurity site 
exchanging particles via a self-consistently determined time and spin dependent mean field Λ σ(t, t′ ). (b) This 
exchange of particles yields dynamical fluctuations of the impurity site occupation as a function of time shown 
here as |↑ 〉  →  |↓ ↑ 〉  →  |↓ 〉  → |vac〉 . The onsite interaction U energetically penalises the doubly occupied state |↓ ↑ 〉 . 
(c) The impurity-mean field interaction is mapped onto a SIAM with unitary evolution ′Û t t( , ). The energies of 
the non-interacting bath sites p are chosen =σ t( ) 0p  for t >  0 and their chemical potential is set μ =  0 in this 
work24. The impurity site exchanges fermions with time-dependent hybridization energies Vpσ(t). (d) Quantum-
classical hybrid simulation scheme: the SIAM dynamics for a given set of parameters Vpσ(t) is implemented on a 
quantum coprocessor and yields the impurity Green’s function Gσ(t, t′ ). The classical non-linear feedback loop 
takes Gσ(t, t′ ) and calculates the mean field Λ σ(t, t′ ) from which a new set of Vpσ(t) can be extracted. These parameters 
are then fed back into the quantum coprocessor and the loop is repeated until self-consistency is achieved.
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where the selected lattice site is represented by an impurity, with the creation (annihilation) operator σˆ
†c  ( σĉ ) and 

number operator =σ σ σˆ ˆ ˆ†n c c , whose interaction with Λ σ(t, t′ ) is mimicked by a collection of N non-interacting 
bath sites with on-site energies εpσ(t), as shown in Fig. 1c. The time-dependent hybridization energy Vpσ(t) 
describes the amplitude for exchange of fermions between the impurity site and bath site p. These must be deter-
mined self-consistently: for given Vpσ(t) the quantum dynamics of the SIAM is solved and its Green’s function and 
corresponding hybridization function Λ σ(t, t′ ) are determined. From Λ σ(t, t′ ) a new set of Vpσ(t) is worked out 
which is then fed back into the SIAM. These steps are repeated until convergence is achieved24. The dynamics of 
the SIAM is usually worked out with exact diagonalization (ED)24 for small systems or with tensor network theory 
(TNT) methods25. However, the dynamical generation of entanglement in these problems has severely hampered 
the efficiency of TNT methods25,26. Furthermore, the required number of bath sites increases with the maximum 
simulation time tmax. This makes solving the SIAM the exponentially difficult bottleneck24,25,27 in purely classical 
DMFT solvers.

Here, we propose and analyze a hybrid quantum-classical computing scheme for DMFT to efficiently solve the 
Hubbard model in a Bethe lattice. The Bethe lattice is chosen for the simplicity of its self-consistency condition. It 
is conceptually straightforward to extend the scheme to other types of lattices. A small digital quantum coproces-
sor solves the SIAM evolution with the resulting Gσ(t, t′ ) being processed by a classical computer to complete the 
non-linear feedback loop as shown in Fig. 1d. We consider a trapped ion coprocessor for concreteness, although 
any other platform for quantum computing could implement the coprocessor as well. Even for imperfectly imple-
mented quantum gates with realistic errors of 1% we find accurate solutions to a simple model problem in small 
systems. In addition, our numerical evidence suggests that gate errors mainly lead to a smearing of the bath ener-
gies, which can be accounted for in the classical feedback loop to improve the solution.

Figure 2 shows an example coprocessor quantum network for computing a contribution to the Green’s func-
tion (see Methods for details). The real and imaginary contributions to the impurity Green’s function are encoded 
as 〈 σz〉  and 〈 σy〉  of a probe qubit by interacting it with the impurity state at times t′  and t via controlled quantum 
gates28. We decompose the unitary dynamics ′Û t t( , ) of the SIAM into a network of quantum gates29,30 by discre-
tising time as tn =  nΔ t, where Δ t is a small time-step. We then breakup the evolution from t =  0 to t =  tn into a 
product of Trotter steps = ∏ → +=

−ˆ ˆU t U l l( , 0) ( 1)n l
n

0
1 . The Trotter steps can readily be implemented by single 

qubit rotations and multi-qubit entangling Mølmer-Sørensen (MS) gates30,31 that have recently been realized in 
ion traps with high fidelity13,14. The total number of MS gates per Trotter step scales only linearly with the number 
of bath sites.

We analyze the performance of our simulation scheme by considering a simple example system24. We study 
the infinite-dimensional time-dependent Hubbard model (1) with constant onsite interaction U and tunneling 
matrix element v(t). The simulation starts in the half-filled paramagnetic atomic limit with tunneling v(t =  0) =  0, 
which is then dynamically ramped up to its final value v0 after quench time 1/4v0 and is kept at v0 until the final 
simulation time tmax is reached24 (setting ħ =  1). Such a sudden quench is representative of experimental ultracold 
atom dynamics32,33 and also ultrafast dynamics probed in condensed matter systems19. The initial state of the 
system has a singly occupied impurity site in the completely mixed state of spin ↑  and spin ↓ , and one half of the 
bath sites are doubly occupied and the other half empty (for explicit details, see ref. 24). In practice, we prepare 
the system in two pure fermion occupational number states, where one has the impurity in state |↑ 〉  and the other 
in state |↓ 〉 , along with the bath states24. The results are then averaged over these two pure states. These initial 
number states are mapped onto product states of qubits via the Jordan-Wigner transformation (see Methods). The 
initial qubit configuration is that shown in Fig. 2, where ρ = +ˆ ( 0, 1 0, 1 1, 0 1, 0 )imp

1
2

. We emulate the 
operation of the quantum coprocessor by classically evaluating the quantum networks, and the classical exponen-
tial scaling limits our simulations to small systems. The self-consistency condition for the Bethe lattice calculated 
in the classical feedback loop is Λ σ(t, t′ ) =  v(t)Gσ(t, t′ )v(t′ ), from which we obtain the SIAM coupling to bath p 
efficiently via a Cholesky decomposition Λ ′ = ∑ ′σ σ σ

⁎t t V t V t( , ) ( ) ( )p p p , where * denotes complex conjugation 
(see Supplementary Material for details). The impurity site double occupancy = ↓ ↑

ˆ ˆ ˆd t n n t( ) ( ) obtained from 
the self-consistent hybrid simulation is compared to the exact result in Fig. 3a and shows that Trotter errors do not 
noticeably affect our results.

Next we assume imperfect gates characterized by phase errors that are described by normally distributed ran-
dom variables with zero mean34. We choose their standard deviations consistent with current experimental capa-
bilities1,13,35 setting the single qubit error to σ =  10−6 and allowing MS gate errors σMS to vary between 0.1% and 
10%. We obtain accurate results for the dynamics of the double occupancy even in the presence of gate errors. As 
shown in Fig. 3a the double occupation differs from the exact result by only ≈ 3% for σMS =  1%. For a smaller gate 



www.nature.com/scientificreports/

4Scientific RepoRts | 6:32940 | DOI: 10.1038/srep32940

error of σMS =  0.1% the difference is insignificant up to t =  1.5/v0. In Fig. 3b we plot the error in the imaginary part 
of the lesser Green’s function ′σ

<G t t( , ) induced by imperfect gates. The diagonal values σ
<G t t( , ), which determine 

time-local single-particle observables, are almost unaffected even for large MS gate errors. Gate errors in general 
make the Green’s function decay faster with t −  t′  than in the ideal case and will thus affect unequal time correla-
tion functions.

We further investigate the effect of imperfect gates by considering the impurity site coupled to two bath sites 
via constant Vpσ(t). We find that the imaginary part of the mean field differs from the exact solution by a factor of 
approximately exp(− η|t′  −  t|) as shown in Fig. 4a. The decay rate η increases with σMS as displayed in the inset of 
Fig. 4a. This numerical evidence suggests that gate errors have the same effect as smearing out the bath energies 

Figure 2. Coprocessor quantum network for measuring a contribution to Gσ(t, t′) in the SIAM dynamics. 
This example network is given for the paramagnetic phase starting from the atomic limit, as considered in the 
main text and in ref. 24. A probe qubit (top line) is prepared in a symmetric superposition +( 0 1 )/ 2  of 
computational basis states |0〉  and |1〉  by a Hadamard gate σ̂H. Here, ρ = +ˆ ( 1, 0 1, 0 1, 0 1, 0 )imp

1
2

, and 
the initial states of the bath sites (lines below the impurity) are set to either |0〉  or |1〉  using Jordan-Wigner 
transformed operators, following the standard scheme in ref. 24. After evolving the SIAM to time t′  according to 
′Û t( ,0) the probe qubit interacts with the impurity via controlled Pauli gates. A second set of controlled Pauli 

gates is applied after evolving the impurity to time t. The precise choice of Pauli gates selects different 
contributions to the Green’s function. After another Hadamard gate this contribution is encoded in the 
expectation values σ̂z and σ̂ y of the probe qubit, as discussed in Methods.

Figure 3. Hybrid non-equilibrium DMFT simulation results when dynamically increasing the Hubbard 
tunneling matrix element v(t) from 0 to v0 as described in the main text. We choose U =  2v0, Trotter steps  
Δ t =  0.04/v0 and couple the impurity site to N =  2 bath sites. (a) Impurity double occupation d̂ t( ) as a function 
of time t: numerically exact solution (blue solid curve), solution with Trotter errors (+ ), solutions including gate 
errors of σMS =  0.1% (green dashed curve), σMS =  1% (yellow solid curve), and σMS =  10% (red solid curve).  
(b) Absolute value of the difference ′t t( , )G  between the imaginary parts of the lesser Green’s function without 
gate errors and with gate errors of σMS =  1%. Results of calculations with gate errors are obtained by averaging 
over 128 realizations of the setup.
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εpσ(t) to a similar width η. The impurity model including errors would then be equivalent to the bath sites pos-
sessing a finite coherence time 1/η. Since the number of gates is ∝ N we expect η to only depend weakly on N.

A bath site with coherence time 1/η can be modelled by allowing an ideal bath to incoherently exchange par-
ticles with a reservoir at an ‘error’ rate Γ  =  η. This exchange of particles modifies the bath’s Green’s function from 
its ideal value of gpσ(t,t′ ) =  1 and correspondingly modifies the relation between impurity bath couplings and 
mean field to ref. 24 Λ ′ = ∑ ′ ′σ σ σ σ

⁎t t V t g t t V t( , ) ( ) ( , ) ( )p p p p . This relation does not necessarily allow for an exact 
solution for Vpσ(t) even for large N. The effect of noise therefore limits the mean fields Λ σ(t, t′ ) that the bath sites 
can model.

We investigate if the noise induced by gate errors can be partly compensated by implementing self-consistency 
via this modified relation. For the non-interacting impurity with bath sites coupled to a particle reservoir we solve 
numerically for the bath Green’s functions gpσ(t, t′ ), exploiting the super-fermion formalism36 (see Supplementary 
Material). We minimize ∑ ′ ′ − Λ ′σ σ σ σ‖ ‖⁎V t g t t V t t t( ) ( , ) ( ) ( , )p p p p  using the Frobenius norm over the Vpσ(t) to 
obtain the hybridizations in the noisy system. This modification of the classical feedback loop significantly reduces 
the effect of gate errors as demonstrated in Fig. 4b, showing the reduction in average absolute error in the mean 
field Λ σ(t, t′ ). In the hybrid simulation scheme a slight modification of the quantum network shown in Fig. 2 
allows the probe qubit to measure the bath Green’s functions, thus providing the information required for this 
noise-reduction scheme to be implemented.

Finally, we emphasize that our scheme works directly in the thermodynamic limit and, since it does not 
require a small expansion term, gives accurate results for all values of U, in particular for the challenging situation 
of intermediate interactions like the example U =  2v0 considered here. The number of available qubits only limits 
the number of bath sites that can be included in the simulation and hence the maximally reachable simulation 
time tmax. Purely classical simulations are currently limited to approximately 25 bath sites25 and, because of fast 
growing SIAM entanglement24,25, scale exponentially with tmax despite efficiently implementing the feedback loop. 
Therefore, a quantum coprocessor with only about 50 qubits1 coupled to a classical feedback loop would be able 
to improve upon current purely classical algorithms. Our hybrid simulation scheme thus provides an interesting 
scientific application of next generation, possibly imperfect, quantum devices. While preparing this manuscript, 
we became aware of related work by B. Bauer et al.37.

Methods
Implementing the single-impurity Anderson model with the digital quantum simulator. To 
implement the SIAM in Eq. (2) in the main text with the digital quantum simulator, we first map the creation and 
annihilation operators in Ĥ t( )SIAM  onto spin operators that act on the qubits in the coprocessor. This is achieved 
via the Jordan-Wigner transformation σ σ= ⊗ ⊗↓ =

−
−

−ˆ ˆ ˆ†c p j
p

j
z

p1
2 2

2 1, σ σ= ⊗ ⊗↑ =
− −ˆ ˆ ˆ†c p j

p
j
z

p1
2 1

2 , and =σ σˆ ˆ† †c c( )p p  (we 
take p =  1 to be the impurity). Here, σ σ σ= ±±ˆ ˆ ˆi( )x y1

2
, and σ̂x, σ̂ y, and σ̂z are the Pauli spin operators. The trans-

formation maps N fermionic sites onto a string of 2N qubits such that two adjacent qubits represent one lattice 
site. The correspondences between the qubit states and fermionic states are |0, 0〉  =  |vac〉 , |1, 0〉  =  |↓ 〉 , |0, 1〉  =  |↑ 〉 , 
and |1, 1〉  =  |↓ ↑ 〉 .

To obtain the necessary quantum gates to approximate the unitary evolution operator we use a Trotter decom-
p o s i t i o n  o n  t h e  p r o p a g a t o r  → +Û n n( 1)  b e t w e e n  e a c h  t i m e  t n  a n d  t n+ 1  a s 
→ + = ≈ ∏− ∆ − ∆ˆ ˆ ˆ

U n n e e( 1) i tH t
j

i tH t( ) ( )n j nSIAM , where = ∑ˆ ˆH t H t( ) ( )n j j nSIAM . Each term − ∆
ˆ

e i tH t( )j n  can be read-
ily implemented using spin rotations ϕÛ ( )rot  where ϕ is the angle of rotation, and multi-qubit Mølmer-Sørensen 
(MS) gates30,31, characterized by two phases θ and φ as θ ϕ φ φ= 


− + 


θˆ ˆ ˆU i S S( , ) exp (cos sin )

l m
x yMS

,

4
2 , with 

Figure 4. (a) Deviation of the mean field η∆ ′ = Λ ′ Λ ′ ≈ − − ′ηΛ
< <t t t t t t t t( , ) Im ( , )/Im ( , ) exp( )0 , where 

Λ ′η
< t t( , )(0, )  is the lesser component of the mean field, in the absence (presence) of gate errors (of σMS =  6%)  

for constant hybridizations and U =  2v0, N =  2 and averaged over 128 realizations. The inset shows the 
exponential decay rate η against two qubit error σMS. (b) Average error in the self-consistent mean field =Λ
|Λ ′ − Λ ′ |< <t t t t( , ) ( , )noisy exact  for the non-interacting system with N =  10 noisy bath sites.
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σ= ∑ =
ˆ ˆSx y j l

m
j
x y

,
,  (see Supplementary Material). Here, the MS gate acts on qubits l, l +  1, ⋯, m, and the phase θ 

controls the amount of entanglement, while varying φ allows a shift between a σ̂x or a σ̂ y type gate.

Measuring the impurity Green’s function with single-qubit interferometry. Using the 
Jordan-Wigner transformation, the lesser and greater impurity Green’s functions for each spin σ can be written as 
a sum of four expectation values of products of Pauli operators and evolution operators (see Supplementary 
Material). We use a single-qubit interferometry scheme28 to measure each of the expectation values F(t, t′ ) that 
constitute the Green’s function. We introduce a probe qubit which is coupled to the string of 2N system qubits. We 
assume that the probe qubit is prepared in the pure state |0〉 , yielding the total system-probe density operator 
ρ ρ= ⊗ˆ ˆ 0 0tot sys . The combined system is then run through a Ramsey interferometer sequence, in which first 
a π/2 pulse (or Hadamard gate σ̂H) is applied to the probe qubit, the state of which will transform into the super-
position +( 0 1 )/ 2 . The two states in the superposition provide the necessary interference paths. Following 
the π/2 pulse, we apply the unitary evolution on the system of interest up to a certain time t′ . The Pauli operators 
are then applied on the system as controlled quantum gates with either |0〉  or |1〉  as the control state. This is fol-
lowed by evolution up to the final time t′ , another controlled application of Pauli gates, and finally another π/2 
pulse is applied on the probe qubit, bringing the interference paths together. The output state of the probe qubit at 
the end of the Ramsey sequence is given by

ρ σ σ ρ σ σ=

=
+ ′

−
′

+
′

+
− ′

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
†

T T

F t t i F t t

i F t t F t t

Tr [ ]

1 Re[ ( , )]
2

0 0 Im[ ( , )]
2

0 1

Im[ ( , )]
2

1 0 1 Re[ ( , )]
2

1 1 ,
(6)

H H H Hprobe sys tot

where ρ′ = ′ .ˆ ˆ ˆ
†

F t t T t T t t( , ) Tr [ ( ) ( , ) ]sys 1 0 sys  Here, the unitary operators σ′ = = ′ ′ˆ ˆ ˆ ˆ ˆT t t T U t t U t( , ) 0 0 ( , ) ( , 0)0  
and σ= = ′ˆ ˆ ˆ ˆT t T U t( ) 1 1 ( ,0)1 , in which σ̂ and σ′ˆ  are Pauli operators or tensor products of Pauli operators (see 
Supplementary Material), act only on the system and not on the probe qubit. Note that we can write 
ρ σ σ= + ′ + ′ˆ ˆ ˆ ˆI F t t F t t( Re[ ( , )] Im[ ( , )] ),z yprobe

1
2

 so that we have ρ σ = ′ˆ ˆ F t tTr [ ] Re[ ( , )],zprobe probe  and 
ρ σ = ′ˆ ˆ F t tTr [ ] Im[ ( , )]yprobe probe . Therefore repeated measurements (which can be done in parallel) of the σ̂z and 

σ̂ y components of the probe qubit for all times t′  and t yields a contribution to the impurity Green’s function Gσ(t, t′ ).  
For a spin-symmetric system, on the order of 80,000 measurements per time step are required. See Supplementary 
Material for details.
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