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ABSTRACT  15 

Flood frequency analyses are usually based on the assumption of stationarity, which 16 

might be unrealistic if changes in climate, land uses or urbanisation impact the study 17 

catchment. Moreover, most non-stationarity studies only focus on peak flows, ignoring 18 

other flood characteristics. In this study, the potential effect of increasing urbanisation 19 

on the bivariate relationship of peak flows and volumes is investigated in a case study in 20 

the northwest of England, consisting of an increasingly urbanised catchment and a 21 

nearby hydrologically and climatologically similar unchanged rural (control) catchment. 22 
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The study is performed via Kendall’s tau and copulas. Temporal trends are studied 23 

visually and by formal tests, considering variables individually and jointly. Bivariate 24 

joint return period curves associated with consecutive time periods are compared to 25 

understand the joint implications of such bivariate trends. Although no significant 26 

bivariate trends were detected, hydrologically relevant trends were found in the 27 

urbanised catchment.  28 

Keywords: copulas, flood trends, Kendall’s tau, urbanisation. 29 

INTRODUCTION 30 

Accurate design flood estimates with specified return periods are necessary for 31 

designing and operating hydraulic structures, such as culverts and dams. Traditionally, 32 

flood frequency analyses are based on an assumption of stationarity, i.e., assuming that 33 

the flood generating processes remain unchanged over time (e.g., Stedinger et al. 1993; 34 

Goel et al. 1998; Yue et al. 1999; Shiau et al. 2006). It has long been recognised by 35 

hydrologists that stationarity is, at best, a simplified working assumption when changes 36 

in urbanisation, land uses or climate are involved in the problem under analysis (e.g., 37 

Benkhaled et al. 2014), as such impacts can affect the behaviour of hydrological 38 

variables, e.g., leading to changes in flood characteristics.  39 

In cases where these effects are considered important, a non-stationarity approach 40 

should be applied. Mathematical implementations of non-stationarity into flood 41 

frequency models, such as using a non-stationary Generalised Extreme Value (GEV) or 42 

Pearson Type 3 (PE3) distributions are relatively straight-forward. However, assessing 43 

what is the correct model structure that best describes the impact of changing drivers on 44 

the characteristics of the flood series as well as giving realistic predictions of future 45 

impacts is far more difficult (Stedinger & Griffis 2011).  46 
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The effects of urbanisation on the characteristics of flood runoff have been the subject 47 

of several scientific investigations, and it is generally recognised that urbanisation will 48 

result in increased runoff volumes (decreased infiltration rates) and reduced catchment 49 

lag-times (e.g., Rose & Peters 2001; Shuster et al. 2005; Kjeldsen 2009), thus 50 

potentially being a significant cause of non-stationarity in flood series impacting both 51 

peak flow values and runoff volumes (e.g., Sheng & Wilson 2009).   52 

Much attention has been given to studying trends in peak flow values as a function of 53 

time (Petrow & Merz 2009; Wilson et al. 2010; Mediero et al. 2014), with some 54 

exceptions such as the approach presented by Bender et al. (2014) for analysing 55 

bivariate non-stationary in an uncommonly long peak-volume flood data record (191 56 

years). Indeed, as it is expected that increased urbanisation will lead to changes in other 57 

flood characteristics other than the peak flow, in particular the flood volume, a study of 58 

the potential changes in multiple variables is necessary to better understand the changes 59 

that could affect flood risk under increasing urbanisation. The present study aims to 60 

introduce and discuss a simple and general framework to investigate changes of 61 

multivariate flood characteristics under increasing urbanisation. This is performed by 62 

studying the univariate and bivariate properties of peak (Q) and volume (V) in two 63 

paired case catchments located in the northwest of England. Changes in the univariate 64 

peak flow values for these two catchments have already been assessed in Prosdocimi et 65 

al. (2015), who found that the increase of urbanisation in Catchment 70005 was 66 

connected to increasing trends, especially for summer flows. The present work wishes 67 

to complement such a study by proving the conceptual framework needed to investigate 68 

the bivariate behaviour of flow peaks and flood volume. The analysis of this case study 69 

is especially relevant due to the available information about urbanisation levels and flow 70 

records of high quality, something not easily found. Nevertheless, the available 71 
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hydrological record is relatively short and the results presented in this work should be 72 

considered as preliminary and taken with caution. The two catchments are 73 

hydrologically and climatologically similar, except for the increasing urbanisation 74 

levels which affect one of them but not the other. The differences in the changes in the 75 

flood characteristics in the two catchments can be imputed to the changes in the land 76 

cover of the urbanised catchment. Changes in the association of the bivariate 77 

distribution of (Q,V) are investigated by both the Kendall’s tau ( ), a rank-based 78 

dependence measure, and copulas for bivariate design flood analysis. Copulas (e.g., Joe 79 

1997), which have found several applications in multivariate hydrological analysis (e.g., 80 

De Michele et al. 2005; Renard & Lang 2007; Klein et al. 2010; Ganguli & Reddy 81 

2013; Requena et al. 2015), allow obtaining the multivariate joint distribution of 82 

multiple random variables by characterising the relation of dependence among them, 83 

incorporating the corresponding univariate marginal distributions that can belong to 84 

different families.  85 

CASE STUDY AND DATA EXTRACTION 86 

The two catchments of this study are located in the northwest of England (Figure 1). 87 

High-quality runoff time series of 15min resolution recorded by the Environment 88 

Agency are available for the common period 1976–2008. The urbanised catchment is 89 

drained by the River Lostock and flow data are recorded at Littlewood Bridge (gauging 90 

station numbered 70005). In this catchment there has been a relatively high degree of 91 

rural land-use being transformed into build-up areas (urbanisation) over the past 40 92 

years; from 9% in 1976 to 16% in 2008 as shown in Figure 2. The temporal change in 93 

catchment urban extent was computed at decadal time steps using the methodology 94 

presented by Miller & Grebby (2014) from historical 1:10 000 topographic maps.  95 



 5 

The rural catchment drained by the River Conder is a nearby hydrologically and 96 

climatologically similar catchment, where flow data is recorded near Galgate (gauging 97 

station numbered 72014). This is a predominantly rural catchment, which has 98 

experienced little change in the study period. Hereafter the catchments are referred to 99 

with their gauging station number: the urbanised catchment corresponds to Catchment 100 

70005, and the rural one to Catchment 72014.  101 

Table 1 displays key catchment descriptors from Institute of Hydrology (1999) for the 102 

catchments under study: catchment area (AREA), baseflow index as predicted by the 103 

Hydrology of Soil Type (BFIHOST), Standard-period (1961-1990) Average Annual 104 

Rainfall (SAAR), flood attenuation from upstream lakes and reservoirs (FARL), and 105 

proportion of the catchment covered by the 100-year floodplain (FPEXT). The two 106 

catchments are deemed hydrologically similar according to the similarity measure 107 

developed in Kjeldsen & Jones (2009). The finding of a suitable paired catchment 108 

should be based on similarities in both hydrological and climatological terms. The 109 

importance of identifying a catchment with a similar climatology is a key step for a 110 

robust attribution of flood trends to increasing urbanisation (Shastri et al. 2015), and the 111 

catchments used in this study were the best match given the paucity of long, high 112 

quality flow records. In the present study, catchments have similar geographical 113 

conditions, being nearby and entailing a similar gauging station elevation. Besides, 114 

flood events are of the synoptic type for both catchments (Mediero et al. 2015). They 115 

also entail a similar annual precipitation (SAAR in Table 1), as well as similar 116 

oscillations for different quantiles of the catchment average daily rainfall series (Figure 117 

3). Hence, a similar climate is considered. 118 

The water year in the UK runs from October to September: events occurring between 119 

October and March (included) are classified as winter events, while the period April to 120 
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September constitutes the summer months. The water year 1988–1989 was removed 121 

from the study period, as no summer events were available for the gauging station 122 

72014 in this year.  123 

The period 1976–2008 was divided into two equally sized time windows (e.g., Shastri et 124 

al. 2015), representative of periods of low and high urbanisation levels for Catchment 125 

70005, respectively. Note that by using two equally sized time periods the uncertainty in 126 

the estimates for the two time windows can be assumed to be of a similar scale. Only 127 

two time windows were considered because of the relatively short common data, 128 

although if longer data records were available, the procedure could be applied 129 

considering a greater number of time windows. The first time window (named as W1) 130 

runs from 1976 to 1992; while the second period (W2) runs from 1993 to 2008. 131 

Therefore, the data series ),( mm VQ  (ordered in time), with totnm :1  and totn  the total 132 

number of water years, is also divided into ),( W1W1

kk VQ  and ),( W2W2

kk VQ , with 133 

2:1 totnk  . Here ),( W1W1

kk VQ  represent the first 2totn  pairs of ),( mm VQ  and 134 

),( W2W2

kk VQ  the last 2totn  pairs. To simplify formulas, hereafter the pairs are presented 135 

as ),( ii VQ  with ni :1 . Depending on the time period considered, ),( ii VQ  makes 136 

reference to ),( mm VQ , ),( W1W1

kk VQ  or ),( W2W2

kk VQ , with n the corresponding data length 137 

in each case.  138 

A simple method for extracting the bivariate properties of flood events is considered to 139 

study the effect of urbanisation on the typical shape of hydrographs, as it is 140 

characterised by the strength of the correlation between peak flow and a measure of 141 

flood volume. Traditional techniques for baseflow separation work with daily data 142 

(Chapman 1999; Eckhardt 2008). However, this method should be applicable in an 143 

empirical data-based study; and it should work with highly variable sub-hourly data, 144 
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rather than more smooth daily data. Then, because of the difficulty of isolating 145 

individual flood hydrographs generated by distinct rainfall events, and due to the focus 146 

of this study is to analyse the joint properties of volume and flood peak, the measure of 147 

flood volume, V, adopted in this study is defined as the part of the event hydrograph 148 

above a threshold set at 40% of the flood peak Q, i.e., V  is considered as the volume 149 

associated with the upper 60% of the flood event. By considering only flow above a 150 

relatively high threshold, the event volumes were not unduly influenced by post-peak 151 

small amounts of rainfall causing the flow to increase part way down the recession 152 

curve. The 40% threshold used in this study was found to be sufficiently high to remove 153 

the nuisance effects caused by secondary rainfall inputs while maintaining the 154 

generality of the results. Also note that volumes extracted using different thresholds 155 

were found to be correlated. In this regard, for instance, Karmakar & Simonovic (2007) 156 

reported a highly significant correlation between peak and volume regardless of the 157 

discharge threshold level. Note that a more detailed analysis of each individual event 158 

would not result in more informative results, but rather lead to a less transparent 159 

analysis. As an example, the identification of the ),( ii VQ  pair associated with a given 160 

water year i is shown in Figure 4. 161 

For both catchments, the annual, summer and winter maxima of the instantaneous peak 162 

flow value are identified and the corresponding volumes are extracted. Seasonal 163 

maxima are also investigated to better understand whether the changes seen in the 164 

annual series are driven by changes in a specific type of events. The autocorrelation for 165 

the annual and seasonal series has been plotted and tested, indicating that the standard 166 

iid assumption is verified (not shown). Types of floods were not analysed because 167 

floods in UK mainly belong to the synoptic type (Mediero et al. 2015). In summary two 168 

catchments are studied, 70005 (urban) and 72014 (rural), two event characteristics are 169 
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considered (Q and V), three maximum series of events are extracted (winter, summer 170 

and annual maximum flow events), and three time periods are considered: 1976–1992 171 

(W1), 1993–2008 (W2) and 1976–2008 (whole series).  172 

METHODOLOGY AND RESULTS 173 

The investigation of potential changes in the Q-V relationship proceeds as follows: at 174 

first trends in the univariate series for Q and V separately and in the association between 175 

the two variables are studied. Then, a non-parametric procedure is used to assess the 176 

statistical significance of the observed trends. Finally, changes in the bivariate return 177 

period curves computed via copulas are investigated. Results for the two catchments 178 

under study are shown directly after the description of the methodological steps.  179 

Analysis of univariate flood trends in Q and V series 180 

The first step of the methodology consists in the analysis of univariate temporal trends 181 

in the flood series, using visual inspection and the widely used Mann-Kendall test (e.g., 182 

Villarini et al. 2009; Coch & Mediero 2015), a non-parametric test based on Kendall’s 183 

τ. The Mann-Kendall test (Kendall 1975) is used to assess the null hypothesis of no 184 

association between two variables, and the presence of significant temporal trends can 185 

be assessed by taking time as one of the variables. The statistical significance is 186 

assessed with a two-sided test at a 95% confidence level.  187 

Figure 5 shows the evolution in time of the Q and V annual and seasonal series for 188 

Catchment 70005 and Catchment 72014 (see Table 1 for descriptive statistics). A 189 

smaller variation in time of Q and V can be seen in Catchment 70005 in comparison to 190 

the characteristics of the flood events recorded in Catchment 72014. To ease the visual 191 

identification of trends least squares fits are superimposed to each plot. Overall, the 192 

regression slopes for Q appear to be steeper than those for V. Indeed, p-value of the 193 
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Mann-Kendall test indicate that only the trends of the annual and summer peak flow 194 

series in Catchment 70005 are statistically significant at a 5% significance level (Table 195 

2).  196 

Analysis of bivariate flood trends via Kendall’s τ 197 

Bivariate trends are assessed through an exploratory analysis of the relationship 198 

between Q and V using both graphical tools and a non-parametric measure on changes 199 

in the dependence between the variables, as estimated by the Kendall’s τ. Finally, 200 

hydrograph shape and its connection with Kendall’s τ is also analysed. Note that the 201 

whole methodology followed in this section is first presented and later results are 202 

displayed.  203 

First a scatter plot of the ))1(,)1((  nSnR ii  pairs, where iR  is the rank of iQ  and 204 

iS  is the rank of iV  (with ni ,...,1 ) is drawn for winter, summer and annual maximum 205 

flow events for both catchments under study. These plots provide a visual assessment of 206 

the dependence between variables. Note that scatter plots are linked to the Kendall’s τ 207 

value, as the latter is a rank-based measure: more scattered ranks lead to smaller 208 

Kendall’s τ values (i.e., lower association), whereas less scattered ranks will entail the 209 

opposite.  210 

Next, changes in hydrograph shapes over time are investigated. The standardised mean 211 

flood hydrographs of the Q-V pairs for a given time window (whole series, W1 or W2) 212 

are plotted together by locating their time of peak on the same vertical (Miller et al. 213 

2014), with the aim of visually comparing their average shape. Note that the mean flood 214 

hydrographs are standardised by the largest observed peak value ( peakQ ) in the sample, 215 

considering the entire data length. The corresponding point-wise confidence intervals 216 
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( sysy  , ) are also obtained, where y  and s  are the mean and standard deviation, 217 

respectively, of the standardised flow values at each time step. This analysis is carried 218 

out considering winter, summer and annual flood hydrographs. 219 

The link between the hydrograph shape (which depends on the values of Q and V) and 220 

Kendall’s τ, can be understood by studying the relation between the corresponding 221 

hydrograph shapes and the ))1(,)1((  nSnR ii  pairs. A didactic example extracted 222 

from the annual data in Catchment 72014 is shown in Figure 6, in which specific la  223 

pairs with 7:1l  are selected from the scatter plot (Figure 6a). Overall, three distinct 224 

clusters of events are evident. The first set is composed of pairs positioned close to the 225 

main diagonal (e.g., 21 , aa  and 3a ). The second set consists of pairs located below the 226 

main diagonal (e.g., 4a  and 5a ). Finally, pairs located above the main diagonal (e.g., 227 

6a  and 7a ) constitute the third set. Each set is associated with a particular standardised 228 

hydrograph shape, as it can be seen in Figure 6b generated following the procedure 229 

explained in the previous paragraph. Shapes related to points in the second set are 230 

steeper than the pairs of the first set. The opposite applies to the points of the third set, 231 

where shapes are less flashy. Therefore, the closer the pairs are to the main diagonal 232 

(i.e., the larger is Kendall’s τ, as the larger is the correlation), the more balanced and 233 

similar are the shape of the events. On the other hand, points located far away from the 234 

diagonal, which would lead to smaller values of Kendall’s τ, are generally characterised 235 

by a larger variability in the hydrograph shapes. 236 

The relationship between Q and V in the case study is investigated in Figure 7. The 237 

scatter plots show the interplay of the scaled ranks of the two univariate variables, and 238 

they are generated by first using the complete record, followed by a plot considering 239 

each of the two time windows W1 and W2 (Figure 7a). Overall, it was found that ranks 240 
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related to W1 are more scattered than to W2 for Catchment 70005. The value of 241 

Kendall’s τ is also derived for each time window and drawn in a new plot to facilitate 242 

the visual identification of the possible trend (Figure 7b). 95% confidence intervals are 243 

also displayed in Figure 7b (Schneider et al. 2015). The Kendall’s τ value is smaller for 244 

W1 (indicating a more weak correlation) than for W2 (indicating a stronger correlation) 245 

in Catchment 70005, as expected from the results of the scatter plots. Therefore, an 246 

increase over time was observed in Kendall’s τ for Catchment 70005. The opposite was 247 

found for Catchment 72014.  248 

The increasing correlation levels found in Catchment 70005 suggest that the hydrograph 249 

shapes for this catchment would tend to become more regular in time, according to what 250 

observed in Figure 6. On the contrary, the decrease of correlation seen in Catchment 251 

72014 would indicate a larger variability of the flood hydrograph for this catchment. A 252 

comparison between hydrograph shapes from the two time windows is shown in Figure 253 

8. The mean and confidence intervals of the hydrograph shape associated with the entire 254 

data record are also shown for illustration purposes. As it can be seen, the value of the 255 

peak of the mean hydrograph increases from the first time period W1 to the second 256 

period W2 for winter, summer and annual events (for both catchments). Note that the 257 

largest increase is found for summer maximum flow events of Catchment 70005. 258 

Results regarding confidence intervals support the Kendall’s τ analysis presented in the 259 

previous paragraph, showing that the difference between confidence interval boundaries 260 

decreases from W1 to W2 for Catchment 70005 (i.e., the difference between events 261 

decreases), while the opposite holds for Catchment 72014 (Figure 8) . No noticeable 262 

differences were identified between mean hydrograph shapes, in neither of the time 263 

windows nor catchments.  264 

Trend significance assessment: a permutation procedure  265 



 12 

A permutation test is suggested to check if the peak flow Q, the volume V or the 266 

Kendall’s τ coefficient are statistically different in the two time windows W1 and W2. 267 

This is slightly different from testing whether time is related to the variable of interest, 268 

as in the Mann-Kendall test, and allows using the same procedure to assess both 269 

univariate and bivariate temporal flood trends. Also, permutation tests are non-270 

parametric (as well as the Mann-Kendall test) so that no formal distributional 271 

assumption for the data is needed in order for the test to be valid, and, in some 272 

situations, they provide exact inference (see, e.g., Ernst 2004; Good 2005, for an 273 

introduction on permutation methods). The testing procedure consists of the following 274 

steps: (i) choose a test statistic which gives a good representation of the scientific 275 

question at hand; (ii) compute the test statistic for the observed data obst ; (iii) permute 276 

without replacement the observed sample for 00010perm N  times; (iv) for each 277 

permuted sample compute the test statistic iperm,t , with perm:1 Ni  ; (v) estimate the 278 

empirical distribution ( nF ) of the test statistic using all the permN  permuted samples and 279 

compute the (two-tailed) p-value as:  280 






































obsperm

obsperm

perm

1

perm

1

)(0

)(1
1where,

1

)11(

,
1

1

min2

permperm

tit

tit

NN
valuep i

N

i
i

N

i
i

                   (1) 281 

For p-values greater than 0.05 the null hypothesis is accepted at a 95% confidence level.     282 

In this study, permutation methods are used to test if the location of the distribution of 283 

both Q and V in the two different time windows is different. The difference between the 284 

sample median ( Qm  and Vm ) in the two time windows is chosen as the test statistic to 285 

represent the null hypothesis of equal locations. The observed difference between the 286 

sample medians is compared with the distribution of the difference in the medians for 287 
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the permuted samples and the associated p-value is computed as in Equation (1). 288 

Similarly, to further support the visual evidence of the previous sub-section, the null 289 

hypothesis of constant association between Q and V is tested by using the difference 290 

between Kendall’s τ in the two windows as a test statistic.  291 

P-values from Equation (1) by applying the permutation procedure to the case study are 292 

shown in Table 3. Among the positive observed differences between Qm  and Vm  in W1 293 

and W2 for both catchments considering winter, summer and annual maximum flow 294 

events, only the difference associated with summer maximum flow events of Catchment 295 

70005 can be considered significant. Note that this trend was also found to be 296 

significant when the Mann-Kendall test was applied considering the whole data length 297 

(first sub-section of Methodology and Results Section). For the Kendall’s τ, neither the 298 

increase for Catchment 70005 nor the decrease for Catchment 72014 were found to be 299 

statistically significant for any season.  300 

Analysis of bivariate flood trends by comparison of return period curves  301 

In the bivariate (Q-V) space, an infinite set of events given by their Q-V pairs are 302 

located under the same return period curve, which can be estimated by copulas 303 

(Salvadori & De Michele 2004; Requena et al. 2013). In this regard, the final step of the 304 

assessment of the impact of urbanisation on flood properties entails the analysis of 305 

trends in the bivariate Q-V space by the comparison between the return period curves in 306 

windows W1 and W2, for a set of given return period values. As an initial step, the 307 

analysis involves the selection of the joint distribution of (Q,V) that best characterises 308 

the statistical behaviour of the variables, composed of the marginal distributions of Q 309 

and V and a copula.  310 
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Although the information gained by studying the seasonal series can be useful for 311 

identifying potential changes in the flood seasonality, the analysis of the bivariate return 312 

period curves will focus on the annual series, since these are the ones that would be 313 

used to estimate design floods. The methods could also be applied to summer or winter 314 

maximum flow series. 315 

Selection of a joint distribution: margins and copula 316 

Following Sklar’s theorem (Sklar 1959), the joint cumulative distribution function of 317 

the random variables Q and V, ),( vqH , can be expressed as:  318 

 vqvFqFCvqH VQ ,)),(),((),( ,                                  (2) 319 

where q and v are given values of the variables Q and V, )(QF  and )(VF  are the 320 

marginal cumulative distributions functions of Q and V, respectively; and C is the 321 

copula function, i.e., a joint cumulative distribution function with uniform margins. 322 

Thus Equation (2) can be expressed as ),( 21 uuC , where )(1 qFu Q  and )(2 vFu V . 323 

The selection of both the marginal distributions that best represent the individual 324 

variables, and the copula function that best characterises the dependence between Q and 325 

V is then needed to achieve a complete description of ),( vqH .  326 

Several distributions used in hydrology, such as the GEV, Generalised Logistic (GLO), 327 

Generalised Normal (GNO), Generalised Pareto (GPA) and PE3 were considered as 328 

potential marginal distributions of Q and V. The distribution that best characterises the 329 

observed data was selected using the L-moment ratio diagram, in which the relations 330 

between the theoretical coefficients of L-skewness ( 3 ) and L-kurtosis ( 4 ) for different 331 

three-parameter distributions are shown through curves (Hosking & Wallis 1997). The 332 

sample estimates of the coefficients of L-skewness ( 3t ) and L-kurtosis ( 4t ) are also 333 
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plotted in the same diagram, choosing the distribution curve closest to the sample 334 

values. The choice of the marginal distribution for each variable was performed using 335 

the series covering the whole data length, and the selected distribution applied to both 336 

time periods. This larger sample ensures that estimates of 3t  and 4t  are less biased. 337 

Location )( , scale )(  and shape )(  parameters of the three-parameter marginal 338 

distributions ( )(QF  and )(VF ) are estimated by the method of L-moments. Since 339 

estimates of the shape parameter have a high uncertainty when using a short record 340 

(Stedinger & Lu 1995), the estimate ̂  obtained using the complete data series was used 341 

in each of the two time windows to reduce the uncertainty originating from the third-342 

order statistic estimates.  343 

In order to identify the copula that best characterises the dependence structure between 344 

Q and V, a representative set of potential copulas was tested: the Clayton, Frank and 345 

Gumbel copula belonging to the Archimedean family; the Galambos (and also the 346 

Gumbel) copula belonging to the extreme-value family and the Plackett copula 347 

representing other families. The goodness-of-fit test used for identifying possible copula 348 

candidates (see Genest et al. 2009) is based on the Cramér-von Mises statistic ( nS ):  349 
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where (.)nC  is the empirical copula and )(C  is the estimated copula with a ̂  351 

parameter (obtained by the inversion of Kendall’s τ method). The p-value needed to 352 

formally test if the copula is suitable is estimated by a validated bootstrap procedure 353 

(Genest & Rémillard 2008). This procedure (in a similar way to the aforementioned 354 

permutation procedure) derives an empirical distribution of the test statistic, nS , using 355 

10 000 simulations. The copula is acceptable if the p-value is greater than .05.0   356 
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Additional information is needed to choose the best copula among the ones that have 357 

passed the goodness-of-fit test. By assessing the upper tail dependence, a further 358 

analysis to check the ability of each copula to characterise the extreme values of the 359 

studied variables is carried out (e.g., Poulin et al. 2007). For this purpose, the non-360 

parametric upper tail dependence coefficient of the observed data, CFG

U̂ , is compared 361 

with the theoretical upper tail dependence coefficient, U̂ , of each copula (formulas in 362 

Frahm et al. 2005). The copula is considered more appropriate as smaller is the 363 

difference between CFG

U̂  and U̂  values. Remark that however, the reliability of CFG

U̂  is 364 

limited, especially for a short data length. Moreover, the use of the Akaike information 365 

criterion (AIC) as model selection criterion (Akaike 1974) can be helpful for ranking 366 

the candidate copulas. Based on the latter, the best copula would be that with the 367 

smallest AIC value.  368 

Although in the present case study the observed changes in time considering jointly Q 369 

and V (i.e., Kendall’s τ trends in Trend Significance Assessment Sub-section) were not 370 

identified as statistically significant (with p-values equal to 0.132 and 0.465 for 371 

Catchment 70005 and 72014, respectively, see Table 3), they could still be 372 

hydrologically relevant. Therefore, the implications of such trends for the flood 373 

hydrograph shape should be analysed. For this analysis, the bivariate joint distribution 374 

of the observed data was estimated for both time windows.   375 

The marginal distribution )(QF  was chosen to be a GLO, which is generally the 376 

preferred distribution for annual maximum peak flow data in the UK (Institute of 377 

Hydrology 1999). However, no guidance exists in reference to hydrograph volumes, V. 378 

The sample L-moment ratios of the V series for each catchment were plotted on an L-379 

moment ratio diagram (Figure 9). Figure 9 also shows the 95% confidence ellipsoids 380 
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based on the bivariate distribution of L-skewness and L-kurtosis, which are the basis of 381 

the goodness-of-fit measure introduced by Kjeldsen & Prosdocimi (2015). The thicker 382 

lines indicate the distributions that can be accepted according to the goodness-of-fit 383 

measure; the selected distribution corresponds to the one for which the measure is 384 

minimised for each catchment. The GLO distribution was selected to represent V for 385 

Catchment 70005, while the GEV distribution was chosen for Catchment 72014. The 386 

estimated parameters of the marginal distributions are shown in Table 4. As it can be 387 

seen, the urban catchment has larger location parameters than the rural catchment, while 388 

for both catchments and variables the skewness is negative. The estimated fitted 389 

marginal flood frequency curves are displayed in Figure 10 along with the observed 390 

data series. In the case of Catchment 70005, the marginal curve corresponding to W1 391 

intersects that corresponding to W2 for both Q and V. That is, if small univariate return 392 

periods (T) are considered, larger values of Q and V are expected for W2; the contrary 393 

happens for larger T values. Intersection between marginal curves is not observed in 394 

Catchment 72014.  395 

Results for the copula selection criteria are shown in Table 5. Most of the considered 396 

copulas passed the goodness-of-fit (i.e., p-values greater than 0.05), with the exception 397 

of the Clayton copula that is rejected for several cases. Since all cases present upper tail 398 

dependence, i.e., CFG

U̂  is greater than zero, the previously accepted copulas are cut 399 

down accordingly to the U̂  values. In this regard, the Gumbel and Galambos copulas 400 

show U̂  values close to CFG

U̂ . Consequently, both of them could be chosen, as the 401 

results of the AIC are also very similar. Because of the results in Table 5 and its 402 

properties, the Gumbel copula was selected for the three time periods and both 403 

catchments. This copula was also selected as the best copula in characterising the 404 
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dependence between peak flow and volume in other studies (e.g., Zhang & Singh 2006; 405 

Poulin et al. 2007; Karmakar & Simonovic 2009; Requena et al. 2013; Sraj et al. 2015). 406 

Comparison between bivariate joint return period curves  407 

Bivariate joint return period curves are used here to investigate changes in flood events 408 

between W1 and W2. Combination of values belonging to the return period curves can 409 

be estimated by the selected copula. In this study, the bivariate return period used for 410 

analysing changes in flood events is the widely used OR return period ( ORT ) (Salvadori 411 

& De Michele 2004), in which the thresholds q or v are exceeded by the random 412 

variable Q ‘or’ V, respectively (Equation (4)). 413 

),(1))(),((1)(1)( 21

OR
uuCvFqFCvVqQPvVqQP

T T

VQ

TTT














,(4)414 

where T  is the mean inter-arrival time between two successive events, with 1T  for 415 

annual maximum series. Finally, return period curves are obtained in original units by 416 

transforming the ( 21 ,uu ) pairs with the same ORT  into ( simsi ,VQ m ) pairs by Equation (5), 417 

using the previously selected marginal distributions.  418 

)(ˆ),(ˆ
2

1

sim1

1

sim uFVuFQ VQ

  ,                                                                                (5)                                                                                                                                                          419 

where )(ˆ 1 

QF  is the inverse marginal distribution of Q, )(ˆ QF . The same holds for 420 

)(ˆ 1 

VF .  The bivariate return period curves associated with the separate time windows 421 

W1 and W2 and the whole data length are calculated.  422 

Probability level curves (of the copula) for several values of p (i.e., points fulfilling 423 

puuC )ˆ;,( 21  , where p is the simultaneous non-exceedance probability of the two 424 

variables) for both study catchments are shown in Figure 11. The plot also shows 100 425 

000 ( 21 ,uu ) pairs randomly generated from the fitted copula (grey points), showing that 426 
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smaller Kendall’s τ values lead to a more scattered data. Results for W1, W2 and the 427 

entire record are plotted and compared for both catchments. In Catchment 70005, curves 428 

related to W2 (with larger Kendall’s τ) are located below those corresponding to W1 429 

(with smaller Kendall’s τ), while converging in the extremes (i.e., the asymptotes). The 430 

opposite occurs for Catchment 72014. As expected, curves related to the whole data 431 

length are located between W1 and W2 curves.  432 

Figure 12 shows simulated copula values and bivariate joint return period curves 433 

associated with ORT 100,5,2  and 250  years (Equation (4)) in original units (by 434 

Equation (5)). It should be noted that the results for high return periods should be taken 435 

with caution, due to the relatively short data length available and the consequent large 436 

uncertainty; yet they are shown as illustration. For Catchment 70005, curves move 437 

downward to the left (from W1 to W2) as larger is the return period. Overall, the 438 

decrease is larger for Q than for V, reflecting the findings for the univariate distributions 439 

(Figure 10). This means that flood events tend to have a lower peak value, while at the 440 

same time the flood hydrographs tend to be less flashy. For instance, the vertex of the 441 

100-year return period curve for the urban catchment undergoes a 9.4% decrease in 442 

peak and a 7.6% decrease in volume from W1 to W2. Also, in accordance with the 443 

results presented in Figure 10, such a trend differs for small return periods, as margins 444 

of different time windows cross at ORT 5  for Q values, while at ORT 52  for V 445 

values. However, the opposite is observed for Catchment 72014, as return period curves 446 

move upward to the right. Such a shift is larger for Q, meaning that flood events would 447 

become larger, while flood hydrographs steeper. This is also in accordance with the 448 

results obtained in the univariate case (Figure 10), where the increase of Q is greater 449 

than that of V. For instance, the vertex of the 100-year return period curve for the rural 450 

catchment undergoes a 20.3% increase in peak and a 14.1% increase in volume from 451 
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W1 to W2. Note that for both catchments, a higher return period generally results in a 452 

larger shift of the curve. This could be caused by the increasing uncertainty related to 453 

increasing return periods, in particular with the small sample sizes available in this 454 

study.  455 

In case that an estimate of a design flood is required, the effect of changes in 456 

urbanisation extent on return period curves can be assessed using the results associated 457 

with W2. Alternatively, if stationarity is assumed the most reliable estimate will be 458 

obtained by using the return period curves associated with the whole data length.  Also, 459 

differences between return period curves in the two time windows (of Catchment 460 

70005) give some insight into how the curves move in time because of the urban 461 

development. Consequently, this behaviour could be extrapolated in the future by using 462 

predictions of the urbanisation increase level expected in a given catchment. 463 

DISCUSSION 464 

Significant univariate trends in the observed peak value Q for summer maximum flow 465 

events in the urban catchment (70005) have been identified by both the Mann-Kendall 466 

test and the permutation procedure. The Mann-Kendall test also found a significant 467 

trend in the observed annual maximum flow events in this catchment. No significant 468 

univariate trends were found, neither in the observed volume V nor in any of the 469 

variables extracted from the rural catchment (72014). The results of trends in the 470 

seasonal series help understanding from which types of events the trends in the annual 471 

series are most likely to be driven. The results suggest that for the urbanised catchment 472 

the potential changes in the annual series would mostly be driven by change for the 473 

summer events.  474 



 21 

The visual analysis of bivariate (Q,V) series found an increase in Kendall’s τ over time 475 

for Catchment 70005, leading to increasingly more regular hydrograph shapes; whereas 476 

the opposite was found for Catchment 72014, resulting in a larger variability of flood 477 

hydrograph shapes. The visual analysis of the hydrograph shape variability in time, 478 

using confidence intervals, confirmed this result.  479 

The analysis of bivariate trends in the characteristics of flood events in the urban 480 

catchment found no statistically significant trends based on Kendall’s τ. However, 481 

opposite results to those found in the rural catchment were obtained. The implications 482 

of such trends when considering bivariate return period curves were also opposite, 483 

suggesting that the trend in the urban catchment may be caused by changes in the flood 484 

generating processes that may not be statistically detected. Thus, it is likely that, if 485 

indeed a change is occurring in some of the flood characteristics, a larger sample size 486 

would be needed for standard statistical tests to detect it (see also Prosdocimi et al. 487 

2014, for a discussion on sample size problems in the analysis of hydrological series). 488 

The selection and fit of both margins and copula would be more powerful and accurate 489 

if longer data series were available; and large uncertainties in the estimate of both 490 

margins and copula could have affected the results.  491 

In addition, two larger flood events observed in the first time-window (W1) in 492 

Catchment 70005 could lead to larger quantiles for high return periods than in the case 493 

of W2. Therefore, as W1 and W2 are short, both univariate and bivariate estimates for 494 

high return periods are highly dependent on the magnitude of the observed flood events 495 

and, consequently, on the magnitude of rainfall events that drove such flood events in 496 

each period. Finally, it is also interesting to highlight that the effect of the bivariate 497 

trend found (for high return periods) in the urban catchment is different from what 498 

would normally be expected in an urbanised catchment, as in general urbanisation 499 
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should lead to steeper hydrograph shapes. A possible explanation could also be the 500 

influence of the sewer system or local flood mitigation measures when high return 501 

period floods are considered, although looking into the causes is beyond the scope of 502 

this paper. Also, results may point towards a more complex interaction between 503 

urbanisation and flood characteristics than commonly assumed.   504 

Remark that in future studies, the results of the present preliminary analysis could be 505 

compared with those obtained by applying the proposed methodology to a much longer 506 

data length (when it is available), as well as to flood events identified by applying a 507 

detailed hydrograph separation method, for which an exhaustive analysis of rainfall and 508 

streamflow should be performed.   509 

CONCLUSIONS 510 

A simple and general framework to investigate the effect of changes in a catchment land 511 

cover on the univariate and bivariate behaviour of some flood characteristics is 512 

introduced. The case study is composed of two nearby hydrologically and 513 

climatologically similar catchments in the northwest of England, where the most 514 

important difference is the increasing urbanisation extent in the urban catchment; hence 515 

any difference observed in time can mostly be attributed to urbanisation. In general, no 516 

statistical evidence of temporal change was identified in the univariate series, apart from 517 

an increasing trend in summer peak flows in the urban catchment. It should be 518 

mentioned that the permutation test used for trend significance assessment on the 519 

differences between the location of the distribution of a given variable might be 520 

applicable to other hydrological analyses. 521 

The potential bivariate trend due to increasing urbanisation in the urban catchment was 522 

found to lead to smaller flood peaks and less flashy flood hydrographs. However, these 523 
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results could be conditioned to the short available records and the use of larger data sets 524 

could be advisable for its confirmation. In addition, further research in the identification 525 

and modelling of the process control on storm runoff in urban catchments could help in 526 

understanding this finding.  527 

The methodology presented in this work could be applied to any pair of catchments that 528 

can be considered hydrologically and climatologically similar except for one major 529 

characteristic, which has changed in one of the two catchments. Finally, the proposed 530 

methodology can help practitioners to describe trends in flood characteristics, in order 531 

to improve estimates of the design floods by a non-stationarity approach.  532 
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Table 1 Summary of the catchment descriptors for the two catchments under study.  

Descriptors 
Catchment 

70005 (urban) 72014 (rural) 

AREA[km2] 54.5 28.99 

BFIHOST 0.473 0.443 

FARL 0.964 0.975 

FPEXT[%] 0.14 0.08 

SAAR[mm] 1021 1183 

Statistics 
Season Season 

Winter Summer Annual Winter Summer Annual 

Mean Q 22.18 17.31 23.62 16.06 11.42 17.43 

Median Q 22.78 15.85 22.95 13.85 9.64 16.45 

25th quantile Q 18.03 9.73 19.78 11.78 8.02 12.95 

75th quantile Q 24.75 22.18 25.97 21.98 15.45 22.65 

Mean V 0.57  0.32  0.56  0.28 0.14 0.28  

Median V 0.50  0.22  0.50  0.26 0.13  0.24  

25th quantile V 0.40  0.15  0.38  0.16 0.08  0.17  

75th quantile V 0.63  0.47  0.66  0.38 0.20  0.34  
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Table 2 Results of the Mann-Kendall test. Values in bold indicate statistically 

significant trends. 

Catchment Season Variable τ valuep  

70005 

Winter 
Q 0.230 0.067 

V 0.097 0.446 

Summer 
Q 0.300 0.016 

V 0.222 0.077 

Annual 
Q 0.276 0.027 

V 0.101 0.427 

72014 

Winter 
Q 0.190 0.131 

V 0.214 0.089 

Summer 
Q 0.173 0.168 

V 0.133 0.292 

Annual 
Q 0.157 0.212 

V 0.099 0.436 
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Table 3 P-values of the trend significance assessment performed by the permutation 

procedure. Values in bold indicate statistically significant trends. 

Catchment Season 
Differences in 

Qm  Vm  τ 

70005 

Winter 0.264 0.644 0.123 

Summer 0.002 0.317 0.961 

Annual 0.150 0.362 0.132 

72014 

Winter 0.213 0.262 0.393 

Summer 0.332 0.256 0.355 

Annual 0.262 0.450 0.465 
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Table 4  ˆ,ˆ  and ̂  parameters of the marginal distributions of Q and V (related to 

annual maximum flow series) fitted by L-moments with a given ̂  estimated with the 

entire data length. 

Catchment Variable Distribution Period 
Estimated margin parameters 

̂  ̂  ̂  

70005 

Q GLO 

1976–1992 

(W1) 
21.679 3.774 

-0.162 
1993–2008  

(W2) 
23.824 2.576 

1976–2008  

(whole series) 
22.739 3.222 

V GLO 

1976–1992 

(W1) 
0.493 0.154 

-0.265 
1993–2008 

(W2) 
0.497 0.141 

1976–2008 

(whole series) 
0.496 0.146 

72014 

Q GLO 

1976–1992 

(W1) 
15.717 3.349  

-0.079 
1993–2008 

(W2) 
18.187  3.950  

1976–2008 

(whole series) 
16.949  3.675  

V GEV 

1976–1992 

(W1) 
0.186 0.103  

-0.122 
1993–2008 

(W2) 
0.214  0.114  

1976–2008 

(whole series) 
0.201  0.107  
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Table 5 Estimates of the copula parameter and results of the goodness-of-fit test, upper 

tail dependence measure and AIC for copula selection. Values in bold indicate copulas 

that pass the test. 

Catchment Time period Copula ̂  nS  p-value CFG

U̂  U̂  AIC 

70005 

1976–1992 

(W1) 

Clayton  2.286 0.055 0.126 

0.604 

0 -5.719 

Frank  6.377 0.043 0.454 0 -8.870 

Gumbel  2.143 0.046 0.310 0.618 -8.036 

Galambos  1.429 0.046 0.299 0.616 -8.330 

Plackett 13.869 0.044 0.403 0 -8.009 

1993–2008 

(W2) 

Clayton  7.231 0.049 0.066 

0.803 

0 -3.634 

Frank 16.636 0.035 0.439 0 -25.318 

Gumbel  4.615 0.036 0.341 0.838 -20.228 

Galambos  3.906 0.036 0.345 0.837 -19.892 

Plackett 95.667 0.037 0.354 0 -22.482 

1976–2008 

(whole series) 

Clayton  3.043 0.060 0.004 

0.664 

0 -2.391 

Frank  8.022 0.034 0.219 0 -27.034 

Gumbel  2.522 0.031 0.244 0.684 -26.040 

Galambos  1.810 0.031 0.241 0.682 -26.101 

Plackett 21.622 0.034 0.196 0 -25.201 

72014 

1976–1992 

(W1) 

Clayton  3.371 0.039 0.544 

0.686 

0 -16.647 

Frank  8.717 0.032 0.868 0 -13.654 

Gumbel  2.685 0.031 0.899 0.706 -12.614 

Galambos  1.974 0.031 0.903 0.704 -12.794 

Plackett 25.516 0.032 0.889 0 -12.932 

1993–2008 

(W2) 

Clayton 1.705 0.080 0.009 

0.555 

0 -5.572 

Frank 5.057 0.063 0.069 0 -5.036 

Gumbel 1.853 0.056 0.116 0.546 -5.055 

Galambos 1.136 0.056 0.123 0.543 -4.796 

Plackett 9.102 0.062 0.081 0 -5.400 

1976–2008 

(whole series) 

Clayton  2.062 0.060 0.010 

0.575 

0 -20.427 

Frank  5.876 0.041 0.113 0 -17.136 

Gumbel  2.031 0.033 0.249 0.593 -15.451 
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Galambos  1.316 0.033 0.244 0.591 -14.958 

Plackett 11.908 0.038 0.142 0 -18.086 
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Figure 1 Location of the catchments. 
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Figure 2 Evolution in time of the urbanisation level of Catchment 70005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

 

Figure 3 Example: median average daily rainfall series of the urban and rural 

catchments. 
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Figure 4 Example of ),( ii VQ  extraction from a given water year i. 
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Figure 5 Evolution in time of Q and V. 
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Figure 6 Example of hydrograph shapes corresponding to different pairs of ranks: a) 

ranks; b) hydrograph shapes.
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Figure 7 Ranks considering (by columns): a) whole data length, and data belonging to 

W1 and W2. b) Kendall’s τ trend obtained from the two time windows. 
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Figure 8 Mean and confidence interval of the hydrograph shape.  
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Figure 9 L-moment ratio diagram for the complete V series. The 95% ellipse 

identifying the acceptable distribution according to the Kjeldsen and Prosdocimi (2015) 

measure are also shown.   
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Figure 10 Fit of the selected marginal distribution (of annual maximum flow events) to 

the observed data for the two time windows.    
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Figure 11 Probability level curves, and observed and simulated (u1, u2) data (copula 

scale) for time periods W1, W2 and whole data length.  
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Figure 12 Simulated data and comparison among return period curves (original units) 

for W1, W2 and whole data length.   

 

 

 

 


