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Abstract 

Existing total variation (TV) solvers that have been applied in Electrical Impedance 

Tomography (EIT) smooth the TV function in order to cope with its non-

differentiability around the origin, and thus imposes some numerical errors on the 

solution. Furthermore, these solvers require storage of Hessian, and are thus very 

impractical for large-scale computations, especially 3D EIT. These shortcomings 

were addressed by TV solvers that are based on first-order optimization methods. 

However, the application of these solvers to EIT remains scarce. In this manuscript, 

we proposes an accelerated version of a gradient-based TV solver based on 

Augmented Lagrangian and alternating direction method of multipliers, referred to as 

TVAL3, and apply it to EIT. The results demonstrate the superiority of the 

accelerated algorithm over existing TV solvers in EIT with regard to both accuracy 

and speed. 
 

Keywords: electrical impedance tomography; total variation; variable splitting; 
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1.   Introduction 
 

      Electrical impedance tomography is an attractive imaging technique which aims at 

reconstructing conductivity distribution inside an object. This is performed via 

injecting electrical current successively from two electrodes and reading the induced 

voltages on the remaining electrodes placed on the surface [1-3]. EIT has attracted 

much interest in medicine [4-6], as well as industry [7-10] because of its high speed 

and safety. The recovery of conductivity distribution from surface data is in principle 

to calculate the coefficient of an elliptical partial differential equation subject to a 

mixed Dirichlet/Neumann boundary condition [11]. The relationship between 

conductivity field and measured data is very nonlinear. To linearize the problem, 

Jacobian is computed, which is severely ill-conditioned. To mitigate this ill-

posedness, a priori assumption about the conductivity, e.g., smoothness or sparsity, is 

imposed [12-14].  
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      Quadratic regularization often deteriorates the spatial resolution via smoothing the 

reconstructed image [12,15], whereas sparsity regularization has demonstrated its 

great potential in recovering sparse signals/images [16-17]. In many cases, a sequence 

of expansion coefficients of the signal over an orthonormal basis includes only a 

small number of nonzero entries, and is thus assumed sparse [11,17]. In many 

applications in EIT, the object under study involves an uninteresting background plus 

a number of interesting inclusions, which represents sparsity [11,18-21].  

      However, it turns out that total variation regularization better preserves inter-

medium discontinuities than the sparsity regularization. The literature in the context 

of signal/image processing has shown the superiority of the TV minimization over the 

sparsity in reconstructing staircase signals or piecewise constant images, as the TV 

function represents the sparsity of gradient [22]. In EIT the TV minimization was 

employed to detect sharp transitions over piecewise constant conductivity fields [23]. 

      Another strategy for determining sharp interfaces over piecewise fields is Level 

Set (LS) method [24-25]. However, so far it has not demonstrated its potential in 

practical EIT since the level set function increases the ill-posedness of the problem 

because of null space of the arising forward operator [26-28]. Indeed, LS functions 

are typically meaningful solely around the zero level. 

      TV minimization dates back to 1992, when Rudin-Osher-Fatemi (ROF) scheme 

was introduced in order for denoising problem to recover sharp interfaces in images 

[29]. Since then, many studies were done in order to improve TV optimization [30-

38]. The main problem was the non-differentiability of the TV function around the 

origin, which was often addressed by smoothing this function [23,30,36].  Newton-

based methods are often employed in order to minimize the smooth TV function. The 

convergence properties of Newton's method in TV minimzation were reported by 

Chan et al [32] and Vogel [38].  

      To the best of our knowledge, Lagged Diffusivity (LD) [33,35] and Primal-Dual 

Interior-Point-Method (PD-IPM) [34] are the most efficient TV codes that were 

employed in EIT [39], and are now available on the EIDORS website [40]. Borsic et 

al [39] showed the superiority of the PD-IPM method over the LD method in 

preserving sharp discontinuities. However, these algorithms are based on second-

order optimality condition, and thus require the inverse Hessian. In practice, the 

Hessian is not computationally inverted, but leads to a system of linear equations, 

which is still costly in large-scale problems [39]. As a result, these second-order 

solvers are very expensive for medical applications where very high spatial resolution 

is demanded, together with a fast reconstruction.  

   Considering accuracy, continuation strategies were suggested to mitigate errors 

arising from smoothing the TV functional, but this error still imposes some numerical 

errors to the solution [13,32]. 

      In the sequel, the recent advances on TV minimization are overviewed. The TV 

minimization was formulated as a Second Order Cone Programming (SOCP), which 

was solved by an interior-point method [41]. However, the convergence of SOCP has 

not been established for high dimensional problems. Applying 1l -magic to SOCP, 

Newton's method is applied in a recursive way rather than directly solving the linear 

system [42-44]. Nevertheless, these algorithms are still time consuming because of 

applying the Newton's method. Relying on the well-known Iterative 

Shrinkage/Thresholding (IST) technique, an alternating minimization algorithm that 

involves two-steps of IST, referred to as Two-Step IST (TWIST), was proposed [45-

46]. Chambolle proposed an iterative fixed-point TV scheme based on the well-

known dual approach and TWIST [47]. Later, a modified variant of Nesterov’s 
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algorithm, referred to as NESTA, was developed to minimize saddle-point problems 

over constrained convex sets [49].  

      Grounded on applying alternating minimization algorithm to the so-called half 

quadratic problem, a new TV minimization scheme based on variable-splitting 

technique was proposed [50]. The per-iteration computation involves, alternatively, a 

shrinkage formula to minimize the objective function with respect to a slack variable 

handling the non-differentiability of the TV function as well as three fast Fourier 

transforms (FFTs) to minimize the function with respect to the sought gray-level 

image (cf. section 2.4). It removes the costly Newton's method, but it requires the 

multipliers to reach infinity in order to ensure the convergence of the algorithm. This, 

in turn, increases the ill-posedness of the problem [50-51]. 

      To overcome these shortcomings, a robust gradient-based TV algorithm based on 

Augmented Lagrangian and Alternating direction method of multipliers, referred to as 

TVAL3, was proposed [51]. This involves two sub-problems per iteration, the first of 

which is to minimize an augmented Lagrangian function with respect to the 

mentioned slack variable, and the second is to minimize the objective function 

roughly with respect to the sought gray-level image by a one-step gradient descent 

scheme [51]. 

      In contrast with a great deal of sparsity regularization schemes that have been 

applied to EIT [16-21], the recent advances on TV minimization have not been paid 

due attention. As far as we know, TVAL3 is the most powerful TV algorithm in the 

context of image restoration [51-52]. On the other hand, PD-IPM is known to be the 

most efficient TV algorithm in EIT [39], and is available on the EIDORS website [40-

a]. In this study, the TVAL3 solver is accelerated by the so-called Fast Iterative 

Shrinkage-Thresholding Algorithm (FISTA), and then the performance of the 

resulting scheme is investigated in EIT. The accelerated TVAL3 is specifically 

tailored to EIT so that it matches the underlying finite element domain rather than 

gray-level images via locally weighting the TV function proportionally to length of 

edges between finite elements. The optimality criteria are changed in conformity with 

our special purpose. The results indicate the superiority of the accelerated TVAL3 to 

the standard TVAL3 with respect to speed, and to the PD-IPM algorithm with regard 

to both accuracy and speed. 

 

2.   Theory 

 

2.1. Forward and inverse models 

      Given a bounded Lipschitz domain )3,2(  dR d , and the Sobolev space )(1 H , 

)(
~ 1 H is a subspace of )(1 H , i.e.,  

    0:)()(
~ 11 dsHH  .                                                                                (1) 

      By neglecting magnetic induction, the Maxwell's laws are described by the 

following partial differential equation [11].  Find )(
~ 1 Hu  such that 





onjnu

u

/

in0).(




.                                                                              (2)     

Solving Eq. (2), the injected current j is linearly linked to the induced electrical 

potential u on the boundary by a map called Neumann to Dirichlet, which is written as 





uj

LL )()(: 22


,                                                                                               (3) 
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where )(2 L  denotes the boundary   in 2L space. The NtD map is nonlinear with 

respect to , so it is linearized by computing the Jacobian around
0 .  This gives a 

map that is a linear function of both   and j in the form 

 ujD )(
.                                                                                                           (4) 

From a practical point of view, to deal with errors occurring during the measurement 

process, difference imaging is often preferred to static imaging [3]. Conversely, the 

calculation of  from u  cannot be done straightforwardly by inversion of the 

linearized map since a noisy version )(2
~  LD  of the linear NtD 

map )()( 2  LD   is measured in practice. Instead, the solution will be the 

minimizer of discrepancy functional in the form 

)(
~ 2)(min




LA
DD 


 ,                                                                                          (5a) 

where A is an admissible set of the conductivity distribution.   

     From a practical point of view, the reconstruction of  from u  is subject to errors 

during the measurement process, e.g., electrode movements. As a result, difference 

imaging is often preferred to absolute imaging [3]. Accordingly, one seeks the 

difference of conductivity distribution between two frames of data taken at times 1t  

and 
2t  from electrical potentials )( 1tu  and )( 2tu . Accordingly, the discrepancy 

functional is recast in the form 

)(
~ 2)(min




LA
DD 


 ,                                                                                       (5b) 

     The linearized map given in Eq. (4) is severely ill-conditioned. To see a proof on 

the ill-conditioning of the map, the reader is referred to [11]. To combat this ill-

conditioning, the solution is constrained by a priori assumption about the conductivity 

field, e.g., smoothness or sparsity. Accordingly, the solution will be the minimizer of 

the following objective functional  

21)(
2

1
min

)(
~ 2 


rDD

r

LA
r

 


.                                     (6) 

      The choice 2r  raises the classical smoothness penalty, while the choice )2,1[r  

enforces sparsity [11]. The sparsity imposes more vigorous constraint than the 

smoothness since ])2,1(( rr  is a subspace of 2 [11]. Although sparsity penalties 

have demonstrated their great potential in recovering sparse conductivity fields, e.g., 

anomalies with a simple mathematical description, it cannot recover precisely sharp 

transitions over large-scale piecewise conductivity fields when the gradient of the 

conductivity field rather than the conductivity itself is sparse.  

  

2.2. Total variation functional 

      To preserve sharp edges over the conductivity field, one initially assumes that the 

unknown conductivity is piecewise constant. To attain this objective, the sum of 

the spatial gradient of the conductivity, the so-called Total Variation (TV), i.e., 

  )()( TV ,                                                                                                   (7) 

is minimized as follows. 

Assume )(BV  be a space of functions in   with a bounded variation, which satisfies 


 

)()( 1LBV
.                                                                                   (8) 
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     Accordingly, the solution is expected to be the minimizer of the TV function 

subject to the constraint  ~)(  DD , which is written as 




 ~)(s.t.min 
DD

X
,                                                             (9) 

where  0:)(   BVX . 

     The exact solution of )( is not computationally tractable because of the ill-

posedness of the problem. Instead, a blurred version )()~(    is calculated 

in practice instead, which satisfies 

 
  )( .                                                                                              (10) 

     The unconstrained variant of the problem is formed by penalizing the constraint, 

which yields the following augmented functional. 
2

2
~

2
)(min 




 

DD
X

                                                                          (11) 

      The resulting problem is now expressed in a discrete form. The finite element 

approximation hu  of electrical potential u  over a finite element domain of size nN  

can be described as an expansion of nN  characteristic functions in the form 




xxau
nN

k

kk ,)(
1

 .                                                                                         (12)  

Where, )(xk and ka  respectively, represent basis function k  at point x  and its 

associated coefficient. The conductivity distribution is now represented over sN  finite 

elements, and is linearly linked to the electrical potential on electrodes by the 

Jacobian sNM
RJ


 , where M  is the number of measurements between the 

electrodes. 

     To define the TV penalty, the spatial gradient matrix must be computed. To 

compute the gradient between two neighboring finite elements which share edge i, 

)( is set to zero over the entire domain except on that edge. Consequently, over a 

mesh made up of eN edges and sN  elements, the gradient matrix se NN
RG


 is a 

sparse matrix where each row has two nonzero entries on indices sharing the 

corresponding edge, and is zero elsewhere. For instance, the row 

]0,...,0,,...,,0,...,0[ iii ggG   pertaining to edge i takes two nonzero values on the 

indices sharing this edge, and is zero elsewhere. ig is the length of edge i, and its sign 

denotes the two sides of this edge. The minimizer is thus rewritten as  

2

22
1

min VJG
eN

i

i  






.                                                                                   (13) 

Where, V  is the difference between two frames of data, and 


eN

i

iG
1

  represents the 

discrete total variation )(TV . To combat the non-differentiability of the TV 

functional in the neighborhood of zero, )(TV is smoothed around the origin, which 

yields 

 
2

)()( TVTV ,                                                                                      (14) 

where   is the smoothing parameter. 

       

2.3. Primal-Dual Interior-Point-Method  
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      To the best of our knowledge, the most efficient TV solver that has been 

employed in EIT is the Primal-Dual Interior-Point-Method (PD-IPM). It was 

demonstrated that the PD-IPM is the most accurate algorithm among TV solvers that 

are based on second-order optimization techniques [39]. This solver is freely available 

on EIDORS website, which was used in this study [40]. Applying the PD-IPM, the 

problem involves two objective functions, Primal (P) and Dual (D), in the form [39] 


i

iGVJ 


2

22

1
min)(P                                                             (15a) 


 i

iiGVJ
i




2

21: 2

1
minmax)(D                                                (15b) 

where  /1 , and  denotes the vector of auxiliary variables, the so-called dual 

variables. The optimal solution is the point where the difference between these two 

functions, namely Primal-Dual gap, becomes zero [39]. This condition is called 

Complementarity condition, and is derived in the form 

   eiii NiGG ,...,1,0   χ
.                                                              (16)

 

Gauss-Newton algorithm is applied to iteratively reach the complementary condition, 

which gives updated formulas [39] 

kkk
T

k
T
kkk

T
k

T
kk GEGVJJGFEGJJ   

 ])([][ 111
1                (17a) 

)( 1
1

1 kkkkkkk GG   


 FEEχ                                                                    (17b) 

Where, 








  
2

diag kik GE                                                                                       (18a) 

























2

),(
1diag

ki

kiki

k

G

G
F

χ
 .                                                                              (18b) 

The stopping criterion of the PD-IPM solver was considered as 

3

1

101 






k

kk




.                                                                                            (19) 

 

2.4. Alternating Direction Method of Multipliers (ADMM) 

 

      Smoothing the TV functional around the origin typically imposes some numerical 

errors on the solution, and deleteriously affects the convergence. To address this 

issue, continuation strategies were proposed on the choice of , which slightly reduce 

the errors arising from the smoothing parameter [13,32].  

      To evade this smoothing action, Wang et al [50] proposed a variable-splitting 

scheme. This approach uses a slack variable at each image pixel, which shifts the 

gradient out of the non-differentiable region, and then penalizes this deviation at that 

pixel. In this work, we modify the TVAL3 code available in [52] so that it matches 

the underlying finite element domain, and then combine it with Fast Iterative 

Shrinkage Thresholding Algorithm (FISTA) [54] in order to considerably enhance its 

speed. 

Over a finite element domain, the slack variable can be described on each edge as a 

scalar variable ),...,1( eNiR
i

 which represents the differentiable variant of the 

gradient of the conductivity changes on that edge. The total variation of the defined 
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slack variable is thus differentiable around the origin. The resulting problem is of the 

form [51] 

eii

i

i NiGVJ ,...,1,ands.t.min  


.                         (20) 

     Penalizing the constraint on data as a quadratic penalty and the constraint on the 

slack variable as an element-wise quadratic norm yields the unconstrained variant of 

the problem, the so-called half-quadratic problem, i.e., 

2

2

2

2, 2
)

2
(:),(min VJGw ii

i

ii 








 .                                   (21) 

      At each iterate, the objective function is first minimized with respect to i  by the 

shrinkage formula in the form   

)sgn(0,
1

max)1,( kikiki GG 











 .                                                               (22) 

The objective function is now a function of the updated slack variable in the form as 

2

2

2

21,1,)1,(
2

)
2

(),( VJG kii
i

kiki 





    .                              (23) 

Nulling the gradient of the updated objective function with respect to   yields  

)()( 1,1 VJGJJGG T

i
ki

T
i

T

i
i

T
ik 









   


 ,                                                (24) 

where   stands for Moore-Penrose pseudo inverse of the underlying matrix, the so-

called Hessian ss NN
RH


 . Typically, the major cost of solving Eq. (24) is the 

inverse Hessian, which is not computationally tractable in large-scale problems. 

Instead, an equivalent linear system of equations is solved iteratively by least square 

methods, which is still very expensive. In addition, the storage of the Hessian matrix 

for large-scale problems is often impractical. 

     Another shortcoming is the multiplier   which must go to infinity by the 

progression of the algorithm in order to guarantee that the solution of Eq. (21) 

converges to that of Eq. (13). Unfortunately, the large values of  considerably 

increase the ill-condition of the problem, though adopting continuation approaches 

mitigates this ill-posedness to some degree [50]. 

      To address these difficulties, a TV minimization approach based on augmented 

Lagrangian function was proposed. The key point of the algorithm is to penalize each 

constraint as an augmented Lagrangian function rather than a quadratic norm, which 

gives [51] 

2

2

2

2

2
)(

)
2

)((),(

VJVJ

GG

T

i
ii

i
ii

T
iii














.                                           (25) 

The minimization of the above functional involves some outer iterations denoted by 

superscript k and inner iterations labeled by subscript k. At every iteration the 

multipliers i and are first updated in the form  

iG k

i

k

ii

k

i

k

i allfor)(1   
                                                                 (26a) 

)(1 VJ kkk    .                                                                                      (26b) 

Here the initial values are set to 0, 00  i . Analogous to the half-quadratic problem, 

the first sub-problem is to minimize the objective function with respect to i on each 

edge in the form 
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 
i

ii
i

ii
T
ii GG

i

)
2

)((min
2

2






.                                                       (27) 

This is done by a shrinkage-like formula in the form 

)sgn(0,
1

max)1,(
i

i
ki

ii

i
kiki GG









 













                                                  (28) 

Having 1, ki at hand, the second sub-problem is to minimize the objective function 

with respect to [51], i.e.,  

2

2

2

2
)1,()1,()1,()1,(

2
)(

)
2

)((),(min

VJVJ

GG

T

kii
i

i
kii

T
ikiki














  
  (29) 

The exact minimizer of the above sub-problem is calculated by differentiating the 

objective function with respect to , which yields 








T

k

T

i

i

T

ikiki

T

ii

kki

JVJJ

GGG
d

d



 



)(
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)1,(

)1,(

.                                           (30) 

Enforcing 0/),( )1,(   dd kki yields 

])([][ )1,(1 VJJGGJJGG TT

i
ki

T
iii

T
i

i

T
i

T
iik    


                    (31) 

      As discussed above, the calculation of the Moore-Penrose pseudo inverse 

considerably increases the computational cost. Instead, the steepest descent method is 

employed to recursively solve  at each iteration in the form 






d

d
~ .                                                                                                       (32) 

Each recur requires computation of the gradient in Eq. (30), which is computationally 

costly. So a single step of the steepest descent method is often implemented at each 

outer iteration to compute a rough approximation of 1k , i.e., 

 





d

d kki
kkk

),(~~ )1,(

1



                                                                            (33) 

The step length k
~  is estimated by Barzilai-Borwein (BB) method [51-53]. 1k  

and k  from two previous iterations are utilized to estimate the step length as 

follows. Having defined 

1 kkks                                                                                                        (34a) 









d

d

d

d
g

kkikki

k

),(),( 1)1,()1,( 
 ,                                                           (34b) 

an initial guess of the step length is calculated as follows.  

k

T

k

k

T

k
k

gs

ss
 .                                                                                                                 (35) 

Considering k as the first guess, the convergence of the algorithm is checked through 

the following loop until the following Nonmonotone Armijo condition is satisfied. 

Nonmonotone Armijo loop 

          While    )/)/(()))/((,( )1,(  ddddMdd k
T

kkkkkkki   

                        kk    
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          End 

Where,





d

d
dd

kki
k

),(
/

)1,( 
 , and kM is calculated as follows. 

11  kk QQ                                                                                                            (36a) 

kkkkk QMQM /))(( 11                                                                                 (36b) 

and 10,10    are scalar values.  

     Here  and are set close to 1 for iterates far from the optimum, i.e., 995.0, 00  , 

and are set close to zero for iterates close to the optimum. i  is assumed fixed over 

all edges in the finite element domain, and   is empirically set to  510 . 

The algorithm is now accelerated based on FISTA method [54]. To attain this aim, a 

linear combination of 1k  and k  is used to update the iterate as follows. 

2

)(411 2

1

k

k t
t


                                                                                                (37a) 

)(
1 1

1

11 kk
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k
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t

t
y  


 



 ,                                                                         (37b) 

which is initialized by 000 y and 11 t . We restart iterates of FISTA by 1kt  

whenever ),(),( 11 kk

i

kk

i ww    in order to avoid any increase in the objective 

function since applying FISTA, the objective function is typically prone to an 

unwanted oscillation with the progression of iterates.  

In what follows, the proposed accelerated TVAL3 algorithm is overviewed at a 

glance. The stopping criterion of the algorithm is enforced similarly to that of the PD-

IPM in order to make a fair comparison between the competing solvers. 

 

Algorithm 1.         Initialize: ),...,1(0,0 00000

eii Niy    , 11 t  

                               Set  , ,  510                       

                                        Outer loop:     While 3
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


k
ki  by shrinkage formula 

                                                        Estimate k by BB scheme 

                                                        Calculate k
~  by Non-monotone Armijo loop 

                                                        Update 1
1



k
k by steepest descent meh 
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1

1
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



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                                         End Inner loop 

                                                         Set 1
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10 
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                                         Else  

                                                          1kt , 11 kt           

                                         End If 

                                                        )(
1 1

1

11 kk

k

k
kk

t

t
y  


 



  

                                                         Update  kk

i  ,  

                                                         End While 

                                       End Outer loop 

 

3.   Numerical results 

 

The processor that was used in this work is an Intel(R) Core(TM) i5-4570 CPU @ 

3.20 GHz with a RAM of 8.00 GB and a 64-bit operating system (Windows 7, 

Microsoft). 

 

3.1.   2D simulated phantom 

      The PD-IPM method was considered as a benchmark in our study, as it is the most 

accurate TV solver employed in EIT. The 2D phantom was simulated analogously to 

that presented in Borsic et al [39]. The FEM model was made up of 1600 triangular 

elements. The background conductivity was set to 1 1Sm , and two anomalies having 

the conductivities of 0.5 1Sm and 1.5 1Sm  provide a narrow gap, making a challenge 

for reconstruction. The simulated conductivity distribution has sharp interfaces.  

Sixteen electrodes were evenly placed around the surface based on complete electrode 

model with a contact impedance of 10 m , and the measurements were done 

according to the well-known adjacent strategy. An electrical current with amplitude of 

10 mA was successively injected through each pair of adjacent electrodes, and the 

induced voltages were measured between the remaining pairs of adjacent electrodes. 

In total, 104 voltages were measured. The phantom is shown in Fig. 1. Additive White 

Gaussian Noise (AWGN) with different levels of noise was incorporated to data, i.e.,  

NDVNLNoise  )(std  .                                                                                        (38) 

Where, NL is the noise level, )(std V is the standard deviation of the difference 

measured data, and ND is a vector-valued standard normal distribution. 

 

                                          
Fig. 1. The 2D simulated phantom, similar to that used in Borsic et al [39]. 
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The inverse solvers were applied to a mesh made up of 1024 elements in order to 

avoid inverse crime. Employing the PD-IPM solver, the images were successively 

reconstructed over an extensive range of the regularization parameters, i.e., 
13 1010     so that 11 values are placed equidistantly on a logarithmic scale. On 

the other hand, employing the modified TVAL3 solver, the inverse of the multipliers 

 and  are presented since /1 in the TVAL3 is equal to   in the PD-IPM, 

comparing Eq. (13) with Eq. (15-a). The range of /1  was chosen similarly to . For 

simplicity, i values were fixed over the entire domain. To reconstruct images, the 

solvers were terminated when the optimality criteria are satisfied (c.f. section 2). The 

accuracy of each reconstructed image was calculated with respect to Relative Error 

(RE), i.e., 

true

truetedreconstruc
RE



 
 .                                                                                     (39) 

      Figs. 2(a-d) respectively, exhibit RE of images reconstructed from data 

incorporated with 1%, 3%, 5% and 10% noise levels against the chosen regularization 

parameters. As shown in Fig (2), three values of /1 , 2e-3, 1e-3 and 8e-4, were 

chosen to demonstrate the performance of TVAL3. As shown in this Figure, the RE 

values were successfully reduced by the accelerated TVAL3 relative to the PD-IPM 

for all chosen values of  and  .  

 

   
                                  (a)                                                             (b) 

   
                                  (c)                                                             (d) 

Fig. 2. Relative Error of the reconstructed images of the 2D simulated phantom 

against the regularization parameter  /1 . The data were incorporated with 

AWGN with noise levels: (a) 1%, (b) 3%, (c) 5%, (d) 10%.  

      Table 1 shows the optimal images of the curves shown in Fig. 2. The optimal 

regularization parameter associated with each curve was considered the point that 

produced the minimal RE on that curve. From this table, the accelerated TVAL3 

algorithm produced the optimal images with a lower RE than the PD-IPM for all noise 

levels. The optimal images reconstructed by the accelerated TVAL3 solver from the 

noisy data corrupted with a 10% noise level are more accurate than the optimal image 

obtained by PD-IPM from the data corrupted with only a 1% noise level. 

  



 

12 

 

 

 

Noise 

Level 

Regularization 

parameter 

 
PD-IPM 

 

 Accelerated TVAL3 

  32/1  e  31/1  e  48/1  e  

 

1%  /1   1.58e-2 
 
 6.31e-2 3.98e-2 6.31e-2 

RE  5.646 e-1  5.214e-1 5.166e-1 5.196e-1 

        

 

3% 
 /1   1.58e-2  6.31e-2 1e-1 6.31e-2 

RE  5.648e-1  5.261e-1 5.167e-1 5.199e-1 

        

 

5% 
 /1   1.58e-2  3.98e-2 1e-1 6.31e-2 

RE  5.654e-1  5.287e-1 5.362e-1 5.318e-1 

        

 

10% 
 /1   1.58e-2  1e-1 3.98e-2 6.31e-2 

RE  5.683e-1  5.351 e-1 5.176e-1 5.252e-1 

 

Table 1. The optimal images obtained from the 2D simulated phantom. 

 

      Figs. 3(a) and (b) show the images reconstructed by the PD-IPM solver with the 

optimal regularization parameter from noisy data with noise levels of 5% and 10%, 

respectively. The images were obtained when the stopping criterion was satisfied. 

      Figs. 4(a) and (b) show the images reconstructed by the accelerated TVAL3 with 

the optimal regularization parameter and 48  e  from noisy data with noise levels 

of 5% and 10%, respectively. Figs. 3(a) and (b) indicate that the PD-IPM produced a 

slightly sharper image than the accelerated TVAL3, but it determined the interfaces 

with a low accuracy. It is observed that the inter-medium boundaries have been 

recovered falsely, relative to the phantom in Fig. (1). Indeed, the sharpness of an 

image is efficient as long as the accuracy holds. Figs. 3(c) and (d) show that the 

modified TVAL3 solver has recovered the discontinuities more accurately than the 

PD-IPM, and produced a smaller artifact.  

 

                     
                                 (a)                                                         (b) 
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                            (c)                                                          (d)  

Fig. 3. The optimal image of the 2D simulated phantom, reconstructed by PD-IPM 

from data with noise levels: (a) 5%, and (b) 10%, and the optimal image reconstructed 

by accelerated TVAL3 with 48/1  e  from data with noise levels: (c) 5%, and (d) 

10%. 

      As discussed in sections 1 and 2, the main advantage of TVAL3 relative to PD-

IPM is the computational cost since TVAL3 is performed without the need for the 

inverse Hessian. Note that in second-order optimization methods like PD-IPM, the 

Hessian is not computationally inverted, and instead the arising linear system of 

equations is solved recursively by least squares method, but this is still more 

expensive than gradient-based methods like TVAL3. In this study, TVAL3 was 

further accelerated relying on FISTA strategy, which was proposed in [54]. 

     Table 2 shows the mean CPU time elapsed for reconstructing an image by PDIPM, 

standard TVAL3 and accelerated TVAL3. Standard TVAL3 is the algorithm without 

the acceleration due to FISTA. Considering each noisy data, the CPU times elapsed 

by the PD-IPM solver were averaged over the 11 chosen regularization parameters , 

whereas the elapsed times for implementation of the TVAL3 solvers were averaged 

over 33 different joint choices of multipliers and  . According to this table, the 

mean CPU time elapsed for recovering an image by the accelerated TVAL3 was 

almost four times less than that of the standard TVAL3 and thirteen times less than 

that of the PD-IPM. As discussed in section 2, all solvers were terminated by the same 

stopping criterion. Note that the images reconstructed by the standard TVAL3  

were very similar to those of the accelerated TVAL3 with regard to accuracy and 

shape of interfaces, and were thus not shown in this work to avoid repetition. 

 

Noise 

Level 

   PD-IPM(Sec)  Standard   TVAL3 

(Sec) 

 Accelerated 

TVAL3(Sec) 

1%  1. 6711  0. 5156Sec  0.1237 

3%  1.6751   0.5238 Sec  0.1258 

5%  1.6881   0.5313 Sec  0.1279 

10%  1.6934   0.5372 Sec  0.1302 

 

Table 2. The mean CPU time elapsed by PD-IPM, standard TVAL3 and accelerated 

TVAL3 for reconstructing an image of the 2D simulated phantom. 

 

3.2.   3D simulated phantom 

      The 3D phantom was created as a cylindrical mesh, 1 in height and radius, made 

up of 1024 tetrahedral elements. 32 electrodes were installed aligning two rings 

around the surface based on complete electrode model by assuming a contact 

impedance of 210 m  per electrode, and data was collected based on the planar 
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strategy [55]. The electrical current was injected through each pair of the electrodes 

with amplitude of 10mA.  In total, 464 voltages were measured. Two inclusions 

having conductivities of 1.5 1Sm and 0.5 1Sm were simulated, and the background 

conductivity was set to 1 1Sm . The simulated phantom is shown in Fig. 4(a).  The 

collected data were contaminated by a 5% and 10% AWGN noise. 

 

     To avoid inverse crime, the inverse mesh was made up of 828 finite elements. 

Analogous to the 2D simulation, the PD-IPM and accelerated TVAL3 solvers were 

implemented over an extensive range of regularization parameters  /1 , and   was 

set to 64 in the TVAL3. The optimal images were computed, which are images with 

the minimal RE at the stopping point of the algorithms. Table 3 evaluates the 

reconstructed optimal images with regard to Relative Error and reconstruction time. 

This table confirms that the accelerated TVAL3 outperforms PD-IPM with respect to 

both accuracy and speed. 

 

 

 

Noise 

level 

  

 

Regularization 

parameters     PD-IPM  

Accelerated 

TVAL3 

( 64 ) 

 

     5% 

  /1   1e-3  5e-4 

 
RE  3.731e-1  2.231e-1 

 CPU Time  3.0463Sec  0.2478Sec 

       

 

10% 

  /1   5e-3  2e-3 

 RE  5.438e-1  3.512e-1 

 CPU Time  3.1576Sec  0.2516 sec 

 

Table 3. The optimal images reconstructed by PD-IPM and accelerated TVAL3 from 

the 3D simulated phantom. 

 

      The optimal images are shown in Fig. 4. Figs. 4(b) and (c) were reconstructed 

from data with noise level of 5%, whereas Figs. 4(d) and (e) correspond to the 10% 

noise level. Figs. 4(b) and (d) were reconstructed by the PD-IPM, while Figs. 4(c) and 

(e) were computed by the accelerated TVAL3. The images were taken at the iteration 

at which the terminating criterion was satisfied. This figure indicates that the modified 

TVAL3 solver outperformed PD-IPM in recovering shape of the inclusions. 

                                
                                                            (a)   
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                           (b)                                                          (c) 

 
            

                              (d)                                                      (e)  

 

Fig. 4. (a) The 3D simulated phantom. The optimal images reconstructed from data 

with noise level of 5% by: (b) PD-IPM and (c) accelerated TVAL3, and from data 

with noise level of 10% by: (d) PD-IPM and (e) accelerated TVAL3. 

 

4. Experimental results 

 

4.1. Imaging of golf balls  

      To evaluate the performance of the competing solvers in real-world settings, a set 

of data freely available on the EIDORS website was employed [40-b]. The phantom is 

a cylindrical pail, 30cm in diameter and height, made of polyethylene, full of 0.9% 

saline solution. Sixteen electrodes were installed aligning a horizontal ring on the 

surface of the pail. The inclusions are two non-conductive 2cm radius golf balls. Two 

setups of this data were utilized, i.e.,  

Setup 1- A golf ball was placed at half the radius of the electrode plane. 

Setup 2- Two golf balls were placed at half the radius of the electrode plane, one of 

which was aligning the horizontal axis and the other was aligned by the vertical axis. 

      The measured data and the Jacobian matrix were normalized in order to cope with 

the measurement errors. Typically, TV solvers perform well in recovering piecewise 

conductivity fields having large-scale inclusions, but the recovery of small inclusions 

is a challenge. Here the merits of the TV solvers in recovering the small golf balls 

were assessed. The images of the two considered setups were first reconstructed by a 

one-step quadratic regularized solver, the so-called MAP, where a Gaussian high pass 

filter was utilized to regularize the solution among an extensive range of the 

regularization parameters, i.e., 11 values equidistantly placed on a logarithmic scale in 

the range 13 1010    . Subsequently, the PD-IPM and the accelerated TVAL3 

solvers were applied by 11 multipliers between 24 10/110    , and  was set to 
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32 in the TVAL3. Applying each of the solvers, the optimal solution in terms of RE at 

the iteration that satisfies the stopping criterion was calculated. For measuring RE, the 

true conductivity field was calculated by matching the area of the golf balls to the 

FEM model such that the conductivity of the finite elements underlying the interfaces 

was determined by interpolation. Table 4 presents the merits of the solvers in 

computing the optimal images. From the measures given in this table, it is observed 

the modified TVAL3 solver produced smaller RE than the PD-IPM. This table also 

confirms that the accelerated TVAL3 is almost ten times faster than the PD-IPM.  

 

 

Setup 
Regularization 

parameters 

 One-step 

Quadratic 

  

PD-IPM 

 

 Accelerated 

TVAL3 

( 32 )  

 

 

 

 

1 

 /1   1.26e-2  6.31e-4  1.13e-3 

RE  1.0022  1.0030  1.0012 

CPU Time  

0.9681 

Sec 

 

1.7466 Sec  

0.1423 Sec 

iterations  1  20  43 

        

 

 

2 

 /1   1e-2  5e-4  1e-3 

RE  1.0045  1.0052  1.0046 

CPU Time  

1.0352 

Sec 

 

1.8261 Sec  

0.1616 Sec 

iterations  1  20  48 

Table 4. Evaluation of the optimal images of the golf balls. 

       

      Figs. 5(a), (b) and (c) show the optimal images of the first setup, and Figs. 5(d), 

(e) and (f) pertain to the second setup. Figs. 5(a) and (d) were calculated by the one-

step quadric solver, Figs. 5(b) and (e) were reconstructed from the PD-IPM, and Figs. 

5(c) and (f) correspond to the accelerated TVAL3. This figure indicates that the 

modified TVAL3 improved accuracy of images relative to the PD-IPM. In light of the 

color bars shown to the right of the images, TVAL3 provided sharper interfaces for 

both the setups. Furthermore, TVAL3 recovered shape of interfaces more accurately 

than the PD-IPM, especially in the second setup. However, it must be remembered 

that TV solvers are efficient in recovering large-scale inclusions, and the application 

of these solvers to recover small inclusions still remains a challenge in EIT. 

   
                (a)                                         (b)                                         (c) 
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                (d)                                         (e)                                         (f) 

Fig. 5. The optimal images of the first setup computed by: (a) One-step Quadratic, (b) 

PD-IPM, (c) accelerated TVAL3, and the second setup computed by: (d) One-step 

Quadratic, (e) PD-IPM, (f) accelerated TVAL3. 

 

4.2. Clinical in vivo imaging 

      The TV regularization, if it identifies inter-organ interfaces accurately, can play a 

significant role in clinical imaging. Such cases arise for example in detecting interface 

between the collapsed and ventilated volumes of an injured lung, the size of a tumor, 

etc. In what follows, the presented TV solvers are applied to two instances of clinical 

data that are available on the EIDORS website. 

 

4.2.1. Lung (Human shallow breathing) 

      Sixteen ECG electrodes, which were connected to an EIT system, were 

equidistantly placed around the chest of an adult human, and data were measured 

according to the well-known adjacent strategy at 22 times. Here, we attempt to 

recover the difference between the first and 22nd frame of the lung data, as the 22nd 

frame is considered as the reference data on the EIDORS [40-c].  

      To cope with the measurement errors, the normalized difference scheme was 

applied to the solvers. The one-step quadratic algorithm was regularized by a 

smoothness penalty similarly to the previous subsection [40-c]. Since the true 

conductivity of the lungs was not available, the calculation of RE was impossible. The 

quadratic solver was applied by the regularization parameter used in the EIDORS for 

this data, i.e., 25  e  [40-c]. Applying the TV solvers, the optimal regularization 

parameter was determined by applying a wide range of values and then characterizing 

the reconstructed images with respect to CNR, which does not depend on the true 

conductivity field. In light of the difference imaging, the CNR is calculated as  

1/2

BR

Tot

BR
IR

Tot

IR

BRIR

A

A

A

A
CNR














varvar

meanmean
.                                                                           (39) 

Where, IR denotes the area encompassing the elements whose absolute conductivity 

exceeds one-fourth of the maximum absolute conductivity (inclusion), and BR 

denotes the remaining area. In addition, A, meanand var  respectively, denote the 

area, the mean conductivity, and the variance of the conductivity over the defined 

regions [56]. The numerator of Eq. (39) determines the sharpness of the image, while 

the denominator measures how much the image deviates from being piecewise 

constant. In contrast with RE, CNR is a positive measure. This implies that the 

optimal image of the resulting curve is the point that yields the maximum CNR.  

Table 5 in the top row first quantifies the one-step quadratic reconstruction, and then 

presents the optimal values resulting from the TV solvers, which are the maximal 

points of curves that plot the CNR against the applied regularization 

../../eidors-v3.3/documentation/tutorial/lung_EIT/tutorial310-lung-images-s.html
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parameters  /1 .  was set to 16 in the TVAL3. The regularization parameters 

were chosen 21 values in the range 24 10/110    . The results show that the 

accelerated TVAL3 was more tolerant than the PD-IPM in recovering images. This 

scheme was executed more rapidly than the PD-IPM as well; consider that the solvers 

were stopped by the same stopping criterion. Figs. 6(a), (b) and (c) respectively, show 

optimal images reconstructed by the quadratic, PD-IPM, and the accelerated TVAL3 

solvers. The difference between Fig. 6(a) and the corresponding image in the 

EIDORS example is only due to the use of different color bars. A comparison 

between Figs. 6(b) and (c) demonstrates that the modified TVAL3 recovered lungs’ 

boundaries with a lower distortion than the PD-IPM. 

                                      
                                                              (a) 

              
                         (b)                                                                    (c) 

Fig. 6. The optimal images of human's lung reconstructed by: (a) one-step quadratic, 

(b) PD-IPM, and (c) accelerated TVAL3 solvers. 

 

4.2.2. Gastric emptying 

      Sixteen electrodes were equidistantly installed around the abdomen of a human 

subject, and the reference data was measured from his empty stomach. 335 ml Coca-

Cola was then fed to the subject. A set of data was measured after every five minutes. 

Here our aim is reconstruct the last frame of data, which was taken 60 minutes after 

drinking. The bottom row of Table 5 evaluates the optimal reconstructed images, 

which were calculated similarly to those of the lung data. This table confirms that the 

accelerated TVAL3 is faster and more accurate than the PD-IPM in reconstructing the 

optimal images. Figs. 7 (a), (b) and (c) respectively, exhibit the optimal images solved 

by the quadratic, PD-IPM, and the modified TVAL3 algorithms. Again the quadratic 

solver was applied similarly to the EIDORS example in [40-d]. Fig. 7 demonstrates 

that the accelerated TVAL3 solver produced a sharper optimal image than the PD-

IPM with a smaller artifact.    
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                                                               (a) 

 
                            (b)                                                               (c) 

Fig. 7. The optimal images of the human's stomach, taken 60 minutes after drinking 

the Coca-Cola, reconstructed by: (a) one-step quadratic, (b) PD-IPM, and (c) modified 

TVAL3 solvers. 

 

 

Setup Parameters 

 One-step 

Quadratic 

  

PD-IPM 

 

 Modified 

TVAL3 

( 16 )  

 

 

 

Lung 

(1st and 22nd 

frames) 

 /1   5e-2  1e-3  5.01e-4 

CNR  3.2133  4.7873  5.1008 

CPU Time  0.7443 Sec  1.2383 Sec  0.1179 Sec 

iterations  1  14         39 

        

 

Gastric 

(reference 

and 13th 

frame) 

 /1   5e-2  1e-3  2.51e-4 

CNR  3.6228  3.6986  5.5432 

CPU Time  0.8142 Sec  1.3674 Sec  0.1252 Sec 

iterations  1  13  37 

Table 5. Evaluation of the optimal images obtained from clinical data in EIDORS. 

 

5. Discussion 
      The problem of reconstructing spatially varying conductivity distribution from a 

set of electrostatic measurements at the surface is severely ill-posed, even by reducing 

the size of the problem via transferring the conductivity field to a finite dimensional 

space [13]. Since there exist many conductivity fields which yield data that matches 

real data in the least square sense, the exact recovery of the conductivity field from a 

noisy data is not computationally tractable. Instead, the solution is restricted to a 
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priori assumption about the conductivity [12-14]. However, the measured data is 

typically insensitive to the high frequency contents of the conductivity profile. This 

permits different assumptions with various frequency features on the reconstructed 

image [23]. To regularize the problem, the deviation of the solution from the a priori 

assumption is penalized and augmented to the least square functional to be 

minimized. The smoothness penalties, which were employed since the inaugural 

studies in EIT, typically impose some unappealing blurriness on the reconstructed 

image [15]. Recently, the sparsity penalties have received much attention in EIT [18-

21] thanks to their efficiency in recovering sparse conductivity fields, i.e., simple 

inclusions plus an unknown but uninteresting background [11]. Unfortunately, the 

sparse penalties cannot suitably deal with the sparsity of the gradient of the 

conductivity rather than the conductivity itself. So using the sparsity priors, the 

precise recovery of abrupt conductivity changes that provide sub-domain interfaces 

still remains a challenge.  

      In clinical EIT applications, a precise detection of sharp conductivity changes is 

essential in order to favorably describe organs’ functions. The best approach to 

recover discontinuities over the domain is to regularize the inverse problem by the 

assumption that the conductivity field is piecewise constant. This assumption implies 

that the total variation of the conductivity distribution, the so-called TV functional, is 

minimal. The objective is thus to minimize the TV functional subject to the 

constraints imposed by the measured data [23]. As far as we know, the most 

commonly used TV solvers in EIT are the Lagged Diffusivity (LD) and the Primal-

Dual Interior-Point-Method, which are available on the EIDORS website [40-a]. 

Borsic et al [39] showed that the PD-IPM outperforms LD in EIT. These solvers are 

based on second-order optimization, which significantly increases the execution time 

because of the need for computing and storing the Hessian. This precludes the 

application of these solvers to real-time monitoring of organs’ functions. In addition, 

smoothing TV function to combat its non-differentiability at the origin imposes some 

numerical errors on the solution, and deleteriously affects the convergence of the 

algorithm [13-39]. 

      In recent years, many modern TV algorithms were developed (cf. section 1). To 

address the errors arising from smoothing the TV function, a new class of TV solvers 

based on variable splitting technique has been proposed [50]. Applying a half-

quadratic objective function, the solver requires the multipliers to extremely increase, 

which makes the problem very ill-posed [50-51]. To override this difficulty, an 

augmented Lagrangian function is proposed [51]. Accordingly, the problem is solved 

by alternative minimization of the objective function with respect to a slack variable 

and the gray-level image [51-52]. This algorithm is quite fast since it does not require 

the Hessian. It exhibits very good convergence rate as a result of penalizing the 

violation of the smoothing approximation on the TV function by means of the slack 

variable. The TVAL3 algorithm was proposed to attain these objectives, and has 

shown its great potential in high dimensional problems [51-52]. In this study, we first 

propose an accelerated version of TVAL3 based on the strategy proposed in [54], 

referred to as FISTA,  and shows its great performance in TV minimization in EIT, 

compared to the existing TV solvers in EIT. 

 

 

6. Conclusion 

      Although TV minimization plays an important role in preserving sharp transitions 

over the conductivity, the application of the state-of-the-art TV solvers to EIT remains 
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scarce. The existing TV solvers in EIT, e.g., PD-IPM or Lagged Diffusivity, are based 

on Newton’s method, and are thus very time consuming. In addition, the numerical 

errors arising from smoothing the TV functional disallows a precise determination of 

interfaces from noisy data. This study proposed an accelerated version of TVAL3 

algorithm [51-52], and tailored it to finite element domain for application in EIT. The 

spatial gradient of conductivity was weighted locally by length of edges between 

finite elements. The PD-IPM was considered as the benchmark since it is known the 

most robust TV solver applied to EIT. The results show that the accelerated TVAL3 

outperforms PD-IPM with regard to both accuracy and speed.  
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