

Citation for published version:
Lester, C, Baker, RE, Giles, MB & Yates, CA 2016, 'Extending the multi-level method for the simulation of
stochastic biological systems', Bulletin of Mathematical Biology, vol. 78, no. 8, pp. 1640-1677.
https://doi.org/10.1007/s11538-016-0178-9

DOI:
10.1007/s11538-016-0178-9

Publication date:
2016

Document Version
Peer reviewed version

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161916181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s11538-016-0178-9
https://researchportal.bath.ac.uk/en/publications/extending-the-multilevel-method-for-the-simulation-of-stochastic-biological-systems(960c110d-6bee-48cd-9ae2-c8f9b918d80a).html

Extending the multi-level method for the simulation of
stochastic biological systems

Christopher Lester · Ruth E. Baker · Michael
B. Giles · Christian A. Yates

29 February 2016

Abstract The multi-level method for discrete state systems, first introduced by An-
derson and Higham (2012), is a highly efficient simulation technique that can be
used to elucidate statistical characteristics of biochemical reaction networks. A sin-
gle point estimator is produced in a cost-effective manner by combining a number of
estimators of differing accuracy in a telescoping sum, and, as such, the method has
the potential to revolutionise the field of stochastic simulation.

In this paper we present several refinements of the multi-level method which ren-
der it easier to understand and implement, and also more efficient. Given the substan-
tial and complex nature of the multi-level method, the first part of this work reviews
existing literature, with the aim of providing a practical guide to the use of the multi-
level method. The second part provides the means for a deft implementation of the
technique, and concludes with a discussion of a number of open problems.

Keywords Stochastic simulation, gene regulatory networks, multi-level, Gillespie
Algorithm, Tau-leaping

1 Introduction

Experimental researchers such as Elowitz et al (2002), Fedoroff and Fontana (2002),
Arkin et al (1998) and Barrio et al (2006) have demonstrated the stochastic nature of
a range of biological phenomena. In particular, stochastic effects often affect systems
characterized by low molecular populations (Székely et al, 2012), but systems with
large molecular populations can also be affected under certain circumstances (Erban
et al, 2009). As such, in attempting to use mathematical and computational modeling

Christopher Lester, Ruth E. Baker and Michael B. Giles
Mathematical Institute, Woodstock Road, Oxford, OX2 6GG
E-mail: lesterc@maths.ox.ac.uk

Christian A. Yates
Department of Mathematical Sciences, Claverton Down, Bath, BA2 7AY

2 Christopher Lester et al.

to understand the dynamics of certain biological systems, it may be necessary to ex-
plicitly account for intrinsic noise. For example, deterministic models may provide
misleading results as they are unable to account for effects such as system bistabil-
ity (Székely et al, 2012), stochastic focusing (Paulsson et al, 2000) and stochastic
resonance (Hou and Xin, 2003).

In this work we will focus on spatially homogeneous population-level models,
which record only the numbers of each molecule type within the system. The tempo-
ral evolution of the molecular abundancies will be described by the chemical mas-
ter equation (CME), which comprises a system of ordinary differential equations
(ODEs). For each possible system state, the CME provides an ODE describing how
the probability that the system is in this particular state changes over time. For very
simple systems, a closed-form, analytic solution can be obtained (Jahnke and Huisinga,
2007), however, any complication is likely to frustrate an analytic approach. Under
particular circumstances, specialized numerical approaches may be feasible (Jahnke
and Huisinga, 2007, 2008; Engblom, 2009; Jahnke and Udrescu, 2010; Jahnke, 2011),
but in general the high dimensionality of the problem remains a challenge and stochas-
tic simulation is the only viable alternative. In order to understand the behavior of a
particular system we generate a large number of sample paths using our stochastic
simulation method of choice, and use them to calculate ensemble statistics.

The Gillespie direct method (DM) simulation method (Gillespie, 1976) is exact,
in the sense that it is derived from the same fundamental hypotheses as the CME and
so is rigorously equivalent to it. Several variations of Gillespie’s exact DM algorithm
have since been developed (Gibson and Bruck, 2000; Cao et al, 2004; McCollum
et al, 2006; Li and Petzold, 2006; Anderson, 2007). We will call these exact stochas-
tic simulation algorithms (and, for brevity, eSSAs). However, chemical reaction net-
works can be highly complex (Székely et al, 2012) and these eSSAs work by simu-
lating each and every reaction sequentially. This means that even the most efficient
formulation will be too slow for many practical applications. In this light, the devel-
opment of efficient approximate stochastic simulation algorithms (aSSAs) that avoid
the pitfalls of having to detail every single reaction is currently of great interest, and
a substantial range of computational techniques have been developed in an attempt to
tackle this problem (Gibson and Bruck, 2000; Gillespie, 2001; El Samad et al, 2005;
Auger et al, 2006). These include various forms of the tau-leaping aSSA (Yates and
Burrage, 2011; Cao et al, 2006, 2007; Gillespie, 2001; Cao et al, 2004; El Samad
et al, 2005) that function by carrying out multiple reactions per step. A number of
helpful survey papers provide a full account of these widely-known techniques (for
example, the authors recommend Gillespie (2005) or Higham (2008)). Nonetheless,
despite these advances, we remain at a stage where elucidating the behavior of many
stochastic biochemical signaling networks lies beyond our reach.

This work is aimed at readers comfortable with Monte Carlo simulation: the fo-
cus will be on improving the discrete-state multi-level technique first introduced by
Anderson and Higham (2012). The multi-level method provides such huge compu-
tational savings that it has the potential to significantly alter the field of stochastic
simulation. Given the substantial and complex nature of this approach, we first re-
view the multi-level method, which uses a clever combination of simulation methods
of varying degrees of accuracy to estimate the system statistics of interest. The idea is

Extending the multi-level method for the simulation of stochastic biological systems 3

to compute many (cheap) sample paths at low accuracy and correct the statistics gen-
erated from them using fewer (expensive) sample paths at high accuracy. Thereafter,
we consider a number of refinements to the multi-level method that render it much
easier to understand and implement, and also more efficient. We also provide sample
code in MATLAB and C++ in order to facilitate rapid and straightforward implementa-
tion.

1.1 Outline

In Section 2 we succinctly provide background material which allows us, in Section 3
to introduce the multi-level method of Anderson and Higham (2012). We provide a
practical approach to implementing this efficient simulation technique and present a
number of novel refinements to it. In Section 4 we present an in-depth discussion
of methods for choosing the multi-level parameters, and in Section 5 we show re-
sults from a second example system. Whilst the first example allows us to explore
the results of Anderson and Higham (2012) directly, this second example exhibits
different dynamic behaviour and therefore presents different simulation challenges.
A third example is presented in Section 6; it demonstrates the effectiveness of the
multi-level technique on relatively complicated reaction networks. Finally, we con-
clude, in Section 7, with a brief discussion. All results shown here were generated in
either MATLAB or C++ using a desktop computer, which was equipped with a 4.2 GHz
AMD FX(tm)-4350 processor, and eight gigabytes of RAM.

2 The chemical master equation setting

We consider a biochemical network comprising N species, S1,. . . ,SN , that may each
be involved in M possible interactions, R1,. . . ,RM , which are referred to as reaction
channels. For the purpose of this discussion, we will ignore spatial effects. This is
a reasonable assumption if the molecules are well-stirred, or, in other words, evenly
distributed throughout a given volume. The population size of Si is known as its copy
number and is denoted by Xi(t) at time t, t ≥ 0. The state vector is then defined as

X(t) :=

X1(t)
...

XN(t)

 . (1)

With each reaction channel, R j, we associate two quantities. The first is the stoi-
chiometric or state-change vector,

ν j =

ν1 j
...

νN j

 , (2)

where νi j is the change in the copy number of Si caused by reaction R j taking place.
Thus if the system is in state X and reaction R j happens, the system jumps to state

4 Christopher Lester et al.

Reaction Example Propensity
Zero-order /0

c1−→ S1 c1

First-order S1
c2−→ S2 c2 ·X1

Second-order S1 +S2
c3−→ S3 c3 ·X1 ·X2

Homo-dimer formation S1 +S1
c4−→ S4 c4 ·X1 · (X1−1)

Table 1 Sample reaction propensities for a stochastic system. Note for the propensity of homo-dimer
formation, we have adopted the common practice of absorbing the multiplier 1/2 into c4.

X + ν j. The second quantity is the propensity function, a j. This represents the rate
at which a reaction takes place. Formally, for small dt, and based on a condition of
X(t) = x, we define a j(x) as follows:

– the probability that reaction R j happens exactly once during the infinitesimal in-
terval [t, t +dt) is a j(x)dt +o(dt);

– the probability of more than one reaction R j during this interval is o(dt).

Since we have assumed that the system is well-stirred, it seems reasonable for the
propensity function a j of reaction R j to be proportional to the number of possible
combinations of reactant molecules in the system. For example, we expect that a
reaction of the type S1→ S2, where one S1 molecule becomes one S2 molecule, will
broadly occur at a rate proportional to the abundance of S1. In second-order reactions,
such as S1 + S2 → S3, the rate should be proportional to the abundance of pairs of
(S1,S2) molecules. Full details are given in Table 1.

Our approach to understanding the dynamics of the system comes from consider-
ing how the probability that the system is in a particular state changes through time.
Define

P(x, t | x0, t0) := P [X(t) = x, given X(t0) = x0] . (3)

By considering the possible changes in species numbers brought about by a single
reaction taking place, it is possible to arrive at the aforementioned CME (Gillespie,
2005):

dP(x, t | x0, t0)
dt

=
M

∑
j=1

[P(x−ν j, t | x0, t0) ·a j(x−ν j)−P(x, t | x0, t0) ·a j(x)]. (4)

2.1 The Kurtz Representation

Thus far we have used the propensity function and stoichiometric vector of each reac-
tion channel to construct a CME. For completeness we also describe the Kurtz (1980)
representation: this alternative method uses a construction of an inhomogeneous Pois-
son process for each reaction channel to represent the system. This approach provides
a useful analytical tool which has been widely used in the literature.

In order to generalize homogeneous Poisson processes, we follow Kurtz (1980):
suppose we have a homogeneous Poisson process of fixed rate λ labeled as Yλ . Then
further suppose we have a Poisson process of unit rate, Y1. As Poisson processes

Extending the multi-level method for the simulation of stochastic biological systems 5

count the number of ‘arrivals’ over time, they can be compared by considering the
distribution of the number of arrivals by some time t. If Yλ (t) and Y1(t) represent
the number of arrivals by a time t in the two processes, then there is an equality in
distribution, that is Yλ (t)∼Y1(λ t). It is therefore possible to rescale time to transform
a unit rate Poisson process to one of arbitrary (but known) rate.

We generalize the process by letting λ at time t be a function of the system history
over the time interval [0, t), as well as the system time. The number of arrivals by time
t is given by:

Y (t) = Y1

(∫ t

0
λ (t ′,{Y (s) : s < t ′})dt ′

)
, (5)

where λ (t ′,{Y (s) : s < t ′}) emphasizes that λ is a function of the particular path the
process is taking.

For the case of the stochastic reaction network, it can be shown that each reaction
channel corresponds to an inhomogeneous Poisson process of rate a j(X(t ′−)) (An-
derson et al, 2011). The X(t ′−) term is used to indicate the population ‘just before’
time t ′. Incidentally, this ensures the process is Markovian. For reaction channel R j
we let

Yj

(∫ t

0
a j(X(t ′−))dt ′

)

represent the number of reactions fired by time t. To represent the evolution of the
entire network dynamics we take the appropriate sum over all reaction channels:

X(t) = X(0)+
M

∑
j=1

Yj

(∫ t

0
a j(X(t ′−))dt ′

)
·ν j. (6)

2.2 Example

As an example system with which to work, we consider a model of gene transcription
and translation, as introduced by Anderson and Higham (2012):

R1 : G
25

GGGGGA G+M, R2 : M
1000

GGGGGGGA M+P, R3 : P+P
0.001

GGGGGGGGA D, (7)

R4 : M
0.1

GGGGGGA /0, R5 : P
1

GGGGA /0.

A molecule of mRNA (M) is transcribed from a single gene (G). This mRNA molecule
is then used in the translation of a protein molecule (P). Two protein molecules may
combine to produce stable homodimers (D), whilst both the mRNA and protein decay
linearly. We assume that the system contains a single copy of the gene throughout,
and that initially there are no copies of M, P or D. We write the numbers of mRNA,
protein and dimer molecules at time t, respectively, as XT (t) = (X1(t),X2(t),X3(t))T

and consequently the initial condition can be expressed as XT (0) = (0,0,0)T . The

6 Christopher Lester et al.

system consists of five reaction channels, as labeled in equation (7), and the corre-
sponding stoichiometric matrix is

ν =

1 0 0 −1 0
0 1 −2 0 −1
0 0 1 0 0

 . (8)

Due to the presence of a bimolecular reaction in this system, it is not possible to write
down an analytic solution of the CME. Moreover, due to the high dimensionality of
the system state space, numerical approximation of the CME is also impossible using
currently available approaches (Higham, 2008; Jahnke and Huisinga, 2007). In this
light, the system must be explored using a suitable eSSA or aSSA.

2.3 An exact stochastic simulation algorithm

The simplest, and perhaps most widely used eSSA for generating sample paths is
Gillespie’s DM (Gillespie, 1977). Suppose a reaction system has state vector X(t0) at
time t0, and that we wish to generate a sample path until a terminal time T . The DM
algorithm is as follows:

1. set X := X(t0) and t := t0;
2. calculate the propensity function, a j, for each reaction channel, R j, j = 1, . . . ,M,

based on X(t), the population vector at time t. Calculate the total propensity a0 :=
∑M

j=1 a j;
3. generate ∆ , a random exponential variate with parameter a0. This can be achieved

by generating r1 uniformly on (0,1) and then setting ∆ := (−1/a0) log(r1). The
next reaction will take place at t +∆ , unless t +∆ > T , in which case terminate
the algorithm;

4. choose a reaction, Rk, to happen so that each reaction, R j, j = 1, . . . ,M has prob-
ability a j/a0 of being chosen. Do this, for example, by generating r2 uniformly
on (0,1) and determining the minimal k such that ∑k

j=1 a j > a0× r2;
5. set X(t +∆) := X(t)+νk and t := t +∆ to implement reaction Rk at time t +∆ ;
6. return to step 2.

If this algorithm is used to generate n sample paths, they can be used to estimate
the mean copy number of a species at a time T . We estimate this quantity, E[Xi(T)],
by taking

E[Xi(T)]≈
1
n

n

∑
r=1

X (r)
i (T), (9)

where the copy number of species i at time t in path r is represented by X (r)
i (t).

This is an example of a Monte Carlo estimator, and, as such, our estimate contains
a statistical error. This arises as we have studied only a subset of possible systems
paths, and are therefore somewhat uncertain as to our estimate. More precisely, if the
variance of our n sample points is σ2, then the estimator variance is σ2/n. This can
be used to construct a confidence interval to characterize the statistical error.

Extending the multi-level method for the simulation of stochastic biological systems 7

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35
mRNA

Time

C
o

p
y
 n

u
m

b
e

r

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000
Protein

Time

C
o

p
y
 n

u
m

b
e

r

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

6000
Dimer

Time

C
o

p
y
 n

u
m

b
e

r

Fig. 1 Evolution of XT (t) = (X1(t),X2(t),X3(t))T up until terminal time T = 1. The solid black lines show
the mean species numbers and the colored bands one and two standard deviations from the mean.

Species Mean
E[X1] 23.79±0.004
E[X2] 3052.9±0.33
E[X3] 3714.0±0.99

Table 2 Estimated populations of system (7) at time T = 1, as determined by the DM, using 4,800,000
paths. 95% confidence intervals have been constructed; these are indicated with the ‘±’ terms.

2.4 Example

To illustrate use of the Gillespie DM we return to the example of Section 2.2, with
the aim of estimating the dimer population, X3(t), at terminal time T = 1. Figure 1
shows evolution of XT (t) = (X1(t),X2(t),X3(t))T up until this terminal time. The
solid black lines show the mean species numbers and the colored bands one and two
standard deviations from the mean.

To compute E[X3(1)] to within a single dimer with 95% confidence requires the
generation of approximately 4,800,000 sample paths. Using an optimized Gillespie
DM algorithm, this calculation took a little over two hours (7,650 seconds) with
code written in C++, when run on our AMD desktop computer. With code written in
MATLAB, the same computation took approximately six hours (21,472 seconds). Ta-
ble 2 shows the approximate molecular populations at the terminal time. Although our
optimized DM algorithm performs adequately, the fact remains that for this system,
and many others, eSSAs which simulate each reaction explicitly are prohibitively
costly. In this light, a number of aSSAs have been proposed. We discuss one such
aSSA, the so-called tau-leaping method, here.

2.5 Tau-leaping algorithm

As previously illustrated, constraints on computing resources often limit the applica-
bility of the Gillespie DM, and other eSSAs, as they simulate each and every reaction
individually. The large costs in doing so come from two main sources: first is the com-
putational overheads in generating the large quantity of random numbers required by
the algorithm; and second is the search time involved in determining which reac-
tion occurs. One possible solution to the problem can be found in using approximate
algorithms that enable one to fire a number of reactions within a single time step.

8 Christopher Lester et al.

The tau-leaping method, first proposed by Gillespie (2001), generates approxi-
mate sample paths by taking steps, of length τ , through time and firing several re-
actions during each time step. In this way it ‘leaps’ over several reactions at a time.
If the system is in state X and a time step of τ is to be performed, let K j(τ,X) rep-
resent the number of times that reaction channel R j fires within that time step. The
key, time-saving assumption of the tau-leaping method is that all reaction rates are
assumed to remain constant over each time step of length τ . This means that K j(τ,X)
is Poisson distributed, i.e. K j ∼ Poisson(a j(X(t)) · τ). To see this, we start from the
Kurtz perspective of Section 2.1 and write

X(t + τ) = X(t)+
M

∑
j=1

Yj

(∫ t+τ

t
a j(X(t ′−))dt ′

)
·ν j.

When t ′ ∈ [t, t + τ), by assumption a j(X(t ′−)) = a j(X(t)), and so we immediately
deduce that

∫ t+τ
t a j(X(t ′−))dt ′ = a j(X(t)) · τ as required.

The algorithm proceeds at each time step by generating Poisson variates with
the correct parameter for each of the K j, and then updating each molecular species
and propensity function simultaneously. In general τ can be chosen adaptively as a
function of the copy numbers but, for simplicity, we implement this technique by con-
sidering a fixed choice of τ throughout. This is the tau-leaping algorithm (Gillespie,
2001):

1. set X := X(t0) and t := t0;
2. if t + τ ≤ T , calculate the propensity function, a j, for each reaction channel, R j,

j = 1, . . . ,M, based on X(t), the population vector at time t. Otherwise, exit the
algorithm;

3. generate Poisson random variates, p j, as sample values of K j(τ,X), j = 1, . . . ,M;
4. set X := X +∑M

j=1 p jν j and t := t + τ;
5. return to step 2.

As the tau-leaping algorithm produces sample paths that do not fully conform
with the dynamics of the CME, any estimators calculated using the tau-leaping method
may be biased: the expected difference between the tau-leaping estimate and the true
value of the point estimate is non-zero. The level of bias in a tau-leaping estimate
depends on the value τ takes, with lower values of τ corresponding to a lower bias.
As τ ↓ 0, the estimator bias tends to zero (Anderson et al, 2011). However, the algo-
rithm takes O(1/τ) units of time to generate a path, and so generating a tau-leaping
estimator with low bias requires a high level of computational resources.

3 Discrete-state multi-level simulation

The multi-level method of Anderson and Higham (2012) divides the work done in
calculating a point estimate of the system into parts, known as levels, in an effort
to increase computational efficiency. Much of the approach taken by Anderson and
Higham (2012) emulates that taken by Giles (2008), in the context of numerically
approximating the solutions of stochastic differential equations. Suppose we wish to

Extending the multi-level method for the simulation of stochastic biological systems 9

estimate the expected value of Xi(T), the population of the i-th species at time T .
On the base level (level 0), a tau-leaping aSSA with a large value of τ (which we
denote τ0) is used to generate a large number (n0) of sample paths of the system. The
resulting point estimate is

Q0 := E
[
Zτ0

]
≈ 1

n0

n0

∑
r=1

Z(r)
τ0 (T), (10)

where Z(r)
τ0 (t) is the copy number of species i at time t in path r generated using the

tau-leaping method with time step τ0, and n` is the number of paths generated on
level `. As τ0 is large, this estimate is calculated cheaply (recall that tau-leaping takes
O(1/τ0) units of time to generate each sample path), with the downside being that it
is of considerable bias.

The goal with the next level (level 1) is to introduce a correction term that begins
to reduce this bias. In essence, in order to compute this correction term, two sets of n1
sample paths are calculated. One set comes from the tau-leaping aSSA with the same
value of τ as on the base level (τ0). The other set comes from the same tau-leaping
aSSA, but with a smaller value of τ (which we denote τ1). The correction term is the
difference between the point estimates calculated from each set of sample paths:

Q1 := E
[
Zτ1 −Zτ0

]
≈ 1

n1

n1

∑
r=1

[
Z(r)

τ1 (T)−Z(r)
τ0 (T)

]
.

Adding this correction term to the estimator calculated on the base level gives an
overall more accurate estimator. This can be seen by noting that Q0+Q1 = E

[
Zτ0

]
+

E
[
Zτ1 −Zτ0

]
= E [Zτ1], so that the sum of the two estimators has a bias equivalent to

that of the tau-leaping method with τ = τ1. The key to the efficiency of the multi-level
method is to generate the two sets of sample paths,

{
Z(r)

τ1 (T), Z(r)
τ0 (T) : r = 1, . . . ,n1

}
,

in a clever way, so that the variance in their difference is minimised. If the variance
in their difference is denoted as V`, then the estimator variance is given as V`/n`. A
lower sample variance will mean that fewer sample paths need to be generated to
achieve the same estimator variance.

On the level 2, this process is repeated to give a second correction term. Two sets
of n2 sample paths are generated, one set has τ = τ1, and the second has τ = τ2 < τ1.
Again, the correction term is the estimator of their difference,

Q2 := E [Zτ2 −Zτ1]≈
1
n2

n2

∑
r=1

[
Z(r)

τ2 (T)−Z(r)
τ1 (T)

]
,

and it is added to the combined estimator from the level 0 and level 1 to give Q0 +
Q1 +Q2 = E [Zτ2]. Carrying on in this way, the multi-level method forms a telescop-
ing sum,

E [ZτL] = E
[
Zτ0

]
+

L

∑̀
=1

E
[
Zτ` −Zτ`−1

]
=

L

∑̀
=0

Q`.

10 Christopher Lester et al.

With the addition of each subsequent level the bias of the estimator is reduced further,
until a desired level of accuracy is reached.

Finally, and optionally, by generating two sets of nL+1 sample paths, one set using
an eSSA and the other using tau-leaping with τ = τL, we can efficiently compute a
final correction term,

Q∗L+1 = E [Xi−ZτL]≈
1

nL+1

nL+1

∑
r=1

[
X (r)

i (T)−Z(r)
τL (T)

]
,

which can be added to the telescoping sum in order to make the estimator unbiased
and hence give

E [Xi] = E
[
Zτ0

]
+

L

∑̀
=1

E
[
Zτ` −Zτ`−1

]
+E [Xi−ZτL] =

L

∑̀
=0

Q`+Q∗L+1. (11)

Importantly, it turns out that the total time taken to generate the sets of sample paths
for the base level, Q0, and each of the correction terms, Q` for `= 1, . . . ,L, and Q∗L+1,
can be less than that taken to estimate E [Xi(T)] using an eSSA. In Section 3.3.1 we
describe the bespoke simulation method used to provide samples for the correction
terms which is responsible for this time-saving.

The biased estimator,

Qb :=
L

∑̀
=0

Q`, (12)

is influenced by two distinct types of error: a statistical error, and a bias. Taking into
account the choice of τ0, the bias is controlled by having sufficiently many correction
terms within the sum. This will be discussed in detail later in this guide.

The statistical error is controlled by bounding the associated estimator variance,
Vb, by a parameter ε2. Each of the estimators, Q`, which make up Qb has an estimator
variance associated with it: if the estimate on level ` has sample variance V`, and
was calculated using n` samples, then the estimator variance is V`/n`. Since each
level is estimated in an independent fashion, Vb = ∑L

`=0 V`/n`. Therefore, if n` is
sufficiently large, we will have ensured that the overall estimator variance is below a
given threshold. That is, Vb < ε2. The unbiased estimator

Qu :=
L

∑̀
=0

Q`+Q∗L+1, (13)

also suffers from a statistical error, and it can be controlled in much the same way as
described for the biased case.

To use the multi-level method, a number of decisions have to be made. We must
consider:
– the choice of levels in the algorithm. This affects both the simulation time and the

bias of Qb, and is determined by both L and the values of τ0,τ1, . . . ,τL;
– the values the target estimator variance, V`/n`, should take on each level, `. This

ensures statistical accuracy, and also affects the simulation time;
– the choices of simulation techniques for the base level (0), the correcting levels,

1, . . . ,L, and (if desired) the final level L+1.
We will now discuss each of these choices.

Extending the multi-level method for the simulation of stochastic biological systems 11

3.1 The time step

We let K ∈ {2,3, . . .} be a scaling factor and take τ` = τ(`−1)/K so that

Q0 ≡ E[Zτ0],

Q1 ≡ E[Zτ0/K−Zτ0],

Q2 ≡ E[Zτ0/K2 −Zτ0/K],

...
Q` ≡ E[Zτ0/KL −Zτ0/KL−1].

This means that the intervals are nested, with the same scaling factor between each,
and it renders the algorithm more simple to understand and implement.

3.2 The estimator variance

The aim is to minimize the total expected computational time, subject to the overall
estimator variance, Vb, being sufficiently small. This is therefore a constrained opti-
mization problem; on each level we will choose the number of sample paths, n`. If
each sample path on level ` takes c` units of time to generate, and the estimator of
interest on level ` has population variance V`, then we minimize the total expected
computational time, subject to a suitable statistical error1 :

L

∑̀
=0

n`c` such that
L

∑̀
=0

V`

n`
< ε2. (14)

In this case, ε2 controls the estimator variance of our combined estimator. We per-
formed the required optimization using Lagrange multipliers. We seek a λ ∈ R such
that

∂
∂n`

[
L

∑
m=0

cmnm +λ
L

∑
m=0

Vm

nm

]
= 0 for `= 0,1, . . . ,L.

This implies n` =
√

λ ·V`/c`. As we require ∑L
m=0 Vm/nm < ε2, it follows that

√
λ =

∑L
m=0
√

Vm · cm/ε2. Therefore, each n` should be chosen to be

n` =

{
1
ε2

L

∑
m=0

√
Vm · cm

}
√

V`/c`. (15)

Of course, this approach is helpful if the values of V` and c` are known. Whilst it may
be possible to estimate c` as c` ≈ (τ0/K`)−1, the population variances, V`, will often
not be known analytically. However, these can be estimated using the sample vari-
ances, which have been generated from a small number of preliminary simulations.

1 Note that here, and throughout the rest of this work, we implicitly include the final exact coupling
level in our summations, where appropriate.

12 Christopher Lester et al.

For example, Anderson and Higham (2012) generate 100 initial sample paths on each
level as a basis for estimating these quantities

The time taken for each level is the product of the number of paths, n`, and the
time taken for each path on that level, c`. Thus, the total amount of time for the
multi-level simulation is

1
ε2

{
L

∑̀
=0

√
c`V`

}2

, (16)

units of CPU time.

3.3 The estimation techniques

We now outline how to calculate the estimates for each level. These include:

– the base level, Q0. This can be handled with the regular tau-leaping algorithm
with time step τ0, as described in Section 2.5;

– the tau-leaping correction terms, Q`, for ` ∈ {1, . . . ,L}. This is discussed in detail
below;

– the exact SSA coupled to tau-leaping correction term, Q∗` . This is discussed in
detail.

3.3.1 The tau-leaping correction terms

Given our choices of τ`, `= 1, . . . , L, we have that

Q` = E
[
Zτ0/K` −Zτ0/K`−1

]
≈ 1

n`

n`

∑
r=1

[
Z(r)

τ0/K` −Z(r)
τ0/K`−1

]
, (17)

where Z(r)
η represents the population of the i-th species at a time T in the r-th sample

path generated using tau-leaping with time step η (= τ0/K` or τ0/K`−1). The idea
underlying the multi-level method is to generate sample paths to estimate (17) so that
Q` has a low sample variance. This means that few sample paths will be required to
attain a specified statistical error.

To generate the r-th sample value, Z(r)
τ0/K` −Z(r)

τ0/K`−1 , we will need to simultane-
ously generate two sample paths using tau-leaping, but with different time steps. As
we are constructing a Monte Carlo estimator, we require each of the sample values,
Z(r)

τ0/K` −Z(r)
τ0/K`−1 , to be independent of the other bracketed terms. The key point to

note is that for each sample there is no need for Z(r)
τ0/K` and Z(r)

τ0/K`−1 to be independent
of one another. This is because our estimator Q` is not dependent on the actual copy
numbers within each system, but merely their difference. By recalling that

Var
[
Zτ0/K` −Zτ0/K`−1

]
= Var

[
Zτ0/K`

]
+Var

[
Zτ0/K`−1

]
−2Cov

[
Zτ0/K` ,Zτ0/K`−1

]
,

Extending the multi-level method for the simulation of stochastic biological systems 13

we note it is therefore permissible, and in our interests, for Z(r)
τ0/K` and Z(r)

τ0/K`−1 to
exhibit a strong positive correlation as this will give rise to a lower estimator vari-
ance. We achieve this positive correlation by keeping the r-th sample paths of the
approximate processes with time steps τ0/K` and τ0/K`−1 as similar to each other as
possible. We now describe how to do this.

For the purposes of our discussion, suppose we wish to simulate a single pair of
sample paths on level ` and call the sample path with time step τ` = τ0/K` the fine
resolution path and that with time step τ`−1 = τ0/K`−1 the coarse resolution path.
Since both paths have the same initial conditions, one approach to achieving strong
positive correlation between the two paths is to use the same tau-leaping process to
simultaneously simulate each sample path, and aim to have each reaction channel fire
a similar number of times in both systems. In doing so, however, it is crucial that the
two paths are distributed as they would be if generated using a standard tau-leaping
method.

The thickening property of the Poisson distribution (Norris, 1998) lets this aim be
realized. Suppose P1, P2, and P3 are independent Poisson distributions. Then, for
parameters a > 0, b > 0,

P1(a+b)∼P2(a)+P3(b), (18)

where ∼ implies equality in distribution. This means that a Poisson random variate
with parameter a+b can be generated by generating two Poisson variates, one with
parameter a and the other with parameter b, and then adding them. In terms of our
sample paths, the thickening property implies that we can use one Poisson random
variate to determine how many of a particular type of reaction happen in both the
coarse and fine resolution systems during a time step and then ‘top up’ any further
reactions that happen in only one of the systems using further Poisson random vari-
ates.

In practice, this can be achieved be creating ‘virtual reaction channels’ and we re-
formulate each reaction channel, R j, into three virtual channels. We call these virtual
channels R1

j , R2
j and R3

j and define them such that:

– R1
j : reactions through this channel occur in both the coarse and fine systems;

– R2
j : reaction through this channel occur only in the coarse system;

– R3
j : reactions through this channel occur only in the fine system.

We will assign propensity functions to these channels so that reactions occur at the
appropriate rates in both the coarse and fine systems.

To generate coupled sample paths, we use an algorithm that steps forward with
fine-resolution time steps τ`. We update the propensity functions of the fine resolution
system at each time step, but only update the propensity functions of the coarse reso-
lution system every K steps. In other words, we only update the propensity functions
of the coarse resolution system after time steps of τ`−1.

To set out the multi-level algorithm, we let Zc and Z f be the copy numbers in the
coarse and fine resolution sample paths, respectively. For each reaction channel R j we
define ac

j to be its propensity function in the coarse resolution system and similarly

for a f
j . We will assume that T/τ0 is an integer, so that on each level we always take

14 Christopher Lester et al.

an integer number of time steps. With scaling factor K we then have τ` = τ0/K`. The
algorithm then proceeds as follows:

1. set Zc := Zc(t0), Z f := Z f (t0) and t := t0;
2. for α = 1 to T/τ0:

(a) calculate the propensity function ac
j for each reaction channel R j, j = 1, . . . ,M;

(b) for β = 1 to K:
i. calculate the propensity function a f

j for each reaction channel R j, j =
1, . . . ,M;

ii. define the propensity functions of the three virtual channels as

b1
j = min{a f

j ,a
c
j},

b2
j = ac

j−b1
j ,

b3
j = a f

j −b1
j ;

(19)

iii. for each of the virtual reaction channels, r = 1,2,3, generate Poisson
random variates, Y r

j , with parameters br
j · τ` and set

Zc := Zc +
M

∑
j=1

(Y 1
j +Y 2

j)ν j,

Z f := Z f +
M

∑
j=1

(Y 1
j +Y 3

j)ν j;

(20)

otherwise terminate;
3. return to step 2.

In step 2(b), K time steps of duration τ` are carried out, to give a time step of length
Kτ` = τ`−1 in total. Within each of these steps, b1

j is the reaction propensity of the
virtual reaction channel R1

j , b2
j is that of R2

j , and b3
j that of R3

j . We note that by equation
(18), with a time step of τ` = τ0/K`,

P(ac
j · τ`)∼P(b1

j · τ`)+P(b2
j · τ`),

P(a f
j · τ`)∼P(b1

j · τ`)+P(b3
j · τ`),

(21)

so that each sample paths is updated using the correct propensity functions. In Figure
2 we illustrate how the time steps are arranged on the time axis. We have shown a
coarse time step of τ`−1 = 1/3, and a fine time step of τ` = 1/9. In this case our
scaling factor, K = 3, and so we have three steps of the fine process for every step of
the coarse process.

Using the same Poisson random variates, Y 1
j , j = 1, . . .M, to update both the

coarse and fine system populations in (20) is crucial to the success of the method, and
has the effect of introducing a strong path-wise correlation between the coarse and
fine resolution sample paths. The premise is as follows: if the state vectors Zc(t) and
Z f (t) show similar populations for each species, then we expect ac

j and a f
j to be sim-

ilar for all j, as these are continuous functions of the underlying populations. If this

Extending the multi-level method for the simulation of stochastic biological systems 15

Fig. 2 A diagrammatic representation of the steps in the algorithm, shown on a time axis, from time t = 0
to t = 1. The vertical lines represent the discretization of time.

is the case then the br
j, as defined in (19), are such that for all j, b1

j � max{b2
j ,b

3
j}.

Over the fine time step τ`, we can share the randomness between the coarse and fine
system by using a single Poisson random number, generated with parameter b1

j · τ`,
to introduce Y 1

j reactions in channel R j into both systems. To ensure compliance with
the tau- leaping algorithm, we introduce a further Y 2

j and Y 3
j j reactions in the coarse

and fine systems, respectively. Note that at least one of Y 2
j and Y 3

j will be zero so that
we ‘top up’ at most one of the systems. As we expect Y 1

j to be significantly larger
than both Y 2

j and Y 3
j , the main part of the fluctuation is common to both systems. The

result is that the state vectors in both systems remain comparable. The argument then
repeats itself for each time step, and the population differences between equivalent
species at the terminal time is therefore likely to be small and strongly correlated.

3.3.2 The exact coupling

We now provide a novel technique for estimating Q∗L+1, the final correction term that
is needed to produce an unbiased point estimator, Qu. Q∗L+1 is the expected difference
between the point estimator generated from a tau-leaping approximation with τL =
τ0/KL and that generated using the DM eSSA. The benefit of including this final
correction term into the multi-level estimator is that it allows us to produce an overall
unbiased estimator, and therefore provides an output of equivalent accuracy to that of
the DM. Recall that

Q∗L+1 = E
[
X−Zτ0/KL

]
≈ 1

nL+1

nL+1

∑
r=1

[
X (r)−Z(r)

τL

]
,

where X (r) and Z(r)
τL represent the copy numbers of the species of interest at time T in

the r-th sample paths, generated by the DM, and tau-leaping aSSA with time step τL,
respectively. As for levels `= 1, . . . ,L, we aim to correlate the sample paths X (r) and
Z(r)

τL in order to reduce the variance in Q∗L+1.
The difficulty in coupling the two sample paths arises because the tau-leaping

system has its reaction propensities updated after a fixed period of time, not after a
fixed number of reactions. The DM is not equipped to provide sample paths which ex-
hibit this non-Markovian behavior. We thus have to deal with what Anderson (2007)
describes as a time-inhomogeneous Poisson process. One approach to handling this
situation is to use a form of the modified next reaction method (MNRM) (Anderson,
2007) to simulate the required sample paths (Anderson and Higham, 2012). We do

16 Christopher Lester et al.

not explore this approach further, but rather present our own simpler and more effi-
cient method. However, our technique is mathematically equivalent to the MNRM,
and therefore generates equivalent statistics. In particular, we preserve the same mean
and variance. We demonstrate the improvements in simulation time in comparison to
the algorithm of Anderson and Higham (2012) in Section 3.4.1.

In order to couple the same paths, we reformulate the tau-leaping algorithm so
that it can be implemented in the same way as the DM, one reaction at a time. This is
possible for the following reasons. Firstly, we can express a (homogeneous) Poisson
process in terms of a number of exponential random variables: a Poisson process
with rate λ has inter-arrival event times exponentially distributed with rate parameter
λ (Norris, 1998). Instead of using a single Poisson random number to decide how
many events occur in our Poisson process over a time interval τ , we can simulate
a number of inter-arrival times, and work out how many fit into the time interval τ .
This then gives the number of reaction events, and will be distributed in the same way
as the Poisson random variable. Secondly, we can extend these results to account for
parameters which are step functions in time.

We then implement the tau-leaping aSSA one reaction at a time by creating ran-
dom variates that specify the time between reaction within the time step of length τL.
We will therefore simulate a number of reaction events - however, unlike the DM,
the parameters (reaction propensities) are not immediately updated. We can therefore
think of the generation of exponential random variables as modeling delayed reac-
tions. This means that if we initialize a reaction at time t ∈ [nτL,(n+ 1)τL) where
n ∈ N, say, we only alter the species numbers at the later time t = (n+1)τL, so that
(n+1)τL−t is the delay. In line with the regular tau-leaping algorithm, the propensity
functions are only updated at the end of each time step. This means that our ‘delayed
tau-leaping’ algorithm is equivalent to the regular tau-leaping algorithm. Crucially, it
resembles the same structure as the DM.

Since, in this work, we are only interested in the state vector at a terminal time,
we can simplify our method by thinking of delayed reactions as having an immediate
effect on the population, but a deferred effect on the propensity functions. This has
the effect of simplifying the internal dynamics of the algorithm, without altering our
final estimate.

Let X(t) represent the state vector in the exact sample path at time t, and similarly
let Z(t) represent the state vector in the tau-leaping sample path. Let a j represent the
reaction propensity of reaction channel R j in the exact system, and b j represent the
reaction propensity of the same channel in the tau-leaping system. Following the
approach outlined previously for coupling coarse and fine tau-leaping paths, we will
think of each reaction channel, R j, as having three virtual channels, which we call
R1

j , R2
j and R3

j and define as follows:

– R1
j : this channel causes reaction j to happen in both systems, and has propensity

function c j = min{a j,b j};
– R2

j : this channel causes reaction j to happen in the exact system only, and has
propensity function a j− c j;

– R3
j : this channel causes reaction j to happen in the tau-leaping system only, and

has propensity function b j− c j.

Extending the multi-level method for the simulation of stochastic biological systems 17

The purpose of this coupling is to share random fluctuations between the two
paths. Reaction R1

j will occur far more often than R2
j and R3

j , and hence the popu-
lations of both systems will remain similar. Importantly, this approach is consistent
with the requirements of the system dynamics for the following reasons.

Note that the overall reaction propensity of these three virtual reactions is d j =
max{a j,b j}. Moreover, if a j > b j (therefore c j =min{a j,b j}= b j and d j =max{a j,b j}=
a j) we can say that if a j reaction is to happen, it will definitely happen in the exact
system. This is because the only way it cannot happen is if reaction channel R3

j fires,
but this is impossible as R3

j has propensity of b j− c j = 0. Reaction j also happens
in the tau-leaping system with probability min{a j,b j}/max{a j,b j} = b j/a j. This
follows because it is the probability of reaction channel R1

j firing, given a j reaction
happens. An equivalent result can be derived if b j > a j: if a j reaction is to occur, it
will definitely occur in the tau-leaping system, and will also occur in the exact system
with probability a j/b j. Finally, if a j = b j then, if a j reaction takes place, it must do
so in both systems.

We will therefore simulate the coupled system according to a two step process.
The first step will be to decide which reaction, j, fires in at least one of the systems.
The second step will be to decide whether the exact, tau-leaping or both systems are
affected. We now state our algorithm for generating coupled sample paths up to a
terminal time T :

1. set X := X(t0), Z := Z(t0) and t := t0. Set the start time of the tau-leap time step
as tB := t0, and the end time as tE := t0 + τL;

2. calculate propensity function b j(Z(tB)) for each reaction channel R j, j = 1, . . . ,M
in the tau-leaping system;

3. calculate the propensity function a j(X(t)) for each reaction channel R j, j =
1, . . . ,M in the exact system;

4. for each reaction, j, calculate d j = max{a j,b j} and the total firing propensity
d0 := ∑M

j=1 d j;
5. generate ∆ , a random exponential variate with parameter d0. This can be achieved

by generating r1 uniformly on (0,1) and then setting ∆ := (−1/d0) log(r1);
6. if t +∆ > T , terminate the algorithm. Otherwise, if t +∆ ≥ tE update the tau-

leaping propensities. Do this by setting t := tE , tB := tE and tE := tE + τL, and
returning to step 2. If t +∆ < tE , set t := t +∆ and continue to step 7;

7. choose a firing channel j such that each reaction j has probability d j/d0 of firing.
Do this, for example, by generating r2 uniformly on (0,1) and determining the
minimal j such that ∑ j

k=1 dk > d0× r2;
8. implement reaction j in the system which has reaction propensity d j =max{a j,b j},

and update the population levels correspondingly;
9. sample r3 uniformly from (0,1). If r3 < c j/d j, then fire reaction j in the other

system also;
10. if R j has been implemented in the exact system, return to step 3. Otherwise, return

to step 5.

In the context of computational efficiency, we expect our revised algorithm to
differ from the original MNRM (Anderson and Higham, 2012), in two significant
ways. Firstly in step 6, a number of time steps will be ‘rejected’ as the algorithm

18 Christopher Lester et al.

returns to step 2. This step is justified by the memoryless property. This means that
a number of random variates will be ‘wasted’, with the extent of wastage depending
on the value of τL. In contrast, one of the main attractions of the MNRM is that it
barely wastes any random numbers. However, if the generation of random numbers
is a concern then r3 in step 9 can be generated cheaply by recycling r2 (Yates and
Klingbeil, 2013). Secondly, in step 7, a firing channel is chosen, and then the affected
paths are determined in step 8 and 9. The search in step 7 is amenable to optimization
in much the same way as the DM (McCollum et al, 2006; Li and Petzold, 2006; Cao
et al, 2004). The downside of the MNRM in this context is that a substantial amount
of complex maintenance work needs to be carried out within the algorithm, and that
choice of the next reaction involves an unavoidably time-consuming search to find
the minimum within a matrix of ‘next reaction times’ on a substantially enlarged state
space (as there are three virtual channels for every reaction channel). Optimization of
the MNRM is somewhat less straightforward, but the method of Gibson and Bruck
(2000) can potentially be adapted.

In the next section we test our multilevel algorithm with a range of different pa-
rameters. In particular, we compare our updated method with the original MNRM
method of Anderson and Higham (2012) in Section 3.4.1.

3.4 Example

We are now in a position to implement the multi-level method on our example gene
expression system, (7). We first give a detailed breakdown of the contribution to the
simulation of each level using the canonical set of parameters given in (7). We then
demonstrate the effects on the simulation efficiency of varying these parameters when
generating both biased and unbiased estimators. In particular, we demonstrate how
our new final coupling method has contributed to a significant performance improve-
ment in the situation where an unbiased estimator is required.

Initially we chose K = 3, τ0 = 1/9 and L = 5. Using C++, we estimate the value
of the mean dimer population, E[X3(1)], to be 3,714.23± 0.99, with approximately
166 seconds of computation (where the error tolerances refer to a 95% confidence
interval). The same calculation can be performed using MATLAB; in this case, we
estimate E[X3(1)] to be 3,714.55±1.06 within 579 seconds of computation.

Compared with the 7,650 seconds taken for the DM using C++ (see Section 2.4;
the equivalent figure for MATLAB is 21,472 seconds), the multi-level approach is ap-
proximately 46 times faster (equivalently, 37 times) for this example system with
these canonical parameter values. In Table 3 we detail the contribution of each level
of the multi-level estimator to the simulation time and the cumulative estimate of
E[X3(1)], when C++ has been used to produce the simulations. In this case, the fi-
nal estimator, Q∗L+1, contributes a relatively small proportion of the simulation time,
which makes the calculation of the unbiased estimator a feasible option. We also show
that the actual simulation times compare very well with those estimated by equation
(16).

Extending the multi-level method for the simulation of stochastic biological systems 19

Level τ`−1 τ` Estimate Variance Paths Time
Q0 - 3−2 3187.47 1.03×106 7.11×106 89.9s (93.8s)
Q1 3−2 3−3 350.52 16287.10 420814 24.9s (24.8s)
Q2 3−3 3−4 117.48 2666.80 114125 15.5s (15.5s)
Q3 3−4 3−5 39.15 658.14 40972 12.0s (12.1s)
Q4 3−5 3−6 13.00 196.09 17534 10.7s (10.7s)
Q5 3−6 3−7 4.42 48.28 6406 7.0s (6.9s)
Q∗6 3−7 DM 2.19 38.75 2870 5.8s (5.8s)

Total 3714.23±0.99 - 165.8s

Table 3 The contribution from each level in producing an unbiased overall estimator, Qu, for E[X3] in
system (7) at T = 1. We have taken τ0 = 1/9, K = 3, and L = 5. In the time column, the true simulation
time is shown, and the estimated simulation time is shown in brackets.

Matlab C++
time step (τL) Modified DM MNRM Saving Modified DM MNRM Saving

seconds per 1000 paths seconds per 1000 paths
1/34 8.69 16.33 47% 1.74 2.21 21%
1/35 8.77 16.69 47% 1.75 2.21 21%
1/36 8.83 17.34 49% 1.82 2.28 20%
1/37 9.38 18.74 50% 1.95 2.41 19%
1/38 12.35 22.39 45% 2.35 2.69 13%
1/39 22.10 32.79 33% 3.45 3.49 1 %

Table 4 Various simulation times for calculation of Q∗L+1 in system (7). In each case we have compared
the simulation time for nL+1 = 1000 paths using the traditional MNRM and our novel Modified Direct
Method.

3.4.1 Final coupling

In order to compare the performance of our new algorithm to estimate Q∗L+1 with
that of Anderson and Higham (2012), we produced a number of simulations to esti-
mate Q∗L+1, the final, bias-removing estimator using both MATLAB and C++. We im-
plemented Anderson and Higham’s method on our equipment in order to compare
simulation times fairly. By considering nL+1 = 1,000 samples, in Table 4 we demon-
strate that our approach reduces the simulation time in comparison to the original
method of Anderson and Higham. All efforts were taken to use the optimal code for
each approach. These results are demonstrated for a wide range of choices of τL, the
time step used to increment the coarse, tau-leaping paths. A reduction in simulation
time is particularly noticeable when making use of MATLAB. The C++ implementation
also shows a time-saving, except for very small choices of τL. Such small values for
τL fall outside the range that we would encounter when implementing the multi-level
simulation algorithm (including increasingly small values of τL result in an increased
overall simulation time, as there are more levels to simulate). Clearly this reduction
in simulation time for Q∗L+1 is problem-dependent and may vary widely from prob-
lem to problem. However, we have found significant reductions in simulation time
for all the reaction networks we have tested and suggest that similar reductions will
be possible for most systems.

20 Christopher Lester et al.

τ0 τL L+1 K Estimate Duration
2−3 2−8 6 2 3695.00±1.00 121.4 s
2−4 2−8 5 2 3695.95±1.01 173.8 s
3−2 3−5 4 3 3694.62±1.00 121.6 s
3−2 3−6 5 3 3707.85±0.98 139.5 s
3−2 3−7 6 3 3711.32±1.00 146.3 s
3−2 3−8 7 3 3714.13±0.99 163.2 s
3−2 3−9 8 3 3714.14±0.96 180.3 s
3−3 3−7 5 3 3711.23±0.99 272.1 s
3−4 3−7 6 3 3712.48±1.00 586.6 s
4−2 4−4 3 4 3695.59±1.00 159.5 s
4−2 4−5 4 4 3710.41±0.99 182.1 s

Table 5 A range of biased estimators, Qb, of the terminal dimer population of X3(1) in our example gene
expression system (7). τL refers to the time step used on the finest correction level. We show L+ 1, the
total number of estimators used to generate Qb. The last column shows the CPU time taken; the estimated
time, given by (16), is shown in italics. For each set of parameters, we used Equation (15) to determine
how many simulations to perform on each level.

3.5 Exploring variation in algorithm parameters

Throughout the rest of this section, we focus on a C++ implementation of the multi-
level method. The use of MATLAB will be demonstrated in the following example in
Section 5. We now ask what the effect of changing L, the number of levels, τ0, the size
of the time step on the base level, and K, the scaling factor, will be on the simulation
time. In Tables 5 and 6 we demonstrate the effect of varying L for three different
values K for biased and unbiased estimators respectively.

As previously noted, for our canonical parameter values, Table 3 suggests that an
unbiased estimator comes at little additional cost to a biased estimator, and should,
therefore, be preferred. However, for completeness in Table 5 we show the values
of the biased estimators for a range of values of L and K, as well as comparisons
between the estimated and actual simulation times. We will return to this point in the
discussion. These tables demonstrate the impact of a judicious choice of τ0 and L,
but unfortunately shed little light on the optimal choice of K, the scaling factor. In the
case of SDEs, Giles suggests that K = 4 may well be sensible (Giles, 2008).

We discuss the biased and unbiased cases separately. For the biased estimator,
Qb, the choices of τ0 and L determine the overall bias of the estimator. A larger
value of L will lead to a lower bias, but also to increased simulation time. For the
unbiased estimator, Qu, the situation is less straightforward. Our view is that the
simulation time is not particularly sensitive to the particular choice of L. However,
we do note that the choice of τ0, the resolution on the base level, can substantially
affect simulation time. We will therefore present an algorithm which provides for a
reasonable choice of this input.

In both the biased and unbiased cases, the confidence intervals have not been
faithfully attained: this is because we have predicted the number of paths necessary
for the generation of each estimator with a specific variance based on an initial num-
ber of preliminary samples and this method has not turned out be accurate. Reasons
for this are outlined later in the Discussion.

Extending the multi-level method for the simulation of stochastic biological systems 21

τ0 τL L+2 K Estimate Duration
3−2 3−5 5 3 3713.97±1.00 166.2 s
3−2 3−6 6 3 3715.61±0.97 156.7 s
3−2 3−7 7 3 3714.23±0.99 165.8 s
3−2 3−8 8 3 3713.98±0.99 179.2 s
3−2 3−9 9 3 3714.47±0.97 173.2 s
3−3 3−6 5 3 3714.84±0.99 280.8 s
4−2 4−5 5 4 3713.94±1.00 199.0 s
4−2 4−6 6 4 3713.86±1.00 199.6 s
6−1 6−3 4 6 3714.09±0.99 171.1 s
6−1 6−4 5 6 3714.46±1.00 173.6 s

Table 6 This table shows a range of exact estimators, Qu, of the terminal dimer population of X3(1) in our
example gene expression system (7). τL refers to the time step used on the finest correction level for the
biased estimator, Qb, before the final exact correction Q∗L+1, has been added to remove the bias. We also
show L+2, the number of terms contributing to the estimator Qu.

4 Method configuration

In the previous sub-section, as well as demonstrating the improved efficiency of our
novel exact coupling method for the final level, we found that the choice of param-
eters for the multi-level method can have a significant effect on simulation time and
estimator accuracy. In this section we provide a number of concrete suggestions for
algorithmic choices that automatically determine suitable values for these tunable
parameters. We will suggest:

A. an optimal choice of τ0, the resolution on the most inaccurate level;
B. optimal choices of K and L, that is, the scaling factor and the number of levels to

use in total;
C. the choice of whether to use a biased or an unbiased estimator.

4.1 Choice of the base level time step, τ0

It is tempting to assume that, since the multi-level method benefits from using many
low quality population estimates which are simulated quickly, a large choice of τ0
would be prudent. The effect of choosing too large a value of τ0 is that, whilst the
base level estimate, Q0, may be calculated quickly, Q1 and other correction terms
will require increased computational time since more sample paths will be needed to
correct the inaccurate base level estimate. The optimal value for τ0 may well depend
on the particular choice of K, the scaling constant. For the purposes of this investiga-
tion, however, we fix the value of K. We will also consider the time step on the finest
level, τL, as fixed at a (unknown) value. Based on this, we choose a value for τ0 and,
subsequently, L.

From equation (16) in Section 3.2 we recall that

1
ε2

{
L

∑̀
=0

√
c`V`

}2

,

22 Christopher Lester et al.

units of CPU time are required to attain an estimator variance of ε2. Recall also that
c` represents the per-path simulation time, and V` the sample variance on a level `. To
simplify notation, we introduce k`, where

k` := c`V`. (22)

This gives an indication of the relative cost of producing simulated paths for level `.
As in Section 3.2, k` can be estimated cheaply using a fixed (and relatively small)
number of paths.

We take an iterative approach to optimizing the choice of τ0, beginning with an
initial guess, and improving on it in subsequent iterations. Given a initial choice of
τ0, τ(1)0 , we propose two candidates for an improved choice, τ(2)0 :

– a smaller choice, τ(2,1)0 = τ(1)0 /K;

– a larger choice, τ(2,2)0 = τ(1)0 K.

Making the reasonable assumption that there will be at least one level in addition to
the ‘base’ level, we can calculate the difference in expected overall simulation times
using τ(2,1)0 or τ(2,2)0 . If using τ(2,1)0 or τ(2,2)0 results in a time saving compared with

using τ(1)0 , we set our improved guess τ(2)0 to equal the appropriate value. We can
repeat this algorithm until we reach a choice of τ0 for which no further improvement
is gained. This corresponds to a local minimum of the overall simulation time, and we
take τ0 = τ(n)0 . If, by chance, we begin at a local maximum we follow the refinement
process in both directions (both increasing and decreasing τ0).

In general, our iterative algorithm will require comparison of the computational
complexity of generating an estimator with coarse base level time step τc

0 , with the
computational complexity of generating an estimator with a fine base level time step
τ f

0 = τc
0/K. The estimator for the coarse base level, given a desired level of accuracy,

will be given by

Q= E
[
Zτc

0

]
+E

[
Zτc

0/K−Zτc
0

]
+

L

∑̀
=2

E
[
Zτc

0/K` −Zτc
0/K`−1

]
, (23)

and the estimator for the fine base level will be given by

Q= E
[
Zτc

0/K

]
+

L

∑̀
=2

E
[
Zτc

0/K` −Zτc
0/K`−1

]
. (24)

The majority of the levels are simulated for both choices of base level and, as such,
will have the same relative cost, k`. The terms that will have different relative costs
will be E

[
Zτc

0

]
and E

[
Zτc

0/K−Zτc
0

]
on the coarse level (for which we will denote the

relative costs as kc
0 and kc

1, respectively), and E
[
Zτc

0/K

]
on the fine level (for which

we will denote the relative cost as k f
0). We can use this knowledge to prove a theorem

which will allow for acceptance/rejection of a proposed base level time step, using a
simple comparison of these three proportionality constants.

Extending the multi-level method for the simulation of stochastic biological systems 23

Proposition 1 The configuration with the fine base level time step, τ f
0 = τc

0/K, should
be preferred over that with coarse base level time step, τc

0 , if
√

k f
0 <

√
kc

0 +

√
kc

1, (25)

where we recall that k` represents the relative cost, and is given by k` = c`V`.

Proof. In order to see where this inequality comes from proceed as follows: without
loss of generality set the variance target at ε2 = 1. Then, the expected difference
in simulation time between the estimator with the fine base level time step and the
estimator with the coarse base level time step is given by

{
L f

∑̀
=0

√
k f
`

}2

−
{

Lc

∑̀
=0

√
kc
`

}2

.

Using the fact that, for i≥ 1, kc
i+1 = k f

i , and that L f +1 = Lc, we can rewrite this as

{√
k f

0 −
√

kc
1 +

L f +1

∑̀
=1

√
kc
`

}2

−
{√

kc
0 +

L f +1

∑̀
=1

√
kc
`

}2

.

Thus, after rearrangement, the net change in simulation time is
[√

k f
0 −
√

kc
0−
√

kc
1

]{√
k f

0 +

√
kc

0 +

√
kc

1 +2
L f +1

∑̀
=2

√
kc
`

}
. (26)

As the terms within the braced brackets are positive, we have the required condition.

4.1.1 Example

We again consider the gene expression system (7) and use our algorithm to choose
τ0 in C++. First impose the choice of K = 3. If we take τ(1)0 = 1/9, then there are

two alternatives to consider, τ(2,1)0 = 1/27 and τ(2,2)0 = 1/3. With 10,000 samples, we
calculate estimates for the relevant proportionality constants and present the results in
Table 7. We then use Theorem 1 to decide on the appropriate choice of τ0. The initial
base level time step τ(1)0 is coarse in comparison to the proposed base level time step

τ(2,1)0 . Since we have
√

k(1)0 +

√
k(1)1 = 4.5666 < 6.7624 =

√
k(2,1)0 , by Theorem 1

τ(2,1)0 = 1/27 is an inferior choice to τ(1)0 = 1/9. Similarly, as
√

k(2,2)0 +

√
k(2,2)1 =

9.0220 > 3.5859 =

√
k(1)0 , Theorem 1 implies that τ(2,2)0 = 1/3 is also an inferior

choice. We therefore take τ0 = 1/9.
Despite the fact that we have rejected τ(2,1)0 and τ(2,2)0 and thus selected τ(1)0 , it

may be that choices of τ0 between τ(1)0 and τ(2,1)0 or between τ(1)0 and τ(2,2)0 , (for

example, τ0 = 1/12 or τ0 = 1/7, respectively) provide better performance than τ(1)0 .
Fortunately, efficient multi-level simulation does not require that the choice of τ0 is

24 Christopher Lester et al.

Guess Estimates

τ(1)0 = 1/9
√

k(1)0 = 3.5859,
√

k(1)1 = 0.9807.

τ(2,1)0 = 1/27
√

k(2,1)0 = 6.7624, N/A.

τ(2,2)0 = 1/3
√

k(2,2)0 = 3.5576,
√

k(2,2)1 = 5.4644.

Table 7 Details of the cost measure for each potential ensemble of estimators for the gene expression
system (7) with different choices of τ0, the time step on the base level.

exactly optimal, rather that particularly poor choices of τ0 are avoided. Our iterative
procedure provides a mechanism by which a value of the base level time step, τ0, can
be selected, given a value of K. A further benefit of our algorithm is that it does not
require that τL be chosen at the outset.

4.2 Choice of final accuracy in the biased estimator

As discussed previously, ensemble statistics collected with a biased system give rise
to point estimates laden with both a bias, and a statistical error. It is sensible to com-
bine these errors into a single quantity, as the source of an error may not be relevant
to an end-user. If the population of species i, Xi, is estimated by the biased multi-level
method as Qb = θ̂ and the true expectation is given by E[Xi] = θ , then the mean-
squared error (MSE) is

MSE(θ̂) = E[(θ̂ −θ)2] = Var(θ̂)+(Bias(θ̂ ,θ))2. (27)

We can estimate the bias (Li, 2007) by noting that if E[Zi] is an estimator generated
using a tau-leaping algorithm with fixed time step τ , then there exists a constant C
such that as τ → 0, E[Zi]−E[Xi] ≈Cτ . The estimator variance can be estimated by
noting that, for each level, V` ∝ 1/n`. Equation (27) therefore suggests that the MSE
can be controlled in two ways. Firstly, given τ0, we can take the number of levels,
L, sufficiently large. This controls the MSE because incorporation of each additional
level into the algorithm has the effect of approximately dividing the model bias by a
factor of K. Secondly, we can increase the number of sample paths, n`, on each level
` to decrease the variance of the biased estimator.

Suppose we are given a MSE allowance, ε2, and have to ascribe a portion of this
to the square of the bias, and the remainder to the variance. As a first attempt at a
solution, we pre-assign a proportion, λ ∈ (0,1) of the MSE allowance to the square
of the bias, and leave1−λ to the variance. Previous work (Giles, 2008) has made the
simple choice λ = 1/2, that is, assigning half the MSE to the square of the bias, and
the other half to the estimator variance. However, it is not clear how best to choose λ
for a particular system. We demonstrate the effects of varying λ later in this work.

4.3 Towards an adaptive simulation approach

Recall that equation (16) estimates the units of CPU time required to attain an es-
timator variance of (1−λ)ε2. If we add an additional level into the algorithm, this

Extending the multi-level method for the simulation of stochastic biological systems 25

will reduce the bias, but more sample paths may be required on each level in or-
der to reduce the variance of the combined estimator below the target of (1−λ)ε2.
Therefore, given a choice of λ , it is not clear how to best choose L such that the
computation is most efficient. We suggest using the following incremental approach
to obtain MSE = ε2, given a choice of λ :

1. initially work with a single level so that L = 0. Choose τ0 according to the al-
gorithm of Section 4.1. Estimate k0 and generate n0 sample paths. This gives an
estimator of Qb = Q0 with desired statistical accuracy (an estimator variance of
(1−λ)ε2);

2. perform a bias test (using equation (29) or (30), below) on the estimator, Qb =

∑L
`=0 Q`. If the bias is at most

√
λε , terminate the algorithm;

3. if not, introduce a new level into the system and let L := L+ 1. Estimate kL and
the calculate the optimal number of sample paths for each level, n`, ` = 0, . . . ,L
according to (15);

4. generate the required number of sample paths;
5. return to step 2;

To evaluate the bias we note, for large `,

Q` = E
[
Zτ0/K` −Zτ0/K`−1

]
= E

[
Zτ0/K` −Xi

]
−E

[
Zτ0/K`−1 −Xi

]

≈ Cτ0/K`−Cτ0/K`−1

= (K−1)E
[
Xi−Zτ0/K`

]
.

Therefore we can estimate the bias as,

E
[
Xi−Zτ0/K`

]
≈ Q`

K−1
, (28)

and so to obtain MSE = ε2, the algorithm should be terminated, at level L, when

|Q`| ≤
√

λ (K−1)ε. (29)

Note that to improve the reliability of this approach, one could follow Giles (2008)
and perform the bias test using the two levels. The algorithm thus terminates with

max{K−1|Q`−1|, |Q`|} ≤
√

λ (K−1)ε. (30)

The incremental approach outlined here also provides the opportunity to correct
the errors inherited from the use of (initially poorly) approximated values for k`. This
can be done in several ways. Firstly, when the incremental algorithm is used, the
estimates for each k` can be recalculated at step 3 as each additional level is added
into the system. However, the use of updated k`’s means that there may be a set
of levels, Γ , where more sample paths have already been simulated than required
by (15). This corresponds to the associated estimators, Q`, ` ∈ Γ , having estimator
variances lower than required by the bound ∑L

`=0 V` < (1−λ)ε2. If we set

ε∗ := (1−λ)ε2−∑
`∈Γ

V`/n`, (31)

26 Christopher Lester et al.

Species Sample Mean Sample Variance
S1 2047.4±0.73 2022.8
S2 1897.3±0.73 1995.8
S3 3027.2±1.00 3808.6

Table 8 Estimated populations of system (32) at time T = 9, as determined by the DM. 95% confidence
intervals have been constructed; these are indicated with the ‘±’ terms.

then we can still satisfy our overall variance target by achieving the variance target of
ε∗ for the combined levels ` ∈ {0, . . .L}\Γ . Note that if we re-calculate our target n̂`
for `∈ {0, . . .L}\Γ , we now require fewer sample paths for each level. It is therefore
now possible that more sample paths than required have already been generated for
some ` ∈ {0, . . .L} \Γ . These levels can then be added to the set Γ and ε∗ can be
recalculated. This argument can be repeated until no more levels can be added to Γ .

Once we have ensured that the required bias limitation has been achieved, we then
check whether the required statistical error has been achieved, and generate more
sample paths if this is appropriate. In this way, we have a high degree of confidence
that the algorithm has attained an estimator with the required error.

5 A second example system

In this section we consider a second, synthetic sample system:

R1 : S1
8

GGGGA S1 +S1, R2 : S1 +S1
0.004

GGGGGGGGA S1,

R3 : S2
4

GGGGA S2 +S2, R4 : S2 +S2
0.002

GGGGGGGGA S2, (32)

R5 : S1 +S2
0.0001

GGGGGGGGGA S1 +S1 +S3.

System (32) could, for example, represent a predator-prey model with S1 a predator
of S2. S3 simply counts the number of predator prey interactions. For the purposes
of this discussion, we will simulate sample paths from time t = 0 until a terminal
time T = 9. Throughout this section, we will make use of MATLAB to illustrate the
advantages of the multi-level method. This system exhibits different dynamics to our
other model system and, as such, presents different modeling challenges. Figure 3
shows evolution of XT (t) = (X1(t),X2(t),X3(t))T up until this terminal time. The
solid black lines show the mean species numbers and the colored bands one and
two standard deviations from the mean. To benchmark the performance of our multi-
level method, we will initially estimate the mean copy numbers of S1, S2 and S3,
denoted X1, X2 and X3, respectively, at time T using the DM, and then compare the
simulation time with that of the multi-level method. In each case we will attempt to
approximate the mean populations of S3 with an estimator variance of 1.0. The results
from MATLAB, DM simulation are displayed in Table 8. In total, 14,500 paths were
generated, taking a total of 1,070 seconds (approximately 18 minutes).

As an example of an efficient multi-level parameter set for system (32), we take
τ0 = 1/9, K = 3 and L = 4, and seek an unbiased estimator for E[X3(T)]. This means

Extending the multi-level method for the simulation of stochastic biological systems 27

0.0 2.0 4.0 6.0 8.0
0

500

1000

1500

2000

2500

3000

3500

S
1

Time

C
op

y
nu

m
be

r

0.0 2.0 4.0 6.0 8.0
0

500

1000

1500

2000

2500

3000

3500

S
2

Time

C
op

y
nu

m
be

r

0.0 2.0 4.0 6.0 8.0
0

500

1000

1500

2000

2500

3000

3500

S
3

Time

C
op

y
nu

m
be

r

Fig. 3 Evolution of XT (t) = (X1(t),X2(t),X3(t))T up until terminal time T = 9. The solid black lines show
the mean species numbers and the colored bands one and two standard deviations from the mean.

Level τ`−1 τ` Estimate Sample variance Paths Time
Q0 - 3−2 2951.71 3664.38 39339 23.7s (152.8 s)
Q1 3−2 3−3 50.13 215.93 5910 16.1s (73.0 s)
Q2 3−3 3−4 16.61 89.21 2480 16.1s (62.7 s)
Q3 3−4 3−5 5.56 36.26 1138 18.5s (47.0 s)
Q4 3−5 3−6 1.85 15.58 678 26.7s (48.4 s)
Q∗5 3−7 DM 1.01 11.42 172 120.6s (108.1 s)

Total 3026.85±1.05 - 221.8s

Table 9 The contribution from the estimator on each level, Q`, in producing an unbiased overall estimator
Qu for X3 of system (32) at T = 9. We have taken τ0 = 1/9, K = 3, and L = 4. In the time column, the true
simulation time is shown, together with an estimated simulation time in brackets.

we have six estimators, Q0, . . . ,Q∗5, which combine to produce an overall estimator,
Qu. The multi-level method (implemented in MATLAB) gives Qu = 3026.85± 1.05
within 222 seconds, an estimate consistent with that of the DM (see Table 8) but
produced in a fifth of the time.

In order to explore our result in greater detail, we explicitly consider the contri-
bution of each estimator Q` to the overall estimator Qu and present our findings in
Table 9. We see that 54% of simulation time is allocated to the calculation of Q∗L+1,
despite our best attempts at optimizing calculations on this final level. Unfortunately,
this effort is somewhat wasted as Qu is adjusted by only 0.03% with the inclusion
of Q∗L+1. Moreover, Q∗L+1 contributes approximately 25% of the total estimator vari-
ance. With the benefit of hindsight, we can say that it may have been better to neglect
the final coupling level and consider instead the corresponding biased estimator, Qb,
with the same multi-level parameter set. In addition, we note that the true simulation
times, as shown in Table 9, compare poorly with the simulation times estimated by
Equation (14). We discuss this MATLAB-specific problem in Section 7.2.

The choice of the ‘most efficient’ parameter set for the multi-level method de-
pends on the system to be simulated and, in general, is a non-trivial problem to solve.
We now explore further the choices of τ0 and L for our example system (32), and then
conclude with a discussion of the final coupling level.

28 Christopher Lester et al.

Level τ`−1 τ` Estimate Sample variance Paths Time
Q0 - 30 130.78 508.21 127,197 4.5s
Q1 30 3−1 2301.85 68962.36 539,383 183.9s
Q2 3−1 3−2 519.10 67553.46 522,755 681.7s
Q3 3−2 3−3 50.15 209.611 17,984 45.75s
Q4 3−3 3−4 16.91 82.88 6,781 37.7s
Q5 3−4 3−5 5.66 36.45 3,593 47.0s
Q6 3−5 3−6 2.01 18.07 2,781 92.9s
Q∗7 3−7 DM 1.05 11.38 477 154.5s

Total 3027.15±1.12 - 1,247.8s

Table 10 The contribution from each level estimator Q` in producing an unbiased overall estimator Qu
for X3 at T = 9. We have taken τ0 = 1, K = 3, and L = 4.

Guess Estimates

τ(1)0 = 3
√

k(1)0 = 4.8609
√

k(1)1 = 9.1735

τ(2,1)0 = 1
√

k(2,1)0 = 0.1701
√

k(2,1)1 = 6.0573

τ(2,2)0 = 9
√

k(2,2)0 = 0.0028
√

k(2,2)1 = 5.1600

τ(3)0 = 1/3
√

k(3)0 = 5.8497
√

k(3)1 = 10.0359

τ(4)0 = 1/9
√

k(4)0 = 1.7699
√

k(4)1 = 0.8384

τ(5)0 = 1/27
√

k(5)0 = 3.0284 N/A

Table 11 Details of the cost measure for each potential ensemble of estimators for (32) with different
choices of τ0, the time step on the base level.

5.1 Choice of the base level

In Table 10 we demonstrate that an inappropriate choice of τ0 in the multi-level
method can lead to a dramatically increased simulation time (1,247.8 seconds, com-
pared with 221.8 seconds). Whilst this choice of τ0 results in a reasonable estimate of
E[X3(T)], the CPU time required is greater than that of our DM. Looking in detail at
the CPU time required for each level, we see that the estimator Q0 is calculated within
4.5 seconds, but the estimator Q1 takes 183.9 seconds to compute and Q2 takes 681.7
seconds. The base level is too inaccurate to capture the salient details of the system,
and consequently these must be restored with the subsequent estimators.

In order to avoid this situation, we need to choose τ0 in an intelligent manner. To
do this we follow the method suggested in Section 4.1. As a first guess, take τ(1)0 = 3.
Using the results displayed in Table 11 we refine our choice of τ0:

1. We let τ(2,1)0 = 1, τ(2,2)0 = 9 be the candidate refinements of τ0. We have
√

k(1)0 +

√
k(1)1 >

√
k(2,1)0 ,

√
k(2,2)0 +

√
k(2,2)1 >

√
k(1)0 ,

and so we accept τ(2,1)0 and reject τ(2,2)0 . We therefore set τ(2)0 = τ(2,1)0 .

Extending the multi-level method for the simulation of stochastic biological systems 29

τ0 τL L K Estimate Duration

30 3−6 6 3 3027.15±1.12 1247.83 s
3−1 3−6 5 3 3027.38±1.11 1223.35 s
3−2 3−6 4 3 3026.46±1.03 208.34 s
3−3 3−6 3 3 3027.03±1.06 224.59 s

Table 12 Various estimates of E[X3(T)] for system (32) generated using the unbiased multi-level method
with different base level time steps. Note that τL now refers to the overall accuracy of the biased estimator,
before the final estimator Q∗L+1 is included to produce an unbiased estimator.

2. We let τ(3)0 = τ(2)0 /3 = 1/3. As
√

k(2)0 +

√
k(2)1 >

√
k(3)0 ,

we accept τ(3)0 as an improvement.

3. We let τ(4)0 = τ(3)0 /3 = 1/9. As
√

k(3)0 +

√
k(3)1 >

√
k(4)0 ,

we accept τ(4)0 as an improvement.

4. We let τ(5)0 = 1/27. However,
√

k(4)0 +

√
k(4)1 <

√
k(5)0 ,

and so we reject τ(5)0 , and conclude that a good choice is τ0 = 1/9.

We therefore, under the restriction of K = 3, fix τ0 = 1/9 and proceed with the rest
of the method.

In Table 12 we demonstrate the performance of a range of alternative base level
time steps with a corresponding change in number of levels so that the biased estima-
tors that would be produced (before the final, exact, coupling) always have the same
level of bias. τ0 = 1/9 is, as predicted by our method for choosing the base level time
step, the most efficient choice for the example system (32)

5.2 Choice of the final level

As mentioned in the previous section, it may be prudent to use the MSE as an accu-
racy metric. We recall that

MSE = Var(Q)+{Bias(Q,E [X3(T)])}2 , (33)

and we seek to bound this by some ε2. We choose λ ∈ (0,1) and then aim to bound the
estimator variance of Q by (1−λ)ε2, and the bias by

√
λε2. For our sample problem

(32) we have taken τ0 = 1/9, K = 3, and sought to estimate E[X3(T)] subject to a
maximum MSE of 1.0. In Table 13 we present a range of results for different choices

30 Christopher Lester et al.

λ Estimate Levels Time (sec)

0.95 3026.18±0.44 5 103.07
0.75 3026.29±0.98 6 154.05
0.50 3026.67±1.38 6 97.27
0.25 3026.67±1.70 6 72.92
0.05 3027.52±1.91 7 397.82

Table 13 Details of the simulation times for each potential ensemble of estimators for (32) with different
choices of λ , the proportion of the total MSE assigned to the bias. The value of λ has been fixed, and the
procedure of Section 4.3 followed.

of λ . Our answers, unsurprisingly, compare very favorably with the exact estimates
given in Table 8. Moreover, our algorithm ensures that the required MSE has been
attained.

This approach is simpler to implement than the unbiased method and can be eas-
ily automated. By contrast, the unbiased approach cannot be easily automated, and
the decision as to how many levels to incorporate before the final coupling is im-
plemented is far from obvious. Future work could focus on the optimal choice of λ ,
or indeed, an adaptive choice of λ as the simulation progresses. This could poten-
tially take full account of the fact that the number of estimators incorporated will be
necessarily discrete.

6 A third example system

In this section, we consider a third example system. Our simulations will be con-
ducted in C++. This model describes the mitogen-activated protein kinase (MAPK)
cascade, which is involved in a wide variety of signalling processes that govern tran-
sitions within the phenotype of a cell, and has previously been used as a test case
for stochastic simulation algorithms (MacNamara et al, 2008). This model comprises
ten coupled Michaelis-Menten schemes (Huang and Ferrell, 1996), and has N = 22
species and M = 30 reactions. A Michaelis-Menten scheme is constructed as fol-
lows (MacNamara et al, 2008): there are four species and three reaction channels
within the scheme. The species are substrate (“S”), enzyme (“E”), complex (“ES”)
and product (“P”) particles. The reaction channels are as follows:

R1 : E +S
r1

GGGGGAES, R2 : ES
r−1

GGGGGGA E +S, R3 : ES
r2

GGGGGA E +P. (34)

A quasi-steady state assumption can then be applied to reduce the computational
complexity associated with simulating the system. This reduces the scheme to two
species: substrate (“S”) and product (“P”) particles. The three reaction channels de-
scribed by (34) are reduced into a single reaction channel, which is given as

R∗ : S
k∗

GGGGGA P, (35)

Extending the multi-level method for the simulation of stochastic biological systems 31

where the propensity function follows Michaelis-Menten kinetics, which are given
by

k∗ =
k2E0S

S+ r−1+r2
r1

,

where E0 represents the initial enzyme population. As explained, the MAPK cascade
comprises ten coupled Michaelis-Menten schemes: we provide a diagrammatic rep-
resentation in Figure 4. We will now simulate the model using the quasi-steady state
assumption. This means we will simulate a model comprising ten reaction channels.
The propensity value of each reaction channel is given by the Michaelis-Menten ki-
netic formula detailed in equation (35). The substrate, enzyme and product particles
for each channel are as shown in Figure 4. The reaction channels are therefore as
follows:

R1 : KKK
k1

GGGGGA KKK-P, R2 : KKK-P
k2

GGGGGA KKK,

R3 : KK
k3

GGGGGA KK-P, R4 : KK-P
k4

GGGGGA KK,

R5 : KK-P
k5

GGGGGA KK-PP, R6 : KK-PP
k6

GGGGGA KK-P, (36)

R7 : K
k7

GGGGGA K-P, R8 : K-P
k8

GGGGGA K,

R9 : K-P
k9

GGGGGA K-PP, R10 : K-PP
k10

GGGGGGA K-P,

where the k j are functions of the form of Equation (35). We will estimate the mean
MAPK population (indicated by “K-P” in System (36) and Figure 4) at a terminal
time T . We use suitable initial conditions to simulate the model until a terminal time
T = 250. The initial conditions are detailed in Table 14. We now provide the model

parameters. Each Michaelis-Menten reaction is of the form R j : X
k j

GGGGGA Y , and the

function k j is expressed as k j = α j · X/(X + β j). For each reaction R j, the initial
enzyme populations give α j and β j their values. We use the following values: α1 =
2.5, α2 = 0.25, α3 = 0.025, α4 = 0.75, α5 = 0.025, α6 = 0.75, α7 = 0.025, α8 =
0.5, α9 = 0.025, and α10 = 0.5. We also have β1 = 10, β2 = 8, β3 = 15, β4 = 15,
β5 = 15, β6 = 15, β7 = 15, β8 = 15, β9 = 15, and β10 = 15. If the DM is used, it
will take approximately 7,300 seconds to estimate the mean MAPK population at
time T to a suitable level of accuracy in C++ (approximately two hours). In Table
15 we show a multi-level configuration which estimates the mean MAPK population
as 2682.87± 0.10; this calculation in C++ takes approximately 1,376 seconds. This
demonstrates that with even a relatively complicated reaction network, a five-fold
reduction in simulation time can be achieved with the multi-level method.

7 Discussion and outlook

This final section discusses some remaining challenges in implementing the multi-
level method. Under specific circumstances, these challenges might make it diffi-
cult to implement the multi-level method. We discuss one particular difficulty which

32 Christopher Lester et al.

E1

KKK KKK-P

E2

KK KK-P KK-PP

K-P’ase

K K-P K-PP

Output

Fig. 4 A diagrammatic representation of the MAPK cascade. The text refers to chemical species; whilst
the arrows represent Michaelis-Menten schemes. The arrow points from the substrate towards the product;
the species on top of the arc indicates the enzyme. This diagram has been adapted from Huang and Ferrell
(1996).

Species Initial Value Species Initial Value

KKK 90 KKK-P 10
KK 280 KK-P 10

KK-PP 10 K 280
K-P 10 K-PP 10

Table 14 This table provides the initial values for the MAPK cascade model detailed in (36).

Level τ`−1 τ` Estimate Sample variance Paths Time

Q0 - 4−2 2331.79 15846.10 1.24 ·106 681.2 s
Q1 4−2 4−3 275.99 537.44 1.15 ·106 243.9 s
Q2 4−3 4−4 57.59 166.21 424012 211.8 s
Q3 4−4 4−5 13.21 31.75 121385 146.7 s
Q∗4 4−6 DM 4.29 11.19 58235 100.7 s

Total 2682.87±0.10 - 1,384.3s

Table 15 The contribution from each level estimator Q` in producing an unbiased overall estimator for
the mean MAPK population at time T = 250. We have taken τ0 = 1/16, K = 4, and L = 3.

arises where two simultaneously-generated paths grow far apart over time; a number
of potential remedies are then discussed. We proceed to discuss a range of implemen-
tation issues.

Extending the multi-level method for the simulation of stochastic biological systems 33

Estimator 0.01 0.1 1 5 50 95 99 99.9 99.99
Q3 -360.5 -311 10 21 40 63 74 87 198.5
Q4 -379 -256.5 3 6 13 22 27 32 43
Q5 -349.5 -58.5 0 1 4 9 11 13 15

Table 16 Sample values for various percentiles in the distributions used to estimate Q3, Q4 and Q5 for
the gene expression system (7) using τ0 = 1/9 and K = 3. 100 000 data points have been used for each
estimator.

7.1 Catastrophic decoupling

Consider the contribution of each term in Q = Q0 +Q1 + · · ·+QL(+Q∗L+1) to the
multi-level estimator. In the course of our exploration of the multi-level method, we
have noticed that occasionally sample paths on one level undergo what we will call
a ‘catastrophic decoupling’ so that species populations in a pair of sample paths be-
come very different from one another. This can have a dramatic effect on the variance
of the estimator on that level, and hence on the results of the multi-level method. For
example, if such a sample path is generated in the course of estimating the n`, the
optimization algorithm of Section 3.2 then suggests that a huge number of samples
are needed on that level. This slows the multi-level calculation, and the result is often
that the actual variance of the estimator is much lower than the target variance. On
the other hand, if we do not see a catastrophic decoupling during estimation of the
n`, but one or more occur during generation of sample paths for the Q`, the target
variance for the estimator Q is not achieved.

We now give an example of a catastrophic decoupling event. For the example gene
expression system (7), we take τ0 = 1/9 and K = 3. In Table 16 we show percentile
data for distributions of Q3, Q4 and Q5. It is clear that the sample values contributing
to Q3,Q4 and Q5 all possess extreme tails to their distributions as a result of one or
more catastrophic decoupling events. For example, over 90% of the sample values
for Q5 lie in the interval [1,9], but approximately 1 in 1150 sample paths provide
sample values of −100 or less. This makes catastrophic decoupling events appear
deceptively unlikely; however, if 100 sample paths are generated, there is an 8%
chance that such an event is encountered. If 1000 sample paths are performed, this
rises to approximately 58%.

We now explain the cause of this problem, and then discuss its consequences. In
effect, a decoupling is possible each time a new mRNA molecule (M) is introduced
into the system. The coupling technique ensures it is introduced into both the coarse
and fine systems. In the fine system, the decay process of this mRNA starts immedi-
ately. However, in the coarse system this is not always the case: this is because decay
of the mRNA cannot take place in the coarse system until the reaction propensities are
updated. Hence, during this interim period, it is possible for the new mRNA particle
to decay in the fine system but not in the coarse system.

It is clear that the scaling of the system is then what causes problems with the
variance. At time T = 1, there are approximately 24 mRNA molecules, compared
with over 3,000 protein molecules. If the decoupling in mRNA species counts occurs
at an early time, the extra mRNA molecule in the coarse system leads to increased

34 Christopher Lester et al.

Sample Sample mean Sample variance
No decouplings 4.33 4.82

Single decoupling 4.11 90.41

Table 17 Statistics demonstrating two different outcomes when 1000 sample paths are produced to esti-
mate Q5 for system (7). The system without decouplings has all its data points in [-1; 13], whilst the other
system has a single decoupling, value -288. The rest of the data is contained in [-2; 12].

Estimator Mean Variance Kurtosis
Q3 39.33 646.15 108.41
Q4 13.07 197.23 438.00
Q5 4.34 65.62 1257.80

Table 18 Statistics describing the samples for Q3,Q4 and Q5 for system (7) using τ0 = 1/9 and K = 3.
100 000 data points have been used for each estimator.

protein generation which, in turn, leads to increased dimer generation. This difference
in generation rates remains until the mRNA populations converge again (if at all). As
the dimer population is monotonically increasing, the population difference is ‘locked
in’ for all subsequent times, and so the difference in sample values of X3(T) is large.

As previously noted, when a simulation exhibiting a catastrophic decoupling is
incorporated into a Monte Carlo estimator, it has a substantial effect on the estimator
variance. However, it is often the case that the estimator itself is relatively unaffected.
In Table 17 we show the dramatic effect that just a single decoupling has on the
sample variance for one level in the gene expression system (7), without having an
overwhelming effect on the mean estimate.

Here we will not present a concrete method which avoids these catastrophic de-
coupling; we suggest this as an area for future work. A first possibility lies in the use
of common inhomogeneous Poisson processes for each of the coarse and fine sam-
ple paths. In Table 18 we provide sample means, variances and kurtoses for the gene
expression system. This demonstrates that higher estimators are associated with sub-
stantially higher kurtoses: a second possibility could involve the use of the kurtosis
to detect the presence of a decoupling (Bayer et al, 2014).

7.2 Implementation challenges

With this work, we provide code for the multi-level method written in both MATLAB

and C++, and now we discuss implementation using these two platforms. When sam-
ple paths are produced with MATLAB, the code must be ‘vectorized’ to ensure a high
level of efficiency. To highlight the benefits of this approach, we note that our DM
results for the system (7) shown in Table 2 took around six hours to produce, whereas
a non-vectorized DM code could require 162 hours (nearly a week).

One of the highly reaction system-dependent components of the multi-level tech-
nique is the optimization algorithm used to choose n`, the number of samples required
on each level. The algorithm should, of course, aim to provide the optimal number of
simulations required on each level; we have followed Anderson and Higham (2012)

Extending the multi-level method for the simulation of stochastic biological systems 35

in generating 100 initial simulations to guide this choice. However, the results in
Table 9 show that the actual simulation time is different to that predicted by the opti-
mization algorithm. In MATLAB this is largely because code vectorization means that,
for example, the CPU time per path when generating, say, 100 sample paths is differ-
ent (and usually greater) than the CPU time per path when generating 1000 paths. As
such, the optimization algorithm does not work as well for MATLAB vectorized code
as it does for code implemented using C++, as it over-estimates the simulation time:
especially where very many simulations are required.

7.3 Higher order estimators

In this manuscript we have focussed on estimating only the mean and variance of
a population within a chemical reaction network. The method can be naturally ex-
tended to estimate other summary statistics, for example, the signal-to-noise ratio.
One particularly interesting challenge is to deal with systems which comprise mul-
tiple favourable states, such as the Schlogl system (Vellela and Qian, 2009). In this
case, the multi-level method can be used to estimate the r-th moments of the copy
number, µr = E[X r], for r = 1, . . . ,C. These moments can then be used to construct
an approximate probability distribution for the copy number by using the Method of
Moments (Kavehrad and Joseph, 1986). We leave the details to a future work.

7.4 Summary

The multi-level method provides the potential for great savings to be made in the
world of stochastic simulation of chemical systems. Although there are many intri-
cacies associated with the method, many of them software- and system-dependent,
the benefits of using multi-level approaches are enormous, and open up the range of
problems that can be fully explored using stochastic simulation. We have introduced
a number of novel enhancements to the multi-level method which, we feel, make it
easier to understand and implement, as well more computationally efficient.

36 Christopher Lester et al.

References

Anderson D (2007) A modified next reaction method for simulating chemical sys-
tems with time-dependent propensities and delays. Journal of Chemical Physics
127(21):214,107

Anderson D, Higham D (2012) Multi-level Monte Carlo for continuous time Markov
chains, with applications in biochemical kinetics. SIAM Multiscale Modeling and
Simulation 10(1):146–179

Anderson D, Ganguly A, Kurtz T (2011) Error analysis of tau-leap simulation meth-
ods. Annals of Applied Probability 21(6):2226 – 2262

Arkin A, Ross J, McAdams H (1998) Stochastic kinetic analysis of develop-
mental pathway bifurcation in phage λ -infected escherichia coli cells. Genetics
149(4):1633–1648

Auger A, Chatelain P, Koumoutsakos P (2006) R-leaping: Accelerating the stochastic
simulation algorithm by reaction leaps. Journal of Chemical Physics 125:084,103

Barrio M, Burrage K, Leier A, Tian T (2006) Oscillatory regulation of hes1: dis-
crete stochastic delay modelling and simulation. PLoS Computational Biology
2(9):e117

Bayer C, Hoel H, von Schwerin E, Tempone R (2014) On non-asymptotic optimal
stopping criteria in Monte Carlo simulations. SIAM Journal on Scientific Comput-
ing 2(36)

Cao Y, Li H, Petzold L (2004) Efficient formulation of the stochastic simulation algo-
rithm for chemically reacting systems. Journal of Chemical Physics 121(9):4059–
4067

Cao Y, Gillespie D, Petzold L (2006) Efficient step size selection for the tau-leaping
simulation method. Journal of Chemical Physics 124(4):044109

Cao Y, Gillespie D, Petzold L (2007) Adaptive explicit-implicit tau-leaping method
with automatic tau selection. Journal of Chemical Physics 126(22):224101

El Samad H, Khammash M, Petzold L, Gillespie D (2005) Stochastic modelling of
gene regulatory networks. International Journal of Robust and Nonlinear Control
15(15):691–711

Elowitz M, Levine A, Siggia E, Swain P (2002) Stochastic gene expression in a single
cell. Science Signalling 297(5584):1183

Engblom S (2009) Spectral approximation of solutions to the chemical master equa-
tion. Journal of Computational and Applied Mathematics 229(1):208 – 221

Erban R, Chapman S, Kevrekidis I, Vejchodskỳ T (2009) Analysis of a stochastic
chemical system close to a sniper bifurcation of its mean-field model. SIAM Jour-
nal on Applied Mathematics 70(3):984–1016

Fedoroff N, Fontana W (2002) Small numbers of big molecules. Science
297(5584):1129–1131

Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical sys-
tems with many species and many channels. Journal of Physical Chemistry A
104(9):1876–1889

Giles M (2008) Multilevel Monte Carlo path simulation. Operations Research
56(3):607–617

Extending the multi-level method for the simulation of stochastic biological systems 37

Gillespie D (1976) A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. Journal of Computational Physics
22(4):403 – 434

Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81(25):2340–2361

Gillespie D (2001) Approximate accelerated stochastic simulation of chemically re-
acting systems. Journal of Chemical Physics 115(4):1716–1733

Gillespie D (2005) Stochastic chemical kinetics. In: Yip S (ed) Handbook of Materi-
als Modeling, Springer Netherlands, pp 1735–1752

Higham D (2008) Modeling and simulating chemical reactions. SIAM Review
50(2):347–368

Hou Z, Xin H (2003) Internal noise stochastic resonance in a circadian clock system.
Journal of Chemical Physics 119:11,508

Huang C, Ferrell J (1996) Ultrasensitivity in the mitogen-activated protein kinase
cascade. Proceedings of the National Academy of Sciences 93(19):10,078–10,083

Jahnke T (2011) On reduced models for the chemical master equation. Multiscale
Modeling & Simulation 9(4):1646–1676

Jahnke T, Huisinga W (2007) Solving the chemical master equation for monomolec-
ular reaction systems analytically. Journal of Mathematical Biology 54(1):1–26

Jahnke T, Huisinga W (2008) A dynamical low-rank approach to the chemical master
equation. Bulletin of Mathematical Biology 70(8):2283–2302

Jahnke T, Udrescu T (2010) Solving chemical master equations by adaptive wavelet
compression. Journal of Computational Physics 229(16):5724–5741

Kavehrad M, Joseph M (1986) Maximum entropy and the method of moments in
performance evaluation of digital communications systems. IEEE Transactions on
Communications 34(12):1183–1189

Kurtz T (1980) Representations of markov processes as multiparameter time changes.
The Annals of Probability pp 682–715

Li H, Petzold L (2006) Logarithmic direct method for discrete stochastic simulation
of chemically reacting systems. Journal of Chemical Physics

Li T (2007) Analysis of explicit tau-leaping schemes for simulating chemically re-
acting systems. SIAM Multiscale Modeling and Simulation 6(2):417–436

MacNamara S, Bersani A, Burrage K, Sidje R (2008) Stochastic chemical kinetics
and the total quasi-steady-state assumption: application to the stochastic simula-
tion algorithm and chemical master equation. The Journal of Chemical Physics
129(9):095,105

McCollum J, Peterson G, Cox C, Simpson M, Samatova N (2006) The sorting direct
method for stochastic simulation of biochemical systems with varying reaction
execution behavior. Computational Biology and Chemistry 30(1):39–49

Norris J (1998) Markov Chains. Cambridge University Press
Paulsson J, Berg O, Ehrenberg M (2000) Stochastic focusing: fluctuation-enhanced

sensitivity of intracellular regulation. Proceedings of the National Academy of Sci-
ences of the United States of America 97(13):7148–7153

Székely T, Burrage K, Erban R, Zygalakis K (2012) A higher-order numerical frame-
work for stochastic simulation of chemical reaction systems. BMC Systems Biol-
ogy 6(1):85

38 Christopher Lester et al.

Vellela M, Qian H (2009) Stochastic dynamics and non-equilibrium thermodynamics
of a bistable chemical system: the schlögl model revisited. Journal of The Royal
Society Interface 6(39):925–940

Yates C, Burrage K (2011) Look before you leap: A confidence-based method for se-
lecting species criticality while avoiding negative populations in τ-leaping. Journal
of Chemical Physics 134(8):084,109

Yates C, Klingbeil G (2013) Recycling random numbers in the stochastic simulation
algorithm. Journal of Chemical Physics 138(9):094,103

