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This paper introduces the Twin Robot Palletising Problem (TRPP) in
which two robots must be scheduled and routed to pick up and deliver
products at specified locations along a rail. The robots are initially lo-
cated at the opposite ends of the rail and must preserve a minimum safe
distance from one another. The objective is to minimise the makespan,
defined as the time required to complete all operations and for both
robots to return to their starting positions. The paper presents a proof
of NP-Hardness of the TRPP, as well as two mixed integer linear pro-
gramming models. Local search operators are introduced, before an
iterated local search and a genetic algorithm are developed, in which a
linear-time scheduling algorithm and dynamic programming are utilised
to evaluate the quality of solutions. Extensive computational results
demonstrate the limits of the mathematical models, the effectiveness
of the metaheuristics, and the savings obtained by using twin robots
instead of a single one.

Keywords: scheduling; genetic algorithms; palletising

1. Introduction

This paper introduces the Twin Robot Palletising Problem (TRPP) in
which two robots must be scheduled and routed to pick up and deliver
products at specified locations along a rail. The robots are initially
located at the opposite ends of the rail and must preserve a mini-
mum safe distance from one another. The objective is to minimise the
makespan, defined as the time required to complete all operations and
for both robots to return to their starting positions. The TRPP arises
in automated industrial systems, which have the advantages of increas-
ing productivity and quality of the product or process. Additionally,
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human labour costs are significantly reduced, as are the health and
safety risks of dangerous processes. One industrial area that utilises
automation extensively is palletisation. This is the process of trans-
ferring products from some warehouse location onto pallets. With an
estimated two billion pallets in use in the USA in 2015 (LeBlanc 2017),
it is clear that palletisation is essential to the effective transportation
of goods in the twenty-first century.

Figure 1. An industrial example of twin robots on a rail (AllGlass 2017).

To automate a palletising system like the one displayed in Figure 1
we need to design a scheduling algorithm to determine which robot will
process each item, and in which order these items will be processed.
The scheduling algorithms affect the system both operationally and
strategically. Operationally, an optimal scheduling algorithm would en-
able the system to palletise the available items in the shortest possible
time. Strategically, a good scheduling algorithm may inform manufac-
turers which palletising system would best suit their needs.

This paper introduces two mixed integer linear programming mod-
els of the TRPP, as well as two metaheuristics. The design of these
methods is described, before their performances are evaluates with
an extensive computational study. Additionally, we will compare the
TRPP to a problem with a single robot.

2



October 5, 2017 International Journal of Production Research ”TRPP Submitted Version 2 Black”

2. Problem definition

In order to define the TRPP, we refer the reader to Figure 2 which
demonstrates a potential industrial setup in which the TRPP arises.
Here we have a set of workstations, each containing a unique type of
product. Opposite the workstations are pallets, each requiring a set
of products to complete a customer’s order. These sets of products
will therefore have to be relocated from the workstations to the pal-
lets. Between the workstations and pallets we find a rail, on which a
white robot and a black robot are situated. These robots are capable
of transferring a single product from any workstation to any pallet.
Additionally, at the extremities of the rail we see two depots, one for
each robot. We require that the robots be located at their depots at the
start and end of a palletising run. Our task is to schedule the robots
such that the time taken to transfer all products from workstations to
pallets (i.e., the makespan) is minimised. Additionally, we must ensure
that the robots maintain a safety distance from each other at all times,
to avoid collisions.

Workstations

Pallets

White depot Black depot
1 3 5 6

Figure 2. An industrial layout demonstrating the TRPP

We made some assumptions in order to tackle the TRPP. The pal-
lets do not have to be filled in any order. We only wish to minimise
the overall makespan, not the makespan of any individual pallet. The
number of products available at any workstation is at least equal to the
quantity of that product required by all orders. All orders are known
a priori, so the set of jobs is static for the duration of the task. The
positions of the pallets and workstations are fixed. The robots move
with constant and equal speed, unless idle (acceleration and decelera-
tion are not considered). If a robot starts a job, it will complete that
job as soon as possible. There is no option to wait once a product is
picked, and the robot is not permitted to deliver the product at any
location other than its destination pallet. The time taken to pick up
an item is constant, regardless of the item or robot, and is equal to
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the delivery time of the item.

2.1 Literature review

The Swapping Problem on a Line (Anily et al. 1999), and Scheduling
Twin Robots on a Line (Erdoğan et al. 2013; Boysen et al. 2014) define
the closest research problems to the TRPP in terms of definition and
potential applications. The paper of Anily et al. (1999) introduces a
problem, which the methods developed for can be used to optimally
solve a single robot version of the TRPP in O(n2) time. The papers
of Erdoğan et al. (2013) and Boysen et al. (2014) develop methods to
solve a problem like the TRPP, but with only the depots of the robots
as entry points for jobs to the system.

Many other similar problems can be found in the port management
literature. To identify the closest we refer to the classification scheme of
Boysen et al. (2017), which categorises the TRPP as a [1D, 2, sm; mvx,
pos; Cmax] type problem. The respective properties of the TRPP con-
tained in this abbreviated classification are: its one-dimensional nature
(1D), the two cranes or robots (2), the safety margins (sm), a constant
travel speed (mvx), specific initial and final positions of cranes/robots
(pos), and a makespan objective (Cmax). Many existing papers pos-
sess some of these properties. The single dimensional structure and
the makespan objective alone are frequently found in the literature
(Diabat and Theodoru 2014; Javanshir and Seyedalizadeh-Ganji 2010;
Lee and Chen 2010; Lee and Wang 2010; Lee et al. 2008; Lim et al.
2007; Tang et al. 2014; Zhu and Lim 2006), along with papers contain-
ing problems with more similar features, such as those of Guan et al.
(2013), Hakam et al. (2012), Liu et al. (2006), and Rodriguez-Molins
et al. (2014). Each of these problems contains four of the same features
as the TRPP, but again, differences are significant. The clearest differ-
ence is the fact that all referenced papers consider quay cranes, which
differ from the robots in the TRPP as they are not required to collect
their cargo from a certain workstation. Instead, trucks or yard cranes
deliver cargo to the appropriate location for it to be loaded onto the
ship. This removes the need to travel to a delivery point once a job is
picked. If we were to use the TRPP to solve problems of this type, it
would be equivalent to every job having its pickup location equal to
its delivery location.

Scheduling problems of this type can often be found with intended
applications outside of ports. Maschietto et al. (2017) study a crane
scheduling problem in a steel coil distribution centre. While the appli-
cations of this problem are in the steel industry, the problem setup is
similar to a yard crane arrangement from the port literature. As stated
previously, the port setup does not produce a design we can use in the
solving of the TRPP. Ge and Yih (1995) introduce a problem in the
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production of circuit boards, in which a single crane transfers circuit
boards from an entry location to an available processing tank. Once
the circuit board is processed the crane transfers the product to an
exit location. Again, while this problem has similarities to the TRPP,
the differences (invariant input/output locations, multiple transfers
per job, intermediate drop-offs with waiting times) prohibit us from
utilising the methods developed by Ge and Yih (1995). Yang et al.
(2016) consider a multi-robot scheduling problem in which robots are
tasked with transferring products to machines. The problem could be
seen as a more open version of the circuit board production problem
of Ge and Yih (1995), with multiple robots, the potential for multi-
ple drop-offs on route to the exit location, and restrictions on which
machines can process each job.

From a methodological viewpoint, while we could not find a problem
with all of the same features as the TRPP in the literature, we did see
the potential of using a genetic algorithm for our problem. Genetic, or
evolutionary algorithms are very popular for problems in this subfield
of operational research, and many examples can be found in the liter-
ature (Zhao et al. 2016; Wang et al. 2016; Pratap et al. 2016). Genetic
algorithms are also popular in research on Vehicle Routing Problems
(VRPs). One of particular interest to our work on the TRPP is the
paper of Vidal et al. (2012). In developing a genetic algorithm for the
TRPP, we have used some components of the Vidal et al. hybrid ge-
netic algorithm for multi-depot and period VRP’s; the details of which
are provided in Section 4.5.

2.2 Problem properties

Before proving that the TRPP is NP-hard, we demonstrate our
method for visual representation of solutions. We use time-space Gantt
charts to achieve this, an example of which can be seen in Figure 3. In
this figure the y-axis represents the position of the robots on the rail,
and the x-axis represents time. We see jobs represented as polygons,
each showing the time in which a robot is picking up an item from a
workstation, moving to the correct delivery location, and placing the
item on the pallet, as well as the location of the robot on the rail during
this time. We see the process time µ for pickup or delivery labelled on
job 1, and repeated without labelling on all other jobs. When reading
this Gantt chart, we can take any time instance (e.g., the time ζ) and
use the chart to find the position of each robot at this time, as well as
the job (if any) currently being processed by the robots. If the robot is
not processing a job, we represent its position with a dashed line. At
time ζ, we observe that the black robot is in the process of delivering
job 5, while the white robot is moving from the delivery point of job
2 to the pickup point of job 3.

5
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Figure 3. An example of a TRPP solution, represented as a Gantt Chart

Theorem 2.1. The TRPP is NP-Hard

Proof. The proof proceeds by reduction to a general case of the TRSP
introduced by Erdoğan et al. (2013) and proven to be NP-hard. Table
1 compares the inputs of the TRSP to those of the TRPP. Chevrons
show which inputs are required for the problems, and a tilde is used
to show when only a partial set of inputs is required. While the TRSP
does not have a set of workstations as in the TRPP we consider the
depots as workstations Ψ0 and ΨL.

Parameter Symbol TRSP TRPP

Set of workstations (Ψi) ∼ X

Set of pallets (Φi) X X

Length of the rail (L) X X

Number of jobs (n) X X

Set of jobs assigned to the white robot (W ) X

Set of jobs assigned to the black robot (B) X

Pickup location of each job (pi) X

Delivery location of each job (di) X X

Safety distance (σ) X X

Travel time (τ) X X

Handling time (µ) X

Table 1. Inputs of the TRSP and TRPP.

To reduce the TRPP to the TRSP we set L, n, di, σ and τ identically
to the TRSP. We then set µ = 0, as the TRSP considers process time
to be negligible. Finally, we transform the sets W and B such that
pi = 0 for i ∈ {1, ...,m} and pi = L for i ∈ {m+1, ..., n}. This ensures
all jobs to be processed by the white robot are at Ψ0 and all jobs for
the black robot are at ΨL.

6
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The constraint of minimum safe distance, combined with out limited
workstation set, ensures that any solution produced with this TRPP
setup is a feasible solution for the TRSP. Since the solutions for both
problems are presented as a set of start times (one for each job) no
transformation is required to convert the outputs of our reduced TRPP
to the corresponding TRSP solution.

2.2.1 Scheduling coefficients

To schedule jobs appropriately we require knowledge of the minimum
intervals that must be respected between start times of each pair of
jobs. For this reason we developed an algorithm to run prior to any
other method. This algorithm takes every possible pair of jobs on op-
posite robots, and determines the minimum required time intervals.
A visual representation of one of these pairs can be seen in Figure 4.
Job j is assumed to have been previously scheduled, and is in a fixed
position, with start time Sj. We then wish to schedule job i on the
opposite robot, which could be scheduled before or after j. Job i−
shows the position of job i if scheduled as late as possible before j,
and i+ shows the position of job i if scheduled as early as possible
after j. The calculation of Si− and Si+ then allows us to obtain the
coefficients α1

i,j = Sj − Si− and γ1i,j = Si+ − Sj. If job j is assigned to

the white robot we would calculate coefficients α2
i,j and γ2i,j instead.

However, due to the design of the matrices, α2
i,j ≡ γ1j,i and γ2i,j ≡ α1

j,i.
Detailed pseudocodes for the calculation of these values can be found
in Appendix A. The computation of the α and γ values is completed
in constant time for each job pair, therefore the process of fully pop-
ulating the coefficient matrices takes O(n2) time.

3. Mathematical Models

In this section we present a mixed integer linear programming formu-
lation for the TRPP. This formulation utilises a graph representation
of the TRPP. In addition, we have developed a second formulation
based on time-indexed variables. For the sake of brevity, the second
formulation is presented in Appendix C. Both formulations are based
on the assumptions that µ = 1, τ = 1, and σ = 1, since changes to
these values do not affect the complexity of the problem.

3.1 Graph-representation based formulation

Let G = (V,A) be a directed graph where V = {0, 1, ..., n + 1}; with
vertices 0 and n+1 corresponding to the depots of the white robot and
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j

Sj

i−

Si−

α1
i,j

i+

Si+

γ1i,j

Figure 4. α1
i,j and γ1

i,j coefficients

the black robot, respectively. Then we define VT = V \ {0, n + 1}, the
set of jobs to be completed. The set A contains the arcs, connecting
tasks. The length of an arc (i, j) is equal to θij, the parameter defined
as the necessary time from the end of job i to the end of job j (for
i, j ∈ {0, n + 1}; µ = 0). We then have parameters ηij the necessary
time from the start of job i to the start of job j (for i, j ∈ {0, n + 1}
there is no pickup or delivery operation); α1

ij , α
2
ij , γ

1
ij, and γ2ij , defined

as in Section 2.2.1; and T , as in the previous formulation.
Finally, we have the decision variables: xij which is 1 if the white

robot executes task j immediately after task i and 0 otherwise; yij
which is 1 if the black robot executes task j immediately after task i

and 0 otherwise; si, the time at which the pickup operation of job i

begins; and zij which is 1 if job i is scheduled immediately before job
j and 0 otherwise. The formulation is as follows:

minimise w (1)

subject to
∑

j∈VT

x0j ≤ 1 (2)

∑

j∈VT

xj0 =
∑

j∈VT

x0j (3)

∑

j∈VT

yn+1,j ≤ 1 (4)

∑

j∈VT

yj,n+1 =
∑

j∈VT

yn+1,j (5)

∑

j∈V

xij + yij = 1 i ∈ VT (6)

∑

i∈V

xij =
∑

i∈V

xji j ∈ VT (7)

8
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∑

i∈V

yij =
∑

i∈V

yij j ∈ VT (8)

w ≥
∑

(i,j)∈A

θijxij (9)

w ≥
∑

(i,j)∈A

θijyij (10)

sj ≥ si + ηij − T (1− xij − yij) i, j ∈ VT (11)

si ≥ η0ix0i + ηL+1,iyL+1,i i ∈ VT (12)

sj ≤ si − α1
ij + T (1− zij +

∑

k

yki +
∑

k

xkj) i, j ∈ VT ; k ∈ V (13)

sj ≥ si + γ1
ij − T (zij +

∑

k

yki +
∑

k

xkj) i, j ∈ VT ; k ∈ V (14)

w ≥ si + ηi0xi0 + ηi,L+1yi,L+1 i ∈ VT (15)

xij ∈ {0, 1} (i, j) ∈ A (16)

yij ∈ {0, 1} (i, j) ∈ A (17)

zij ∈ {0, 1} (i, j) ∈ A (18)

si ≥ 0 i ∈ VT (19)

w ≥ 0. (20)

Constraint (2) ensures the white robot leaves the depot at most
once. Constraint (3) states that the number of jobs ending at the white
depot is equal to the number of jobs originating there (at most one).
Constraints (4) and (5) state the same conditions for the black robot.
Constraints (6) state that jobs must be completed exactly once, by
just one of the robots, and Constraints (7) and (8) ensure that all jobs
are succeeded by another if performed by the white and black robot
respectively. Constraints (9) and (10) limit the makespan to be at least
the minimum time taken for either robot to complete its assigned jobs,
and Constraints (11) restrict the start time of a job to be at least the
end time of the previous job, plus the time taken to travel between the
jobs. Constraints (12) state that the start time of a job is at least the
time taken to travel from the robot’s depot, to the origin of the job.
Constraints (13) and (14) maintain the minimum offset which must be
respected if we have a scheduled job and wish to schedule further jobs
on the opposite robot. Constraints (15) state that the makespan is at
least the end time of the final job of either robot, plus the time taken
to return to the respective depot. Constraints (16) to (20) define the
domains of the variables.

4. Metaheuristic algorithms

Since the formulations are unable to solve instances of the problem
with 15 or more jobs within two CPU hours (details presented in
Section 5), we have developed heuristics to find solutions for larger
instances. We present three basic methods, and two metaheuristic al-

9
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gorithms, each building on the results of the previous one.

4.1 Scheduling algorithm

The following methods consider a solution representation of the TRPP
as two arrays. The first array, Seq, lists the jobs in order of starting
time. The second is a corresponding sequence of robot assignments,
Asn. We have developed a linear-time algorithm which takes these two
sequences, produces a feasible schedule of starting times, and calcu-
lates the makespan. This algorithm uses the precalculated scheduling
parameter matrices α1, α2, γ1, and γ2, which are as defined earlier
(Section 2.2.1). The algorithm selects the jobs in Seq one at a time,
and schedules each one as early as possible to maintain the order of
jobs and feasibility. A pseudocode for this algorithm is provided in Ap-
pendix B. Initial solutions are produced by randomly assigning a robot
and an order to each job, then applying this scheduling algorithm.

4.2 Basic Local Search

To improve the results obtained from the scheduling algorithm we
introduce seven local search operators to be performed on a solution.
Here we state the seven operators, and their computational complexity:

(1) Assignment change: Select one job and change its assignment
(O(n)).

(2) Assignment swap: Select a pair of jobs with different assign-
ments, and swap their assignments (O(n2)).

(3) Order change: Select one job and change its position in the se-
quence of orders, maintaining the assignment of all jobs (O(n2)).

(4) Order swap: Select a pair of jobs and swap their positions in
the sequence of orders, maintaining the assignment of all jobs
(O(n2)).

(5) Order & Assignment Change: Select one job and change
its position in the sequence of orders, as well as its assignment
(O(n3)).

(6) Reverse job set: Take a set of size 4 or more of consecutive jobs
and reverse their positions in the order sequence, maintaining the
assignment of all jobs (O(n2)).

(7) Move job set: Take a set of size 2 or more of consecutive jobs
and change their position in the sequence of orders, maintaining
the assignment of all jobs (O(n4)).

10
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4.3 Dynamic Program

Due to the nature of our scheduling algorithm, there are some cases in
which we could never find the optimal solution with the methods we
have described so far. This is a consequence of the fact that none of
our algorithms consider the possibility of delaying a job to improve the
overall makespan. We know that this strategy will be necessary to find
optimal solutions in some cases, and an example is depicted in Figure
5. In both charts, the order of jobs in Seq is the same when sorted by
start time. Job 1 starts first, job 2 follows, and job 3 starts last. Chart
A is the sequence that would be given by the scheduling algorithm.
Since the jobs are scheduled based on an ‘as early as possible’ basis,
job 2 forces the white robot to move back towards its depot, and wait,
before processing job 3. A delay of one unit to the start time of job 2
allows job 3 to fit into the schedule earlier, reducing the time taken to
process the three jobs from 16 units in Chart A to 11 units in Chart
B. Potential delays can be identified using the α coefficients described
in Section 3. To identify the potential for delay in Figure 5, we would
check the value of α1

3,2 (i.e., the minimum time gap that must be
respected between the start time of job 3, and the start of job 2, if
job 3 is to be scheduled before job 2, and remain feasible.). If α1

3,2 ≤ 0
then there may be a benefit to delaying job 2.

t

y

1

2

3 t

y

1

2

3

A B

Figure 5. Example of a delay which benefits the makespan

To deal with the delay problem we developed a dynamic program
which can work alongside any of our heuristic methods. This addition
means that it is then always possible to find an optimal solution. A
pseudocode for our dynamic program is given in Algorithm 1. Prior
to the start of this process, all pairs of jobs have their respective α

coefficients checked. As stated earlier, if α1
i,j ≤ 0 or α2

i,j ≤ 0, depending
on the assignment of jobs, a delay to job j may be beneficial. This a
priori coefficient check enables the if statement on lines 9 and 15 of
Algorithm 1.

The dynamic program utilises a recursive function
RF (κw, κb, pos, λ), where κw and κb are the end times of the

11
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2
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Figure 6. The delay calculation step of the dynamic program

most recent jobs completed by the white robot and black robot,
respectively. Our current position in the sequence of jobs is denoted
as pos. Our control array is λ, and our value array is Ω. In standard
dynamic program implementation we would use Ω with indices of
pos, κw, and κb to match states. However, the optimal solution value
can easily be read as max{κw, κb}. Hence we have used Ω with only
two indices, pos and max{κw, κb}, for algorithmic efficiency, where
max{κw, κb} is the current makespan. Within this construct we
initialise all values stored in Ω to M , and use Ω to store the value of
the makespan of the robot which completes its assigned jobs earliest.
Any state that has a worse solution that the one stored in Ω can then
be discarded, since it is dominated.

The scheduling within the recursion is controlled by χ(robot, pos),
which calculates the difference between the end time of the current job,
and that of the previous job completed by the same robot. Delays are
designated by the D(Seq, pos) function, which calculates the necessary
delay of the current job to allow a future job to be processed earlier.
This calculation is carried out using the step displayed in Figure 6,
we also consider the charts of Figure 5. Chart A shows the first step
that occurs in function D, where job 3 is scheduled as normal. Upon
calculating that the pairing of jobs 2 and 3 provides the potential for
a delay, the D function schedules job 3 at the earliest possible time,
ignoring all jobs completed by the black robot (Chart C). The location
of both robots at time ζ, the end of the pickup operation of job 3, is
then compared. The necessary delay to job 2 is then applied to obtain
feasibility (Chart B).

4.4 Iterated Local Search

While the results from the local search operators show improvement
from the scheduling algorithm alone, they still fail to reliably find the
known optimal solutions for even instances with just five jobs. Our

12
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Algorithm 1 Dynamic Program

1: Set: κw = 0, κb = 0, pos = 0,Ω(i, j) = M(∀i ≤ n,∀j ≤ T )
2: Function: RF (κw, κb, pos, λ)
3: if pos = n then

4: return max{κw, κb}
5: if Ω(pos,max{κw, κb}) = M

or (κw > κb and κb < Ω(pos, κw))
or (κb > κw and κw < Ω(pos, κb)) then

6: Ω(pos,max{κw, κb}) = κb
7: if Asn(pos) = white then

8: K1 = RF (κw + χ(white, pos), κb, pos+ 1, λ)
9: if α1

Seq(pos),Seq(pos−1) ≤ 0 then

10: K2 = RF (κw + χ(white, pos) +D(Seq, pos), κb, pos+ 1, λ)
11: else

12: K2 = M

13: else

14: K1 = RF (κw, κb + χ(black, pos), pos + 1, λ)
15: if α2

Seq(pos),Seq(pos−1) ≤ 0 then

16: K2 = RF (κw, κb + χ(black, pos) +D(Seq, pos), pos+ 1, λ)
17: else

18: K2 = M

19: if K2 < K1 then

20: λ(κw, κb, pos) = 1
21: Return K2
22: else

23: λ(κw, κb, pos) = 0
24: Return K1
25: else

26: if Ω(pos,max{κw, κb}) < M

and ((κw > κb and κb = Ω(pos, κw))
or (κb > κw and κw < Ω(pos, κb))) then

27: return Ω(pos,max{κw, κb})
28: else

29: return M

next attempt at an improved heuristic was an iterated local search
(ILS) as described by Lourenço et al. (2003), the framework of which
is shown in Algorithm 2.

Here, s0 represents the solution of the scheduling algorithm, on
which a local search is then carried out, before performing a pertur-
bation. A pseudocode for the Perturb function is shown in Algorithm
3, where U [i, j] is the discrete uniform distribution from i to j. Here, l
andm are parameters which allow us to change the size of perturbation
available. This perturbation potentially allows an escape from the cur-
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Algorithm 2 Iterated Local Search

1: s0 = GenerateInitialSolution

2: s∗ = LocalSearch(s0)
3: while Termination condition not met do
4: s′ = Perturb(s∗)
5: s∗′ = LocalSearch(s′)
6: s∗ = AcceptanceCriterion(s∗, s∗′)

rent local minimum, in an attempt to find better solutions elsewhere
in the search space. The ILS iteratively takes the perturbed solution,
performs a local search, and tests if satisfies the acceptance criterion.
In our implementation, if the current solution has a better makespan
than the best solution found so far, it is accepted. This process is
repeated until the termination condition is met.

Algorithm 3 Perturbation Function

1: Set kmax = U [l,m]
2: Set k = 0
3: while k < kmax do

4: Set m = U [1, 7]
5: Perform Random move in Local Search operator m
6: k = k + 1

4.5 A Hybrid Genetic Algorithm

We now introduce the final heuristic we implemented, a hybrid genetic
algorithm. A pseudocode is shown in Algorithm 4. S is the set of
solutions ρi,j forming the population. Each population member has two
indices as we have designed our population as a matrix. The structure
of this matrix is shown in Figure 7.















ρ0,0 ρ1,0 ρ2,0 . . . ρR,0

ρ0,1 ρ1,1 ρ2,1 . . . ρR,1

ρ0,2 ρ1,2 ρ2,2 . . . ρR,2
...

...
...

. . .
...

ρ0,I ρ1,I ρ2,I . . . ρR,I















Figure 7. The population matrix

In this algorithm R is the number of perturbations to perform on
the initial solution (line 3 of Algorithm 4), and I is the number of
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improvements to perform on each perturbed solution (line 5 of Al-
gorithm 4). The function Perturb is as defined in Section 4.4. The
function Improve is used to generate solutions of better quality than
the random solutions, by performing local search moves until an im-
proved solution is found. If no improving solution is found, the function
performs a number of random moves to generate a non-improving so-
lution, and continues the search.

Algorithm 4 Hybrid Genetic Algorithm

1: Generate Initial Solution ρ0,0
2: for i ∈ {1, ..., R} do

3: ρi,0 = Perturb(ρi−1,0)
4: for j ∈ {1, ..., I} do

5: ρi,j = Improve(ρi,j−1)
6: while Stopping criteria not satisfied do

7: DiversityCalculation(S)
8: for i ∈ {1, ..., |Q|} do

9: Select: P1, P2

10: qi = Crossover(P1, P2)
11: Mutation(qi)
12: LocalSearch(qi)
13: DiversityCalculation(Q)
14: Replacement(S,Q)
15: Return: Best(S)

After the initial population generation, the algorithm enters a loop
until termination criteria are met. Much like the ILS, there are mul-
tiple options for these criteria. We have tested a variety of computing
time limits and iteration limits. Within the loop, multiple operations
are performed. The DiversityCalculation function is called for the indi-
viduals in the population S. This function assigns a value of fitness to
each population member quantifying how diverse the solution is when
compared to all other population members. We perform this calcula-
tion to enable us to select the more diverse solutions as parents in the
next step. To calculate diversity we use the evaluation methods de-
scribed by Vidal et al. (2012). For a solution in the population ρi,j , or
an offspring qi, we calculate a diversity contribution ∆ρ, and a biased

fitness BF (ρ) where

∆(ρ) =
1

2|S|2

|S|
∑

ρ2=1

|S|
∑

i=1

(1(πi(ρ) 6= πi(ρ2)) + 1(ξi(ρ) 6= ξi(ρ2))) (21)
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BF1(ρ) = fit(ρ) +

(

1−
nbElit

|S|

)

dc(ρ) (22)

BF2(ρ) = fit(ρ) + (DW )dc(ρ). (23)

In (21), |S| is the number of solutions in the population. πi and
ξi contain the characteristics of the solution, commonly referred to
as chromosomes. Note that, since Vidal et al. developed this hybrid
genetic algorithm to tackle a multi-depot and periodic VRP, the char-
acteristics described by the chromosomes will be different for our utili-
sation of this equation for the TRPP. For our problem, πi(ρ) represents
the index of the job which is at position i in the job order sequence of
solution ρ, and ξi(ρ) represents the robot assignment of the same job
in the same solution.

The calculation of BF1(ρ) (22) defined by Vidal et al. (2012) is
preceded by a ranking of the solutions in the population by two criteria.
First, solutions are ranked by makespan; this rank is the value fit(ρ).
The solutions are then ranked by their diversity contribution ∆(ρ) and
this ranking is the value dc(ρ). The value nbElit is the number of elite
solutions in the population. Elite solutions are those with the best
BF1(ρ) values. We therefore wish to keep them in the population until
the next generation, regardless of whether we find enough offspring of
better quality to fill the population.

Equation (23) is an alternative to the biased fitness calculation of
Vidal et al. Here the variable DW is introduced and represents the
diversity weighting of the calculation. By changing the value of DW

we can alter the influence of the diversity ranking on the biased fitness
of each solution. Higher values of DW imply a greater importance is
placed on the diversity of a solution, over its makespan. Our hybrid
genetic algorithm can be performed using BF1 or BF2.

Once diversity measures are assigned to all population members,
parents are selected for each new solution to be created. Q is the set
of solutions produced as offspring. This selection procedure, like the
diversity measures, is based on the Vidal et al. (2012) hybrid genetic
algorithm. The procedure is outlined in Algorithm 5. This selection
is performed twice to obtain two parents. If the two parents are the
same, the parent selection algorithm is repeated for P2 until different
parents are obtained.

Once parents are selected, a crossover is performed to produce an off-
spring. We used two procedures for this crossover: one-point crossover,
and two-point crossover. These procedures are based on similar
crossover operators for the Travelling Salesman Problem (Larraønaga
et al. 1999), and are outlined in Algorithm 6. The procedures perform
on both Seq and Asn of the selected parents.
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Algorithm 5 Parent Selection

1: h = ⌊U [0, ..., R + 1)⌋ {column of candidate 1 in population}
2: i = ⌊U [0, ..., I + 1)⌋ {row of candidate 1 in population}
3: j = ⌊U [0, ..., R + 1)⌋ {column of candidate 2 in population}
4: k = ⌊U [0, ..., I + 1)⌋ {row of candidate 2 in population}
5: while h = i and j = k do

6: j = ⌊U [0, ..., R + 1)⌋
7: k = ⌊U [0, ..., I + 1)⌋
8: if BF (ρh,i) > BF (ρj,k) then
9: P = ρh,j

10: else

11: P = ρj,k

Algorithm 6 Crossover Procedures

1: One-Point Crossover:

2: c = ⌊U [1, ..., n)⌋
3: for i < c do

4: q(i) = P1(i)
5: for i ≥ c and i < 2n do

6: inheritedJob = 0
7: for k < n do

8: if q(k) = P2(i mod n)
then

9: inheritedJob = 1
10: if inheritedJob = 0 then

11: q(i) = P2(i mod n)

1: Two-Point Crossover:

2: c1 = ⌊U [1, ..., n)⌋
3: c2 = ⌊U [1, ..., n)⌋
4: while c1 = c2 do

5: c2 = ⌊U [1, ..., n)⌋
6: if c1 > c2 then

7: Swap(c1, c2)
8: for i < c1 do

9: q(i) = P1(i)
10: for i ≥ c1 and i < 2n do

11: inheritedJob = 0
12: for k < n do

13: if q(k) = P2(i mod n)
then

14: inheritedJob = 1
15: if inheritedJob = 0 then

16: q(i) = P2(i mod n)
17: if i = c2 then

18: Break

19: for i ≥ c2 and i < 2n do

20: inheritedJob = 0
21: for k < n do

22: if q(k) = P1(i mod n)
then

23: inheritedJob = 1
24: if inheritedJob = 0 then

25: q(i) = P1(i mod n)

Once the crossover procedure has been completed, successfully pro-
ducing an offspring, a mutation operation may be performed on the
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offspring. Mutation is similar to the Perturb operation seen in Algo-
rithm 4, but will not be applied to every offspring. Mutation occurs
with a certain probability, and consists of a small number of random
moves within a randomly selected local search operator. After the mu-
tation, a local search is performed on the offspring to improve the
solution. At the local search stage we may also wish to run the dy-
namic program described in Section 4.3. These steps are repeated to
produce the required set of offspring, before calculating each offspring’s
diversity measures against the initial population.

Next, offspring are chosen to replace members of the population,
using their biased fitness measures. First, the elite solutions discussed
earlier are fixed in the population. The non-elite population members
are then removed from the population, and pooled with the offspring.
From this pool, the solution with the best biased fitness measure is
selected and transferred from the pool of potential population mem-
bers, into the population. This process is repeated until the popula-
tion is full. The remaining solutions outside of the population are then
discarded. The process of producing offspring and updating the pop-
ulation is then repeated until a termination criterion is met, at which
point the best solution in the population is identified.

5. Computational study

Here we provide the results of our computational comparison of all
methods. Each heuristic algorithm has been tested on 1,200 instances
of the TRPP. These tests were grouped by number of jobs (n), and
length of rail (L). For every tested combination of number of jobs and
length of rail, 100 instances are tested. Tests are run with 5, 10, 20,
30, 50, and 100 jobs on rails of length 5 and 10. In all instances, we
set µ = 1, τ = 1, and σ = 1 since changes to these values do not affect
the complexity of the problem. Tests were run on Balena High Perfor-
mance Computer (HPC) at the University of Bath, containing Intel
Ivy Bridge 2.60GHz cores with 64GB RAM1. It should be assumed
that tests were conducted for all 1,200 instances, unless stated other-
wise. Full results for all tests are available upon request. To ensure our
computational tests were thorough, we referred to the paper of Hall
and Posner (2001) which describes appropriate strategies for instance
generation in scheduling problems. Our input data is relatively simple,
giving us only a set of jobs with pickup and delivery locations defined.
We have sampled pickup and delivery locations from a discrete uniform
distribution Ud[1, L] to produce instances.

1Full technical specifications can be found at www.bath.ac.uk/bucs/services/hpc/facilities/
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5.1 Results of testing the formulations

When initially tuning the performance of our formulations, we tested
the models on a pilot set of instances, with a small number of jobs.
These tests were run using CPLEX 12.6.1, and were limited to two
hours of CPU time. Table 2 summarises the results of this initial test-
ing, and full results can be seen in Appendix D. The given values
are: the percentage of optimal solutions found (% Opt); the average
computation time for those instances which both formulations could
complete; and the average percentage gap between the upper and lower
bound, for those instances that both formulations failed to complete.

Graph representation Time-indexed

% Opt 84 89
Average computation time (s) 312.58 15.68
Average % gap 33.77 187.13

Table 2. Summary of results of initial formulation testing

Both formulations can solve any instance with 10 or fewer jobs. The
time-indexed formulation is also able to solve instances with 12 jobs.
For the instances with 15 or more jobs, both formulations are unable
to find the optimal solutions within the time limit. For the smallest
instances the graph-based formulation finds the optimal solution the
fastest, but this quality transfers to the time-indexed formulation as
the instance size increases.

5.2 Results of basic methods testing

The results of running the scheduling algorithm (ScA), basic local
search (LS), and dynamic program (DP) on all 1,200 instances are sum-
marised in Table 3. Since the formulation could not solve any instances
with 20 or more jobs in the time given, not all scheduling algorithm
results can be compared to an optimal solution. For this reason, most
results are compared to the best known solution from later methods,
to give an average percentage deviation from the best known solution
(% Dev.). We ran the dynamic program in two ways; DP1 is the case
in which we ran it at the end of the full set of local search operators,
and DP2 is the case in which we ran the dynamic program after ev-
ery local search move. All computation times are negligible (less than
0.005 seconds) in these initial tests of the basic methods, but the dif-
ference in computation time between DP1 and DP2 will become more
prevalent later within more complex algorithms.

The addition of the local search moves significantly reduces the de-
viation from the best known solutions, as would be expected. DP1
produces a small reduction of the the deviation on some instance sizes,
while DP2 has a larger effect on every instance type. The improvements
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Instance ScA ScA+DP ScA+LS ScA+LS+DP1 ScA+LS+DP2

n L % Dev # Opt % Dev # Opt % Dev # Opt % Dev # Opt % Dev # Opt

5 5 57.07 2 55.55 2 4.23 54 4.23 54 3.62 62
5 10 70.00 0 68.19 0 6.09 39 6.05 39 5.44 43

10 5 84.74 0 83.97 0 10.74 6 10.74 6 10.28 7
10 10 96.98 0 94.17 0 15.07 4 15.04 4 13.98 4
20 5 107.17 104.96 14.62 14.57 14.24
20 10 111.63 106.92 18.69 18.65 18.24
30 5 111.73 110.01 14.72 14.72 14.40
30 10 124.78 119.61 19.11 19.11 18.78
50 5 120.54 118.16 13.99 13.99 13.78
50 10 129.30 126.22 16.97 16.97 16.64

100 5 122.65 120.19 12.02 12.02 11.87
100 10 129.11 124.73 11.85 11.85 11.68

Average: 105.48 102.72 13.18 13.16 12.75

Table 3. Summary of results of basic method testing

made can be further seen by observing the number of optimal solutions
found by each method in Table 3. We see that test five clearly finds
the largest number of optimal solutions. However, the basic methods
alone clearly cannot be used to find a high number of optimal solutions
for even the smallest instance sizes.

5.3 Results of Iterated Local Search testing

Table 4 summarises the best results of our ILS testing. As before, the
dynamic program can be used in multiple ways. DP0 shows that the
dynamic program was not utilised for the corresponding tests; DP1
and DP2 are as described in the previous section.

Instance type DP0 DP1 DP2

n L % Dev.

5 5 3.12 3.12 2.33
5 10 4.77 4.77 3.97

10 5 8.30 8.30 7.49
10 10 10.39 10.39 8.72
20 5 11.70 11.77 10.96
20 10 14.62 14.64 13.11
30 5 12.19 12.19 11.40
30 10 14.76 14.74 12.89
50 5 11.38 11.38 10.66
50 10 12.87 12.87 11.28

100 5 10.12 10.12 9.42
100 10 8.56 8.56 7.65

Average 10.23 10.24 9.16

Table 4. Results of the best performing ILS tests

The results shown in Table 4 come from tests with a time limit
termination condition. We also ran tests with iteration limits, which
gave identical results for the smallest instances, worse quality results
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for medium size instances, and took too long to complete the largest
instances to be viable. Further results of preliminary testing showed
that scaling time limits with increasing instances size yielded the best
results. We also tested with longer time limits, but no additional gains
were made from the displayed results. The time limits, in seconds, for
the tests carried out for Table 4, were six times the number of jobs on
any instance.

5.4 Results of Hybrid Genetic Algorithm testing

When studying the hybrid genetic algorithm, there were seven pa-
rameters which had to be tuned; namely: the size of the population,
the number of offspring, the number of elite solutions, the number of
crossovers, the termination criteria, the use of the dynamic program,
the weight of diversity in the biased fitness equation, and the prob-
ability of mutation. We decided on a baseline population of size 25,
and used the calibration results of Vidal et al. (2012) on his hybrid
genetic algorithm. This meant we started by considering 40 offspring,
five elite solutions, and the diversity weighting given in Equation (22),
which we refer to as BF1. We set our termination criteria the same as
that which gave the best results for the ILS testing; a time limit (in
seconds) of six times the number of jobs. We also set the probability
of mutation to zero, did not use the dynamic program, and utilised
one-point crossovers.

Initially our testing had a focus of changing one parameter at a time
in an attempt to identify which changes had the most influence. Those
results are shown in Table 5 as tests one to 13. The table shows the
parameters we set, then the average number of iterations completed
(# Itn.), and the average percentage deviation from the best known
solution (% Dev.).

The change in diversity weighting had the best impact on the tests.
We therefore set this parameter accordingly for the second round of
testing. We then continued the above process, adjusting one param-
eter at a time to see the impact and accepting adjustment of those
which performed best. For subsequent rounds of testing we discarded
the dynamic program as an option, because of its poor performance.
We believe this occurs due to the high complexity discussed earlier.
This issue can be best seen in the testing of DP2, where the average
number of iterations which could be completed within the allotted time
is significantly lower than in any other test. The results of our further
testing can be seen in Table 5 as tests 14 to 20.

One test that deviates from the approach described earlier is test 14.
This test simply took all of the best single parameter improvements
from our first round of testing, and combined them. Clearly this ap-
proach yields poor results, worse than the baseline; so we continued
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1 25 40 5 1-point 6n Off BF1 0% 13675 2.12
2 36 40 5 1-point 6n Off BF1 0% 12402 1.44
3 49 40 5 1-point 6n Off BF1 0% 10918 1.21
4 64 40 5 1-point 6n Off BF1 0% 9337 1.09
5 81 40 5 1-point 6n Off BF1 0% 7643 1.15
6 100 40 5 1-point 6n Off BF1 0% 6152 1.78
7 25 40 5 2-point 6n Off BF1 0% 13426 1.94
8 25 40 5 mixed 6n Off BF1 0% 13461 1.95
9 25 40 5 1-point 12n Off BF1 0% 27395 2.01

10 25 40 5 1-point 6n DP1 BF1 0% 10402 2.65
11 25 40 5 1-point 6n DP2 BF1 0% 754 4.27
12 25 40 5 1-point 6n Off 50% 0% 13831 3.13
13 25 40 5 1-point 6n Off 200% 0% 12921 0.79

14 64 40 5 1-point 6n Off 200% 0% 8478 1.14
15 25 40 5 1-point 6n Off 200% 1% 12811 0.77
16 36 40 5 1-point 6n Off 200% 1% 11694 0.83
17 36 40 5 2-point 6n Off 200% 1% 13504 0.77
18 25 40 5 2-point 12n Off 200% 1% 26996 0.52
19 25 60 5 2-point 12n Off 200% 1% 19676 1.13
20 36 60 5 2-point 12n Off 200% 1% 17328 0.64

Table 5. Results of testing on the genetic algorithm

with our described approach, changing one parameter at a time. From
these results we can observe that the best results come from test 18.
However, it is worthy of note at this point that there is still a non-zero
average deviation from the best known solution. This deviation exists
due to the fact that not all jobs will have their best known solution
found by any one method. As stated, our best results come from test
18; but these tests find the best known solution for only 60.3% of the
instances. In fact, test 20 finds more of the best known solutions, with
62.6%. For this reason we take a closer look at these results by sepa-
rating the instances by number of jobs. These results can be seen in
Table 6. The tests are numbered as in the previous tables, and the
best results highlighted.

Table 6 shows that test 18 gives the best performance for 20, 30,
50, and 100 job instances. Test 11 is best for five job instances, and
there is a three way tie between tests 16, 18, and 20 as the best result
for 10 job instances. It is worthy of note that, while test 11 is the best
genetic algorithm test for five job instances, and multiple tests give
the same results for 10 job instances, we know we can obtain optimal
results by using either of the formulations.
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Number of jobs

Test# 5 10 20 30 50 100

1 0.30 1.17 3.19 3.08 2.94 2.08
2 0.34 0.58 1.60 2.19 2.20 1.70
3 0.25 0.53 1.29 1.75 1.54 1.94
4 0.23 0.35 0.90 1.14 1.47 2.46
5 0.23 0.31 0.90 1.23 1.60 2.61
6 0.23 0.68 1.87 2.12 2.64 3.14
7 0.28 0.84 2.76 2.72 3.03 1.99
8 0.38 0.96 2.49 3.11 2.66 2.12
9 0.30 1.10 2.97 3.06 3.15 1.48
10 0.26 1.77 3.54 4.23 3.68 2.06
11 0.08 2.14 5.76 5.62 8.27 N/A
12 0.52 2.01 4.37 4.35 4.56 2.99
13 0.25 0.23 0.61 0.91 1.16 1.59
14 0.23 0.24 0.58 0.85 2.04 2.92
15 0.23 0.25 0.57 1.00 0.98 1.60
16 0.23 0.22 0.44 0.64 1.16 2.32
17 0.23 0.26 0.47 0.74 1.16 1.75
18 0.23 0.22 0.36 0.58 0.74 0.97
19 0.23 0.28 1.39 1.82 1.92 1.14
20 0.23 0.22 0.43 0.74 0.99 1.26

Table 6. Breakdown of result quality by number of jobs

n L Average % improvement

5 5 29.92
5 10 32.43

10 5 39.76
10 10 43.71
20 5 46.54
20 10 50.81
30 5 49.90
30 10 54.57
50 5 51.64
50 10 56.02

100 5 52.72
100 10 57.27

Average 47.11

Table 7. Improvements obtained by introducing a second robot

5.5 Comparing to the single robot case

To further assess the quality of our results we then compared our best
known solutions for each of the 1,200 instances to the optimal solution
for a version of the TRPP with just one robot. These optimal solutions
can be found in O(n2) time, using the algorithm described by Anily
et al. (1999). We solved every instance twice, once for each robot being
active, and took the best of these two makespans for comparison to
our best known solution to the TRPP. The results of these tests can
be seen in Table 7.

Again, the results are broken into groups based on instance type.
The result given is the average improvement when using twin robots
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instead of a single robot. Note, the optimal single robot solution is
always achieved with the described methods, whereas the twin robot
results are upper bounds obtained from the metaheuristics for any in-
stance with n > 10. The improvements continue to grow as the size
of the instance increases, and for most larger instances the improve-
ment is over 50%. An example of an instance with larger than 50%
improvement is shown in Figure 8. Chart A shows the set of five jobs
if completed by the white robot, Chart B shows the black robot pro-
cessing the jobs, and Chart C shows the twin robots operating. The
makespan of Charts A and B is 30, and the makespan in Chart C is
12. This instance is a bad case for the single robots as all jobs are
located close to the ends of the rail. This means that, for a single
robot, there will be a large amount of time spent travelling without
handling a product. However, this case is easy for twin robots to pro-
cess for the same reason. The close proximity of all jobs to the ends of
the rail allows the robots to simply process their closest jobs, and no
consideration of safety distance is required.

A

B

C

Figure 8. Example of the twin robots providing a 60% improvement from the single robot

5.6 Analysis of Multiple Run Variance

To further assess the strength of our methods we wish to perform
replications of some tests. Since it produced our best results, we chose
to run the hybrid genetic algorithm, with the best known parameter
combination, on all instances, ten times. Figure 9 shows the results of
these tests.

For each instance we obtained ten makespans. We then found the
average of these results, and calculated the percentage deviation of
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Figure 9. Box plots showing the variance in computational results.

each individual makespan from the average. We then grouped these
results by the number of jobs in the instance to produce Figure 9. The
figure shows that, regardless of instance size, at least 50% of results
are within 0.5% of the average. Also, for five job instances, no results
have any deviation from the average, and for ten job instances all but
two of the results had zero deviation.

n Average absolute Mean squared Minimum Maximum
deviation deviation deviation deviation

5 0.000 0.000 0.000 0.000
10 0.002 0.002 -0.208 1.871
20 0.328 0.414 -3.010 4.072
30 0.486 0.524 -2.665 4.146
50 0.576 0.579 -3.247 3.550

100 0.602 0.586 -2.815 2.921

Overall 0.333 0.351 -3.247 4.146

Table 8. Summary of deviations from average makespan

To further evaluate these results, we calculated the average absolute
deviation, and mean squared deviation, for each size of instance. We
also provide the maximum and minimum deviations. These results can
be seen in Table 8.
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6. Conclusions

This paper has introduced the TRPP and proved that the problem
is NP-Hard. We have presented two exact methods and two meta-
heuristic algorithms. We have shown the performance of all presented
methods, comparing them to each other, testing parameters within
these methods where applicable, and comparing our best results to
a single robot version of the same problem. We have shown that the
performance of methods is highly dependent on the size of input to the
problem. Our best heuristic to date is the hybrid genetic algorithm.
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Erdoğan, G., M. Battarra, and G. Laporte (2013). Scheduling twin robots
on a line. Naval Research Logistics 61(2): 119–130.

Ge, Y. and Y. Yih (1995). Crane scheduling with time windows in cir-
cuit board production lines. International Journal of Production Re-

search 33(5): 1187–1199.
Guan, Y., K.-H. Yang, and Z. Zhou (2013). The crane scheduling problem:

models and solution approaches. Annals of Operations Research 203:
119–139.

Hakam, M., W. Solvang, and T. Hammervoll (2012). A genetic algorithm
approach for quay crane scheduling with non-interference constraints at
narvik container terminal. International Journal of Logistics: Research

and Applications 15(4): 269–281.

26



October 5, 2017 International Journal of Production Research ”TRPP Submitted Version 2 Black”

Hall, N. and M. Posner (2001). Generating experimental data for compu-
tational testing with machine scheduling applications. Operations Re-

search 49(6): 854–865.
Javanshir, H. and S. Seyedalizadeh-Ganji (2010). Yard crane scheduling in

port container terminals using genetic algorithm. Journal of Industrial

Engineering International 6(11): 39–50.
Larraønaga, P., C. Kuijpers, R. Murga, I. Inza, and S. Dizdarevic (1999).

Genetic algorithms for the travelling salesman problem: A review of rep-
resentations and operators. Artificial Intelligence Review 13: 129–170.

LeBlanc, R. (2017). The 2 billion pallet man.
http://packagingrevolution.net/the-2-billion-pallet-man/.

Lee, D.-H. and J. H. Chen (2010). An improved approach for quay crane
scheduling with non-crossing constraints. Engineering Optimization 42(1):
1–15.

Lee, D.-H. and H. Q. Wang (2010). Integrated discrete berth allocation and
quay crane scheduling in port container terminals. Engineering Optimiza-

tion 42(8): 747–761.
Lee, D.-H., H. Q. Wang, and L. Miao (2008). Quay crane scheduling with

non-interference constraints in port container terminals. Transportation

Research Part E 44: 124–135.
Lim, A., B. Rodrigues, and Z. Xu (2007). A m-parallel crane scheduling

problem with a non-crossing constraint. Naval Research Logistics 54:
115–127.

Liu, J., Y. wahWan, and L. Wang (2006). Quay crane scheduling at container
terminals to minimize the maximum relative tardiness of vessel departures.
Naval Research Logistics 53: 60–74.

Lourenço, H., O. Martin, and T. Stutzle (2003). Iterated local search. Hand-
book of Metaheuristics, ISORMS 57: 320–353.

Maschietto, G., Y. Ouazene, M. Ravetti, M. de Souza, and F. Yalaoui (2017).
Crane scheduling problem with non-interference constraints in a steel coil
distribution centre. International Journal of Production Research 55(6):
1607–1622.

Pratap, S., M. Kumar B, D. Saxena, and M. Tiwari (2016). Integrated
scheduling of rake and stockyard management with ship berthing: a block
based evolutionary algorithm. International Journal of Production Re-

search 54(14): 4182–4204.
Rodriguez-Molins, M., M. A. Salido, and F. Barber (2014). A grasp-based

metaheuristic for the berth allocation problem and the quay crane assign-
ment problem by managing vessel cargo holds. Applied Intelligence 40:
273–290.

Tang, L., J. Zhao, and J. Liu (2014). Modeling and solution of the joint quay
crane and truck scheduling problem. European Journal of Operational

Research 236: 978–990.
Vidal, T., T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei (2012).

A hybrid genetic algorithm for multidepot and periodic vehicle routing
problems. Operations Research 60(3): 611–624.

Wang, K., W. Ma, H. Luo, and H. Qin (2016). Coordinated scheduling of
production and transportation in a two-stage assembly flowshop. Interna-
tional Journal of Production Research 54(22): 6891–6911.

27



October 5, 2017 International Journal of Production Research ”TRPP Submitted Version 2 Black”

Yang, Y., Y. Chen, and C. Long (2016). Flexible robotic manufacturing
cell scheduling problem with multiple robots. International Journal of

Production Research 54(22): 6768–6781.
Zhao, F., Z. Shao, J. Wang, and C. Zhang (2016). A hybrid differential evo-

lution and estimation of distribution algorithm based on neighbourhood
search for job shop scheduling problems. International Journal of Produc-
tion Research 54(4): 1039–1060.

Zhu, Y. and A. Lim (2006). Crane scheduling with non-crossing constraint.
Journal of the Operational Research Society 57: 1464–1471.

28



October 5, 2017 International Journal of Production Research ”TRPP Submitted Version 2 Black”

Appendix A. Scheduling coefficient pseudocodes

Algorithm 7 Populate α matrix
1: for i = 1, ..., n do

2: for j = 1, ..., n do

3: if (pi ≤ di) then

4: if (pj ≥ dj) then

5: if (di < dj) then

6: α1
i,j = 0

7: else

8: if (pi < dj and dj ≤ di) then

9: α1
i,j = τ(pj − dj)− τ(dj − pi) + 2µ

10: else

11: α1
i,j = τ(pi − dj + σ) + τ(pj − dj) + 2µ

12: else

13: if (dj ≤ pi) then

14: α1
i,j = τ(pi − dj + σ) + τ(dj − pj) + 2µ

15: else

16: if (pj ≤ pi or dj ≤ di) then

17: α1
i,j = τ(pi − pj + σ) + µ

18: else

19: if (pj ≤ di) then

20: α1
i,j = τ(pi − pj + σ)

21: else

22: α1
i,j = 0

23: else

24: if (pj < dj) then

25: if (pj > pi) then

26: α1
i,j = 0

27: else

28: if (dj ≤ pi) then

29: α1
i,j = τ(pi − dj + σ) + τ(dj − pj) + 2µ

30: else

31: α1
i,j = τ(pi − pj + σ) + µ

32: else

33: if (dj ≤ pi) then

34: α1
i,j = τ(pi − dj + σ) + τ(pj − dj) + 2µ

35: else

36: α1
i,j = 0
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Algorithm 8 Populate γ matrix
1: for i = 1, ..., n do

2: for j = 1, ..., n do

3: if (pi ≤ di) then

4: if (pj > dj) then

5: if (dj > di) then

6: γ1
i,j = 0

7: else

8: if (pj ≤ di) then

9: γ1
i,j = 2µ+ τ(2di − pi − pj + σ)

10: else

11: γ1
i,j = µ+ τ(2di − pi − pj) + σ

12: else

13: if (pj > di) then

14: γ1
i,j = 0

15: else

16: γ1
i,j = 2µ+ τ(2di − pi − pj + σ)

17: else

18: if (pj > dj) then

19: if (dj > pi) then

20: γ1
i,j = 0

21: else

22: if (pj ≤ di) then

23: γ1
i,j = 2µ+ τ(pi − pj + σ)

24: else

25: if (dj ≤ di or pj ≤ pi) then

26: γ1
i,j = µ+ τ(pi − pj + σ)

27: else

28: γ1
i,j = τ(pi − pj + σ)

29: else

30: if (pj > pi) then

31: γ1
i,j = 0

32: else

33: if (pj ≤ di) then

34: γ1
i,j = 2µ+ τ(pi − pj + σ)

35: else

36: γ1
i,j = τ(pi − pj + σ) + µ
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Appendix B. Scheduling algorithm

Here, pW and pB are used to record the previous job completed by
the white and black robots respectively. Si is the start time of job i

and Ei is the end time of job i. The parameters Asn, α, and γ are as
defined earlier.

Algorithm 9 Scheduling Algorithm
1: pW = 0, pB = 0
2: for i = 1, ..., n do

3: if pB = 0 and pW = 0 then

4: if Asni = white then

5: Si = pi
6: pW = i

7: else

8: Si = L+ 1− pi
9: pB = i

10: else

11: if Asni = white then

12: if pW = 0 then

13: Si = SpB

14: if Si < pi then

15: Si = pi
16: if Si > SpB − γ1

i,pB and Si < SpB + α1
i,pB then

17: Si = b

18: else

19: if pB = 0 then

20: Si = EpW + |pi − dpW |
21: else

22: Si = SpB

23: if Si < EpW + |dpW − pi| then
24: Si = EpW + |dpW − pi|
25: if Si > SpB − γ1

i,pB and Si < SpB + α1
i,pB then

26: Si = b

27: pW = i

28: else

29: if pB = 0 then

30: Si = SpW

31: if Si < L+ 1− pi then

32: Si = L+ 1− pi
33: if Si > SpW − γ2

i,pW and Si < SpW + α2
i,pW then

34: Si =
35: else

36: if pW = 0 then

37: Si = EpB + |pi − dpB |
38: else

39: Si = SpW

40: if Si < EpB + |dpB − pi| then
41: Si = EpB + |dpB − pi|
42: if Si > SpW − γ2

i,pW and Si < SpW + α2
i,pW then

43: Si = b

44: pB = i

45: Ei = Si + 2 + |pi − di|
46: w = max(EpW + dpW , EpB + L+ 1− dpB)
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Appendix C. Time-indexed formulation

Let J be the set of all jobs, and Γ be the set of all time instants
{0, ..., T}, where T is an upper bound for the makespan, calculated as
the sum of all worst-case job processing times, given by (C1):

T =

n
∑

i=1

max{pi + di, 2(L + 1)− (pi + di)}+ 2µ + |pi − di|. (C1)

We then have the following parameters: L, µ, pi, and di as defined
earlier, where i ∈ J . Our decision variables are then: xt, the position
of the white robot at time t ∈ Γ; yt, the position of the black robot
at time t ∈ Γ; sti which is 1 if job i ∈ J starts at time instance t ∈ Γ
and 0 otherwise; eti which is 1 if job i ∈ J ends at time instance t ∈ Γ
and 0 otherwise; zi which is 1 if job i ∈ J is performed by the white
robot and 0 otherwise; lij which is 1 if job i ∈ J is performed before
job j ∈ J and 0 otherwise; and the makespan w. The formulation is
as follows:

minimise w (C2)

subject to x0 = 0 (C3)

y0 = L+ 1 (C4)

xt ≥ xt−1 − 1 t ∈ Γ \ {0} (C5)

xt ≤ xt−1 + 1 t ∈ Γ \ {0} (C6)

yt ≥ yt−1 − 1 t ∈ Γ \ {0} (C7)

yt ≤ yt−1 + 1 t ∈ Γ \ {0} (C8)

xt ≤ yt − 1 t ∈ Γ \ {0} (C9)
∑

t

sti = 1 i ∈ J (C10)

∑

t

eti = 1 i ∈ J (C11)

w ≥ teti + zidi + (1− zi)(L + 1− di) i ∈ J ; t ∈ Γ \ {0} (C12)
∑

t

teit −
∑

t

tsit ≥ 2µ+ |di − pi| i ∈ J (C13)

xt ≤ zipi + (L+ 1)(2 − zi − sti) t ∈ Γ \ {0}; i ∈ J (C14)

xt ≥ pi(zi + sti − 1) t ∈ Γ \ {0}; i ∈ J (C15)

yt ≤ (1− zi)pi + (L + 1)(1 + zi − sti) t ∈ Γ \ {0}; i ∈ J (C16)

yt ≥ pi(sti − zi) t ∈ Γ \ {0}; i ∈ J (C17)

xt ≤ zidi + (L+ 1)(2 − zi − eti) t ∈ Γ \ {0}; i ∈ J (C18)

xt ≥ di(zi + eti − 1) t ∈ Γ \ {0}; i ∈ J (C19)

yt ≤ (1− zi)di + (L+ 1)(1 + zi − eti) t ∈ Γ \ {0}; i ∈ J (C20)

yt ≥ di(eti − zi) t ∈ Γ \ {0}; i ∈ J (C21)
∑

t

tetj −
∑

t

tsti ≤ T (lij + 2− zi − zj) i, j ∈ J (C22)
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∑

t

tstj −
∑

t

teti ≥ T (lij + zi + zj − 3) i, j ∈ J (C23)

∑

t

tetj −
∑

t

tsti ≤ T (lij + zi + zj) i, j ∈ J (C24)

∑

t

tstj −
∑

t

teti ≥ T (lij − 1− zi − zj) i, j ∈ J (C25)

t+µ∑

t′=t+1

xt′ − µxt ≤ Lµ(2 − sti − zi) i ∈ J ; t ∈ {1, ..., T − µ} (C26)

t+µ∑

t′=t+1

xt′ − µxt ≥ −L(2 − sti − zi) i ∈ J ; t ∈ {1, ..., T − µ} (C27)

t+µ∑

t′=t+1

yt′ − µyt ≤ Lµ(1 − sti + zi) i ∈ J ; t ∈ {1, ..., T − µ} (C28)

t+µ∑

t′=t+1

yt′ − µyt ≥ −L(1− sti + zi) i ∈ J ; t ∈ {1, ..., T − µ} (C29)

t+µ−1∑

t′=t

xt′ − µxt+µ ≤ Lµ(2 − eti − zi) i ∈ J ; t ∈ {1, ..., T − µ} (C30)

t+µ−1∑

t′=t

xt′ − µxt+µ ≥ −L(2− eti − zi) i ∈ J ; t ∈ {1, ..., T − µ} (C31)

t+µ−1∑

t′=t

yt′ − µyt+µ ≤ Lµ(1 − eti + zi) i ∈ J ; t ∈ {1, ..., T − µ} (C32)

t+µ−1∑

t′=t

yt′ − µyt+µ ≥ −L(1 − eti + zi) i ∈ J ; t ∈ {1, ..., T − µ} (C33)

lij + lji = 1 i, j ∈ J ; i 6= j (C34)

xt ∈ {0, L} t ∈ Γ (C35)

yt ∈ {1, L+ 1} t ∈ Γ (C36)

sti, eti ∈ {0, 1} t ∈ Γ; i ∈ J (C37)

zi ∈ {0, 1} i ∈ J (C38)

lij ∈ {0, 1} i, j ∈ J. (C39)

Constraints (C3) and (C4) ensure that the robots start a palletising
run in their respective depots. Constraints (C5), (C6), (C7), and (C8)
maintain a travel time of τ = 1, and Constraints (C9) maintain a
safety distance σ = 1. Constraints (C10) state that a job can only
start at one time, and Constraints (C11) state that a job can only
end at one time. Constraints (C12) ensures that w is at least the end
time of any job, plus the time taken for the assigned robot to return
to its depot. Constraints (C13) set the duration of jobs. Constraints
(C14), (C15), (C16), and (C17) ensure that if a robot is assigned to
a job, then it will be at the pick up location of the job at its starting
time. Constraints (C18), (C19), (C20), and (C21) ensure that if a
robot is assigned to a job, then it will be at the delivery location of
the job at its end time. Constraints (C22), (C23), (C24), and (C25)

33



October 5, 2017 International Journal of Production Research ”TRPP Submitted Version 2 Black”

ensure that a job cannot be started by a robot until that robot has
completed all previous jobs assigned to it. Constraints (C26), (C27),
(C28), (C29), (C30), (C31), (C32), and (C33) ensure that the process
time µ is respected at the start and end of all jobs. Constraints (C34)
state that either job i is before job j, or vice versa; both statements
cannot be true. Constraints (C35), (C36), (C37), (C38), and (C39)
define the domains of the variables.
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Appendix D. Full results of initial formulation testing

Graph-representation Time-indexed
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5 5 Y 16 16 0.0 0.75 Y 16 16 0.0 1.12
Y 22 22 0.0 0.45 Y 22 22 0.0 1.61
Y 16 16 0.0 0.50 Y 16 16 0.0 1.00
Y 18 18 0.0 0.44 Y 18 18 0.0 1.17
Y 16 16 0.0 0.39 Y 16 16 0.0 1.14
Y 17 17 0.0 0.34 Y 17 17 0.0 1.17
Y 20 20 0.0 0.37 Y 20 20 0.0 1.26
Y 14 14 0.0 0.31 Y 14 14 0.0 0.91
Y 18 18 0.0 0.28 Y 18 18 0.0 1.06
Y 17 17 0.0 0.33 Y 17 17 0.0 1.26

6 5 Y 18 18 0.0 1.54 Y 18 18 0.0 1.37
Y 20 20 0.0 1.15 Y 20 20 0.0 2.78
Y 14 14 0.0 0.33 Y 14 14 0.0 1.31
Y 15 15 0.0 0.41 Y 15 15 0.0 1.70
Y 22 22 0.0 2.15 Y 22 22 0.0 3.45
Y 12 12 0.0 0.37 Y 12 12 0.0 1.45
Y 18 18 0.0 1.31 Y 18 18 0.0 1.93
Y 15 15 0.0 0.36 Y 15 15 0.0 1.84
Y 19 19 0.0 0.59 Y 19 19 0.0 1.92
Y 17 17 0.0 0.62 Y 17 17 0.0 1.72

7 5 Y 25 25 0.0 10.01 Y 25 25 0.0 4.79
Y 28 28 0.0 9.76 Y 28 28 0.0 8.58
Y 23 23 0.0 7.41 Y 23 23 0.0 5.49
Y 22 22 0.0 3.13 Y 22 22 0.0 2.98
Y 17 17 0.0 1.00 Y 17 17 0.0 3.45
Y 28 28 0.0 19.84 Y 28 28 0.0 16.44
Y 16 16 0.0 2.36 Y 16 16 0.0 3.37
Y 24 24 0.0 5.91 Y 24 24 0.0 5.69
Y 21 21 0.0 1.93 Y 20 20 0.0 5.21
Y 22 22 0.0 2.51 Y 22 22 0.0 4.48

8 5 Y 22 22 0.0 10.46 Y 22 22 0.0 10.70
Y 18 18 0.0 2.81 Y 18 18 0.0 7.79
Y 28 28 0.0 50.17 Y 28 28 0.0 8.07
Y 27 27 0.0 54.32 Y 27 27 0.0 27.00
Y 23 23 0.0 54.88 Y 23 23 0.0 8.07
Y 22 22 0.0 7.19 Y 22 22 0.0 6.40
Y 25 25 0.0 55.69 Y 25 25 0.0 13.46
Y 22 22 0.0 7.63 Y 22 22 0.0 6.92
Y 20 20 0.0 8.84 Y 20 20 0.0 7.02
Y 22 22 0.0 23.02 Y 22 22 0.0 11.69

9 5 Y 28 28 0.0 341.85 Y 28 28 0.0 37.82
Y 24 24 0.0 195.34 Y 24 24 0.0 21.31
Y 20 20 0.0 13.73 Y 20 20 0.0 13.17
Y 23 23 0.0 116.34 Y 23 23 0.0 25.29
Y 22 22 0.0 127.73 Y 22 22 0.0 18.66
Y 29 29 0.0 2068.93 Y 29 29 0.0 40.78
Y 36 36 0.0 2445.69 Y 36 36 0.0 137.90
Y 25 25 0.0 1138.18 Y 25 25 0.0 35.27
Y 22 22 0.0 110.77 Y 22 22 0.0 16.32
Y 21 21 0.0 54.57 Y 21 21 0.0 11.14

10 5 Y 24 24 0.0 1162.13 Y 24 24 0.0 51.13
Y 23 23 0.0 3715.34 Y 23 23 0.0 32.48
Y 27 27 0.0 4724.22 Y 27 27 0.0 190.80

12 5 N 28 25 12.0 7200.00 Y 28 28 0.0 222.70
N 29 25 16.0 7200.00 Y 27 27 0.0 350.25
N 30 26 15.4 7200.00 Y 30 30 0.0 349.78

15 5 N 57 40 42.5 7200.00 N 54 16.7 223.3 7200.00
N 45 36 25.0 7200.00 N 38 17.0 123.3 7200.00
N 36 28 28.6 7200.00 N 35 26 34.6 7200.00

20 5 N 54 38 42.1 7200.00 N 46 14 228.6 7200.00
N 54 40 35.0 7200.00 N 49 12.3 298.7 7200.00
N 44 34 29.4 7200.00 N 42 13.4 214.2 7200.00
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