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Abstract 

The manufacture of highly complex and accurate part geometries with reduced costs has led to the 

emergence of hybrid manufacturing technologies where varied manufacturing operations are carried out 

in either parallel or serial manner. One such hybrid process being currently developed is the iAtractive 

process, which combines additive (i.e. fused filament fabrication, known as FFF†) and subtractive (i.e. 

CNC machining) processes. In the iAtractive process production, operation sequencing of additive and 

subtractive operations is essential. This requires accurate estimation of production time, in which the FFF 

build time is the determining factor. There have been some estimators developed for fused deposition 

modelling (FDM). However, these estimators are not applicable to hybrid manufacturing, particularly in 

process planning, which is a vital stage. This paper addresses the characteristics of FFF technologies, and 

develops a novel and rigorous method for predicting build times. An analytical model was first created to 

theoretically analyse the factors that affects the part build time, and was subsequently used to facilitate the 

design of test parts and experiments. The experimental results indicate that part volume, interaction of 

volume and porosity, and interaction of height and intermittent factor have significant effects on build 

times. Finally, the estimation algorithm has been developed, which was subsequently evaluated and 

validated by applying a wide range of the identified influential factors. The major advantage of the new 

proposed algorithm is its ability to estimate the build time based on simple geometrical parameters of a 
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† Fused Filament Fabrication (FFF) is sometimes called Fused Deposition Modelling (FDM). However, 

the latter term is trademarked by Stratasys Inc., and cannot be used publicly without authorisation from 

Stratasys. 



given part. The key factors that drive the algorithm can be directly obtained from part 

dimensions/drawings, providing an efficient and accurate way for FFF time estimation. Test part 

evaluations and analysis has clearly demonstrated that estimation errors range from 0.1% to 13.5%, 

showing the validity, capability and significance of the developed algorithm and its applications to hybrid 

manufacture. 
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1 Introduction 

Manufacturing technology has enjoyed rapid development with a number of evolutionary improvements 

over the past 60 years1. The ever-increasing demand for high quality products with low costs has led to 

the emergence of hybrid manufacturing technologies2, 3. This new generation of manufacturing 

technologies integrate various different individual manufacturing processes on a single platform, 

exploiting their unique independent advantages whilst minimising the drawbacks4. A typical 

configuration of the hybrid processes is the combination of additive and subtractive processes5, 6. 

Simhambhatla and Karunakaran7, 8 used metal inert gas and active gas welding to build parts layer-by-

layer. Once a layer was created, the surface was face milled in order to maintain a flat surface for the next 

welding operation. This process continued until the final shape of the part was generated. Nagel and Liou9, 

and Ren et al.10 incorporated a laser melting unit with a five-axis milling machine, where any deposition 

feature can be built in the horizontal direction by rotating the workstation. The milling process was used 

to significantly improve the surface quality and dimensional accuracy of the laser melted part. Lee et al.11 

also integrated an additive unit (i.e. FDM) onto a desktop five-axis milling machine. The FDM extrusion 



unit was placed on one end of the rotary axis and the cutter spindle was installed on the other end. Thus, 

the rapid switch between machining and FDM was realised by rotating the axis 180˚C. Xiong et al.12 

investigated the capability of a hybrid plasma deposition and milling (HPDM) process for the 

manufacture of complex free-from surfaces. The machine was equipped with a plasma torch and a milling 

head. After each layer was built by plasma deposition, it was subsequently machined to achieve high 

dimensional accuracy and surface quality. 

Despite the capability of individual processes continuously improving, machining of highly accurate and 

complex structures without assembly is still considered to be extremely difficult due to limited cutting 

tool accessibility13. A new concept currently being pioneered is the hybrid process, entitled iAtractive, for 

precision manufacture of complex part geometries14, 15. The iAtractive process consists of synergistically 

combining additive and subtractive (i.e. CNC machining) processes. Integrating the additive 

manufacturing (AM) technique provides the capability to manufacture complex part structures, such as 

internal cavities, which are virtually impossible to produce by CNC machining. Additionally, using CNC 

machining capabilities the final part can be produced by the iAtractive process with a high degree of 

accuracy comparable to that of an entirely CNC machined part. This paper is related to the build time 

estimation algorithm which is an integral part of the iAtractive process which itself is detailed in papers13-

15. The additive process integrated in the iAtractive process is termed fused filament fabrication16 (FFF), 

whereby material in filament form is fed into a liquefier chamber where it is heated to a semi-liquid state 

and deposited through a nozzle onto a build platform where it quickly solidifies. In a continuous process, 

the newly deposited material fuses with adjacent material that has already been deposited. Once a layer of 

the cross-section of the part has been completely deposited, the nozzle moves in positive Z a specified 

distance, which is the precise defined part layer thickness. The nozzle then starts depositing material to 

form the next layer. This process continues until a physical representation of the computer aided design 

(CAD) model is fully produced. 



For manufacturing a part using both FFF and CNC machining, identifying an appropriate operation 

sequence is necessary. A feasible operation sequence could be as follows: 

1. A part has three features, namely, Features A, B and C. Feature A is first built by FFF. 

2. Subsequently, a machining operation is conducted to improve the dimensional accuracy and 

surface finish of Feature A. 

3. This is followed by building Feature B onto the machined Feature A. 

4. Feature C is built onto Feature B. 

5. Finally, Features B and C are finished machined. 

In fact, there are a number of feasible operation sequences that can be used to manufacture the above part. 

For example, in step 4, Feature B can be finish machined followed by building Feature C. Each operation 

sequence contains a number of FFF and machining operations, which will be carried out in a serial 

manner. In order to identify the most appropriate operation sequence in terms of production time, a time 

estimator is required. For the iAtractive process, the total production time is defined as the sum of the 

time used in FFF and the required machining operations. Machining time estimation has been extensively 

researched and some estimation models can be directly adopted. Readers are referred to the methods 

proposed by Wang et al.17, Heo et al.18 and So et al.19. In contrast, the FFF build time contributes to the 

majority of the total production time and FFF requires considerably more time than CNC machining. 

Therefore, reliable and accurate build time estimation becomes crucial for identifying suitable operation 

sequences for the iAtractive process. 

This paper proposes and develops a new build time estimation algorithm for FFF. The two major 

requirements are estimation accuracy and efficiency, i.e. being able to accurately predict build times from 

a CAD model or 2D drawings which is the most accessible geometrical information for the iAtractive 

process. The state-of-the-art research on build time estimation is reviewed in section 2, which identifies 



the existing estimation approaches. Section 3 proposes a method for developing the novel estimation 

algorithm for FFF technologies. An analytical model is developed in section 4, identifying the influential 

factors to build time. This model is used to accurately calculate the actual build times in the experiments 

documented in sections 5–7. A series of test parts with various combinations of features are then designed 

for developing and validating the estimation algorithm (sections 5–7). Rigorous statistical and algebraic 

analysis is carried out to identify the influential factors related to part geometries and material deposition 

tool paths. 

2 Review of build time estimation research 

This review provides state-of-the-art information pertaining to estimating build times for certain additive 

manufacturing processes.  

Jin et al.20 developed a process planning approach for FDM and selective laser sintering (SLS) of 

components used in biomedical applications. This approach contained a time calculation model to 

estimate build times when using contour curve and zigzag tool path patterns to fabricate components. Han 

et al.21 theoretically analysed the deposition parameters and identified that layer thickness, deposition 

speed and deposition road width are the major parameters that determine the build time for FDM. Turner 

and Gold22 and Jin et al.23 further documented that shortening tool paths by optimising tool path patterns 

could minimise time. Pham and Wang24 discussed the interrelation between build time, roller travel speed, 

build height, laser scan speed, scan area and part volume in SLS. Subsequently an approximate build time 

estimation method was introduced, incorporating those key factors. Teitelbaum et al.25 proposed some 

design guidelines for FDM, which aimed to reduce cost and build time. These guidelines include 

minimising height and the number of overhangs and holes, maximising layer thickness, and building the 

object with the largest surface on the bottom. Yim and Rosen26 introduce approximate models for 



estimating the cost and build time based on the geometric information of the given part design, 

particularly the part volume and the bounding box. These models can be applied to a number of processes 

including Stereolithography (SLA), SLS, FDM and ink-jet printing. One of the models were used to 

predict FDM build times for three test parts and the percentage errors were 9%, 12.5% and 11.8%, 

respectively. However, the estimation requires complicated calculations of deposition/scan length for 

each layer. Huang and Singamneni27, and Nezhad et al.28 pointed out that these models were usually time-

consuming and not suitable for AM process optimisation where the adaptive slicing method is employed 

to reduce build time. Ghorpade et al.29 developed a swarm intelligence approach to determining the 

optimal orientation of a part fabricated by FDM. The part orientation enables an appropriate surface finish 

to be achieved whilst reducing build time. In a paper by Kechagias et al.30, an algorithm for predicting 

build times for laminated object manufacturing (LOM) was presented, in which the part volume and 

surface area and the flat area were taken into account. The prediction errors were within 13.3% of the 

actual build times. Instead of using an STL file to represent the part design, Campbell et al.31 proposed a 

build time estimator, which is able to predict build times for the SLA process based on a 2D sketch with 

the average percentage error of 7.7%. The build time of a part is calculated by using basic volumetric 

shapes in the sketch. Ruffo et al.32, 33 proposed a build time estimator, which was integrated in a cost 

estimation model for SLS. This model consists of a series of empirical equations, calculating recoating, 

laser scanning, pre- and post-processing time. The maximum and average errors were found to be 13% 

and 10.5%, respectively, for the total build times. However, the maximum error reached 27% when 

predicting the recoating time. Kumar and Regalla34 investigated the influence of the parameters (i.e. layer 

thickness, raster angle, orientation, contour width and raster width) on the build time and support material 

volume for an FDM process. The experimental results show that the increase of layer thickness and raster 

width tends to reduce the build time. Baumers et al.35, 36 considered the time consumption of direct metal 

laser sintering (DMLS) as a hierarchy of three elements, which are fixed time consumption per build 



operation, the total layer dependent time consumption and the total build time needed for the deposition 

of part geometry approximated by the voxels. Based on the build time estimation model, the energy 

consumption and cost estimation models were derived35. The percentage errors of the time estimation for 

building a single bearing block and a turbine wheel were 1.03% and 8.71%, respectively. 

Artificial- neural-network (ANN) techniques have also been used in build time estimation. Munguia et 

al.37 designed an ANN based model for SLS time estimation with the error rates ranging from 1% to 10%. 

This ANN model uses three parameters in the input layer, which are part height, part and bounding box 

volumes. The percentage estimation error was compared with that of the model developed by Ruffo et 

al.32, indicating that the average percentage error has been significantly reduced from 14.98% to 2.80%. 

Di Angelo and Di Stefano38 also developed an ANN-based time estimator which only considers 

geometric features (e.g. prototype’s volume and height, layer thickness, total length of each layer’s 

contour and the number of repositioning movements) as the driving factors. Therefore, the estimator can 

be applied to a wide range of AM processes including FDM, three-dimensional printing (3DP), SLA, SLS 

and LOM. The estimation errors for FDM and 3DP were 11.45% and 12.21%, respectively. Although the 

model has shown good performance in predicting build times for different AM processes, complicated 

calculations, such as analysing the number of repositioning movements and calculating total length of the 

contours, are required. 

From the above identified research, it is noted that, except for Di Angelo and Di Stefano’s38 estimation 

model, each of the developed models is only valid for one specific AM process. These models involve a 

large number of process parameters, and the parameters affecting build times vary depending on the AM 

processes used. For commercial software, the software packages that contain the functionality of build 

time estimation are sold in bundles with the AM systems35. The typical examples are Cura39 and 

CatalystEX40. Cura39, which is integrated with the Ultimaker B.V. system and is able to predict the build 



times of the components to be printed. The CatalystEX40 software developed by Stratasys Inc. is equipped 

on all Stratasys Dimension FDM systems for preparation and control of printing jobs such as 

determination of part orientation, time estimation and layout of parts. 

3 The method for developing a new build time estimation algorithm for FFF 

The review documented in section 2 identifies the existing approaches for build time estimation. These 

estimators were based on the microanalysis of timing, using complex equations to describe the AM 

processes in detail. This estimation algorithm employs a macro-analysis approach, focusing on simple 

geometry parameters of the part to be built. The method is described below in 4 key stages (A01 – A04) 

as illustrated in Figure 1: 

(1) Development of an analytical model (presented in section 4). An analytical analysis was first 

carried out to theoretically analyse the influential parameters. The analytical model was also used to 

accurately calculate build times for the experiments in the next three steps. 

(2) Selection and determination of influential parameters (section 5). A test part was designed and 

the initial test was conducted, identifying and determining the significant parameters that were to be 

used in the build time estimation algorithm. 

(3) Development of the new build time estimation algorithm (section 6). Four test parts with varying 

combinations of features were designed and a fractional factorial design strategy was employed to 

design a series of experiments. The statistical analysis techniques, namely multi-factor regression 

analysis and analysis of variance (ANOVA) were used iteratively to develop the new estimation 

algorithm. 



(4) Evaluation and validation of the developed algorithm (section 7). Three test parts with specific 

features and part volumes, combined with the t-tests technique were used to evaluate and validate the 

developed algorithm. A real engineering part was printed to further test the algorithm validity. 
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Figure 1 – The method for developing the build time estimation algorithm 

4 Development of the analytical model 

This section provides details on the development of the FFF analytical model. The parameters are divided 

into process and geometry parameters, which were then used in the analytical model development. 



4.1 Process and geometry parameters 

Build time (Ta) is defined as the amount of time that is required to fabricate a single or a group of parts in 

FFF. The estimation of build time involves a number of parameters to be taken into consideration. These 

parameters can be split into process parameters and geometry parameters. 

• Geometry parameters are the primary variables and they have direct effect on build times no matter 

what AM process is used. 

• Process parameters are the controllable factors, and changing them can lead to the increase/decrease 

in build times. For example, increasing printing speed directly results in the reduction in build time. 

However, it has been reported that the change of process parameters affects the output quality of the 

printed parts, such as surface quality, dimensional accuracy and tensile strength22, 41, 42. The purpose of 

predicting build times is to identify the appropriate operation sequence which requires the least amount of 

build time. Despite the fact that changing the process parameters will most likely lead to the 

increase/decrease in build times, the aforementioned purpose cannot be achieved. This is because 

increasing or decreasing any or all of the speeds and accelerations/decelerations, affects the entire FFF 

process resulting in the increase or decrease in build times for producing the prototypes, respectively. 

Therefore, the process parameters were kept constant during the development of the estimation algorithm. 

The process parameters are summarised in Table 1, which will be used in the development of the 

analytical model in section 4.2. 

 

 

 



Table 1 – Fused filament fabrication process parameters 

Process parameter Unit Process parameter Unit 

Layer thickness, h mm Acceleration/deceleration in the XY 

plane, Axy/Dxy 

mm/s2 

Printing Speed in the XY plane, Vpr mm/s Acceleration/deceleration in the Z axis, 

Az/Dz 

mm/s2 

Repositioning speed in the XY plane, 

Vxy 

mm/s Bottom/top thickness, h' mm 

Repositioning speed in the Z axis, Vz mm/s Hatch spacing, λ mm 

Filament retraction speed, Vret mm/s Filament retraction length, Lret mm 

Bottom layer printing speed in the 

XY plane, Vpr' 

mm/s Infill density % 

Outer shell printing speed, Vshell_out mm/s Inner shell printing speed, Vshell_in mm/s 

4.2 The FFF analytical model 

Assuming that a part is sliced into N layers (N = |H/h|+ and | |+ represents the round up to the next integer 

number, H is the part height and h is the layer thickness), the overall build time of producing the part can 

be described as 



Equation 1    
1

N

a n bed heater setup

n

T T T T T


     

where Tbed is the time for warming up the bed to the material glass transition temperature (Tg) at which 

point the part stops warping; Theater is the time used in turning on the heater for extruding material; Tn is 

the time used in printing the nth layer, n ϵ [1, N]. Tsetup is the machine set-up time, which involves 

retreating and relocating of the deposition nozzle when switching from CNC machining to FFF. Tsetup can 

be considered to be constant. Based on the practical printing experience, a uniform layer thickness (such 

as 0.2, 0.25 and 0.3mm) can be used to print the entire part, i.e. h' = h. The FFF process is stable and the 

part quality is repeatable when using a uniform printing speed (e.g. Vpr = Vpr' = Vshell_out = Vshell_in = 

60mm/s). For each layer, the build time Tn is divided into two parts, namely, 

Equation 2        _ _n dep n idle nT T T   

where, Tdep_n is the deposition time for the nth layer; Tidel_n is the idle time for the nth layer. Idle time 

includes deposition head repositioning time in the XY plane and Z axis (Trep_n_xy and Trep_n_z), which can 

be calculated using Equation 3 below 

Equation 3  
_ _

_ _ _ _ _

1

J
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where, Srep_j_xy is the jth (j ϵ [1, J]) repositioning displacement (unit: mm) before depositing the jth 

continuous deposition path. 

Deposition time (Tdep) is the time when the material is being extruded. Thus, the time used in depositing 

the nth layer is expressed in Equation 4: 



Equation 4      
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where, Spr_k is the length of the kth (k ϵ [1, K]) continuous deposition path; Lret_k is the length of the 

filament retracted before depositing the kth deposition path. Tdelay is the delay time before depositing 

material on each individual continuous path. 

Based on the analysis outlined in the Equations 1 to 5, a full representation of the build time for a single 

part is derived, as expressed below. It should be noted that, this analytical model can only be used under 

the circumstances where the CAD model is sliced into a number of layers and the tool paths have been 

generated. 

Equation 5 _ _ _ _

1 1 1

2
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I J K
rep j xy xy ret k pr k pr

delay
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5 Selection and determination of influential parameters 

In this section, the process parameters to be investigated in the experiments are selected. This consists of 

initial selection of the parameters, determination of the parameters to be included in the estimation 

algorithm and the introduction of intermittent factor.  

5.1 Initial selection of the parameters 

Based on the analytical model above, the following statements are made: 



• Calculation of the build time using the analytical approach (Equation 5) is generally not practical at 

the operation sequencing stage13 in which only CAD models or 2D drawings are given. 

• Total length of deposition path (Spr) primarily determines build times when certain printing speed and 

acceleration/deceleration are applied. Therefore, part volume (V) is considered as one of the major 

parameters that directly contribute to the total amount of build time. 

• Hatch spacing (λ) is represented in Equation 5 by the use of Spr. A high value of hatch spacing 

indicates low density of the part (i.e. the part is more porous), which in turn reduces the total length 

of the deposition path (Spr). As a result, part density (ρ) is introduced in the build time estimation 

algorithm to represent λ and Spr. Density is also defined as: density = 100% – part porosity. 

• Part height (H) has a direct effect on build time. Different heights of the part resulting from the 

change of part orientations can result in different build times. 

• Reducing the length of repositioning tool path (Srep) could lead to decreases in machine idle time 

(Tidel). For each time the deposition head repositions, filament retraction and print delay (Tdelay) are 

required, resulting in increased build time. The reasons that cause the head to reposition are (i) start 

printing next layer; and (ii) certain areas do not require material, such as printing pockets. Hence, the 

importance of head repositioning and the resulting idle time is investigated in section 5.2 in order to 

decide whether or not to include this parameter in the estimation algorithm. 

5.2 Determination of the parameters 

According to the statements made in section 5.1, test part A was designed (as shown in Figure 2) to 

evaluate the importance of deposition head repositioning time (i.e. idle time). The 2k full factorial design 

of experiments (DoE) strategy was used. Five sets of parts with four different sizes of through pockets 

were designed. Producing rectangular blocks with pockets requires repositioning the deposition head 

repeatedly and frequently since the pockets do not need material. Every time the head travels across the 



pocket, it can be seen as a repositioning action. In order to avoid the effects caused by the varying 

volumes and heights, all parts in each set had the same volume and height but different pocket sizes as 

compared to the other parts in the same set. A density of 25% was also applied to all the parts. 

 

Figure 2 – Test parts A 

The build times were calculated by using the developed analytical model (Equation 5), which can be 

considered as the actual build times. The results (i.e. build times) were analysed using ANOVA, revealing 

that deposition head repositioning is a significant parameter in relation to total build times. The ANOVA 

results are shown in Table 2. 

Table 2 – ANOVA table for length of repositioning tool path 

Source 

Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 

F-statistic P-value F credit 

Volume 44986349 4 11246587 517.53 <0.0001 3.26 

Pocket 20654559 3 6884853 316.82 <0.0001 3.49 

Error 260773.2 12 21731.1    

Total 65901681 19         



Due to F credit = 3.49 < F-statistic = 316.82, significant difference in build times has been identified 

while changing the length of repositioning tool path. The test demonstrates that build time is not only 

dependent on the total volume of the part, but also the distribution of material. Hence, length of 

repositioning tool path should be included in the build time estimation algorithm. 

5.3 Intermittent factor 

As stated in section 1, the parameters in the estimation algorithm should be obtainable from the CAD 

model and/or 2D drawings. However, from the test presented above, the distance travelled in 

repositioning and the number of times for repositioning cannot be obtained from the CAD model and/or 

drawings, which also depends on the part geometry and the slicing strategy employed. A term entitled 

intermittent factor (I) is therefore proposed to reflect the influence of the above two variables against total 

build time. A high intermittent factor implies that a significant amount of time is used in repositioning the 

deposition head and other relevant actions such as filament retraction and print delay. Assume that a 

feature (e.g. feature A) is sliced into a number of layers where discrete deposition areas exist. The 

intermittent factor can be calculated as the product of the ratio of discrete areas and STL boundary areas, 

and the ratio of feature A’s height and the height of outer feature that contains feature A. 

To this end, part volume (V), part density (ρ), part height (H) and intermittent factor (I) were selected and 

defined to be investigated in the experiments for developing the estimation algorithm in sections 6 and 7. 

Among these four parameters, part volume and height can be directly obtained from the CAD model 

and/or drawings; part density is specified by the operator; and the intermittent factor can be calculated 

based on the dimensions of the features. 



6 Developing the new build time estimation algorithm for FFF 

This section details the development of the new build time estimation algorithm consisting of Test part 

design; Design of experiments for the estimation algorithm development; and Experimental results, 

analysis and discussions. 

6.1 Test part designs 

There have already been several existing test parts for AM systems, but most of these parts were designed 

for accuracy evaluation only43. As introduced in section 1, the estimation algorithm will be used in 

process planning for the iAtractive process. Given that the iAtractive process is currently used to 

manufacture prismatic parts and the majority of engineering parts are prismatic or cylindrical in nature31, 

the designs of the test parts (part B, C, D and E in Figure 3) include the full family of the prismatic 

features, namely, boss, pocket, slot, step, hole and planar face. Each of these test parts contains at least 

four different features and one combination of features, such as the combination of a step and a hole in 

test part B, and the combination of a boss and a pocket in test part C. 

  

(a) Test part B (b) Test part C 



  

(c) Test part D (d) Test part E 

Figure 3 – Test parts B, C, D and E 

6.2 Design of experiments for the estimation algorithm development 

Given that the four parameters are multi-level variables and their outcome effects are not linearly related, 

four levels were chosen to apply to part volume, height and density for each test part design. As the aim 

of the experiments was to develop the estimation algorithm rather than identify the influence of important 

factors only, the Taguchi method44 was not considered to be appropriate. Another standard approach for 

DoE is to use the full factorial method. However, this method is only acceptable and feasible when a few 

(usually no more than three) factors are to be explored. For predicting build times, the more experimental 

data obtained the more accurate the prediction results. As a result, the levels of the parameters need to 

cover a wide range of values. For instance, it is better to investigate the influences caused by both small 

and large part volumes‡, and other volumes in between. Based on these reasons, the four test parts were 

increased in scale by a factor of 1.2, 1.4 and 1.6, by which the part volume, height vary accordingly. Four 

levels of part density, namely 25%, 50%, 75% and 100% were used for each part volume and height 

variables. As a result, 64 experimental runs were required. The print settings are shown in Figure 4 below. 

                                                           
‡ Small volume < 50cm3, medium volume 50-100cm3, and large volume > 100cm3 



 

Figure 4 – The FFF print settings 

6.3 Experimental results, analysis and discussions 

To obtain the estimation algorithm, regression analysis and ANOVA was carried out iteratively. The 

errors were analysed by comparing the actual and the predicted build times to identify the importance of 

the interactions among the four control factors. By feeding back the error analysis, the final estimation 

algorithm was obtained, where unimportant interactions were removed. The actual build time (Ta) and the 

estimated build time (Ta
*) can be depicted in Equations 6 and 7, respectively. 

Equation 6 1 2
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Equation 7
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where, fi and fi
* are the functions related to part volume, height, density and intermittent factor in the 

analytical (actual) and the estimation algorithm, respectively. C is the intercept. Thus, the deviation (ζm) 

for each individual experiment can be expressed using Equation 8. 

Equation 8    
*

. .m total m total mT T    

where Ttotal.m is the actual build time in experiment m and Ttotal.m
* is the estimated build time in experiment 

m. The root mean square of the deviation (RMSζ) and each function (RMSfi) in the estimation algorithm 

can be calculated using Equations 9 and 10, where, m denotes experiment number m. 

Equation 9    
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Given that producing a mid-range sized prototype (i.e. 1.25×102 cm3) requires up to 7 hours, the 

acceptable deviation between the actual and estimated build times was set to be five minutes. Therefore, 

for those RMSfi that were one or more orders of magnitude greater than RMSζ, the corresponding 

functions were kept in the next run of the estimation algorithm development process. Other functions 

were removed from the algorithm. After five iterations, the final build time estimation algorithm was 

obtained as depicted in Equation 11. 



Equation 11 168.33 23.56 9.44 160.19 78.17a bed heater setupT V H V HI T T T           

where, ε is the uncertainty in the actual experiments. 

The selected analysis results are shown in Table 3, which were obtained by fitting the estimation 

algorithm as depicted in Equation 11. Since the P-values of part volume, the interaction of volume and 

density, and the interaction of height and intermittent factor are significantly smaller than the threshold 

value of 5% in the analysis, they are of primary significance. Among them, the interaction of volume and 

density is the most significant factor, followed by part volume. With respect to the regression confidence 

(R2), the adjusted regression confidence [(R2)adj] and the difference between them indicates that the 

regression model is satisfactory. 

Table 3 – Summary of the selected regression analysis results 

Variable 

Standard 

deviation 

t-stat P-value R square 

Adjusted 

R square  

Intercept 27.76 0.61 0.55    

Part volume (V) 0.94 25.07 <0.001   significant 

Part height (H) 8.35 1.13 0.03   significant 

V×ρ 0.50 318.60 <0.001   significant 

H×I 17.08 4.58 <0.001   significant 

Regression model    99.981% 99.980%  

The residual analysis was carried out for checking the adequacy of the developed estimation algorithm. 

Figure 5 is the normal probability plot of the standardised residuals of the regression model (i.e. FFF 

build time estimation algorithm). It is considered as satisfactory due to the standardised residuals that are 

evenly distributed along the straight line. Figure 6 shows the distribution of the standardised residuals 



versus the experiment numbers. No distinct pattern has been observed, revealing that the current model is 

appropriate and no further factors are required for describing the relationship between the input factors 

and the estimated times. Approximately 98.4% of the standardised residuals fall in the interval (-2, +2), 

demonstrating that the errors are normally distributed. Nevertheless, it should also be noted that there are 

two points that are outside the interval. The standardised residual of one of the points is 2.01, which can 

still be considered as normal, but another standardised residual of 3.02 indicates the presence of an outlier. 

Thus, the parameters in the corresponding influential observation (experiment number 45) were traced 

back and the distance of the point from the average of all the points in the data set was recalculated. The 

results show that the outlier does not have a dramatic impact on the regression model. Figure 7 also 

supports this statement, which plots the errors curve showing that the error of 2.2% in experiment 45 is 

acceptable. Due to an unknown reason that caused the high-standardised residual, more tests were 

required to validate and evaluate the performance of the model, which will be presented in section 7. 

 

Figure 5 – Normal probability plot of standardised residuals 
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Figure 6 – Distribution of standardised residuals versus experiment number 

It is noted that the errors tend to increase while the part volume is small, as identified in Figure 7. While 

the four test parts were not scaled up (experiment 1-4, 17-20, 33-36 and 49-52), the errors are relatively 

larger than the errors in other experiments. In addition, the original volumes of test parts D and F are 

small (less than 50 cm3). As a result, the errors do not decrease significantly while the parts were scaled 

up 1.2 times. An exact reason cannot be provided, however for small and medium parts where the volume 

does not exceed 100 cm3, even though the number of repositioning and filament retraction times are kept 

unchanged, the length of the repositioning tool path is significantly shorter than that of the larger volume 

parts, while the intermittent factors are identical. This may lead to an increase in estimation error. 

Furthermore, it is worth mentioning that errors can be simply reduced to lower than 1% by expanding 

Equation 11 with additional factors (e.g. adding interactions between V, H, ρ and I, as shown in Equation 

12 as an example). 
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Equation 12 
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Figure 7 – Percentage error between the actual and estimated build times for the test parts in the 

estimation algorithm development 

7 Evaluation and validation of the new build time estimation algorithm 

Upon obtaining positive results from the previous experiments, two case studies were conducted for the 

evaluation and validation of the build time estimation algorithm, and are detailed below. 

7.1 Case studies I 

7.1.1 Design of experiments for cast study I 

The test parts designed in this section include various features, as shown in Figure 8, and more 

importantly, fabricating these features requires varying length of repositioning tool paths and differing 

number of repositioning and filament retraction times. Test parts F and H were modified based on the 
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parts designed by Kechagias et al.30 and Zhou et al.45, respectively. Test part H contains nine features 

including planar face, boss, pocket, sphere and chamfer. 

 

(a) Test part F 

  

(b) Test part G (c) Test part H 

Figure 8 – Test parts F, G and H 

It was found that the majority of the estimation inaccuracy lies in producing parts with a volume of less 

than 50 cm3. Therefore, the volumes of test parts G and H were specifically designed to be less than 50 

cm3. Subsequently the three original test parts were scaled up 1.2, 1.4 and 1.6 times, generating 12 test 

parts with differing part volumes and heights. Due to the interaction of volume and porosity that is the 

most significant factor, 25%, 50%, 75% and 100% levels of porosity were applied to these 12 test parts. 

As a result, a total of 48 test parts were defined. 



7.1.2 Experimental results and analysis for case study I 

Table 4 presents the results obtained in the experimental runs 17-32. The errors between the estimated 

and the actual build times are also presented. It is observed that the errors for the part volume of 45cm3 

could be up to -6.73%, whereas the largest error is only 0.75% for the part volume of 187.11cm3. With 

the increase in part volume, the mean error gradually reduces from 3.44% to 0.36%. 

The percentage errors between the predicted and actual times are plotted in Figure 9. The average error is 

6.7%, the best results were obtained in the experimental runs 17-32 and there is no obvious fluctuation 

(less than 13.5% error) in the experimental runs 1-16 and 33-48. As the estimation algorithm (Equation 

11) only has four factors rather than six (Equation 12), it is not as sensitive as Equation 12 in terms of 

prediction accuracy when a large number of repositioning movements are required for building a part. 

The test parts in the experiments 17-32 (test part G and variations) have a low intermittent factor (less 

than 0.2), indicating the short length of repositioning tool paths, relatively low number of repositioning 

and filament retraction times, as well as a short resulting delay time during production. Thus, the resulting 

errors were reduced. In other words, the developed estimation algorithm has better performance for parts 

with a low intermittent factor (< 0.2). The predicted times tend to be longer than the actual times while 

the algorithm is applied to parts with a high intermittent factor (> 0.5). 

 

 

 

 

 



Table 4 – The predicted build times using the developed estimation algorithm 

Experiment 

number 

Volume 

(cm3) 

Height 

(mm) 

Porosity 

(%) 

Intermittent 

factor 

Actual 

build time 

(seconds) 

Estimated 

build time 

(seconds) 

Error 

(%) 

17 45.68 20 25 0.14 3735 3484 -6.73 

18 45.68 20 50 0.14 5365 5313 -0.97 

19 45.68 20 75 0.14 7012 7142 1.86 

20 45.68 20 100 0.14 8609 8972 4.21 

21 78.94 24 25 0.14 5981 5681 -5.02 

22 78.94 24 50 0.14 8962 8842 -1.34 

23 78.94 24 75 0.14 11931 12003 0.60 

24 78.94 24 100 0.14 14794 15164 2.50 

25 125.35 28 25 0.14 8982 8715 -2.98 

26 125.35 28 50 0.14 13866 13734 -0.95 

27 125.35 28 75 0.14 18670 18754 0.45 

28 125.35 28 100 0.14 23493 23774 1.19 

29 187.11 32 25 0.14 12788 12725 -0.50 

30 187.11 32 50 0.14 20220 20218 -0.01 

31 187.11 32 75 0.14 27661 27711 0.18 

32 187.11 32 100 0.14 34941 35204 0.75 

 



 

Figure 9 – Percentage error between the actual and estimated build times for the test parts in the 

estimation algorithm evaluation 

In order to evaluate the algorithm, a statistical method, namely, t-tests was used to analyse the results, 

identifying whether significant difference exists between the estimated and actual build times. Paired t-

tests were carried out for all the test parts at a 95% confidence interval for the analysis of the differences 

between the estimated and actual times. The selected results are listed in Table 5, where t-stat is 0.75 < t 

two-tail critical = 2.01 (α = 0.05). Thus, it can be concluded that the build time estimation algorithm does 

not yield significantly different results when compared with the actual times. 
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Table 5 – Selected results of the paired t-test 

t-test output Estimated Actual 

Observations 48 48 

Pearson correlation 0.99  

df 47  

t Stat 0.75  

P(T<=t) one-tail 0.23  

t one-tail critical 1.68  

P(T<=t) two-tail 0.46  

t two-tail critical 2.01   

7.2 Case studies II 

An engineering part shown in Figure 10 was used to further test the validity of the developed estimation 

algorithm. The volume and height of the part are 26.67×103 mm3 and 31 mm, respectively. As it is an 

engineering part, the part density is specified as 100% solid. Based on the dimensions, the intermittent 

factor can be calculated, which is 0.575. The estimated results are listed in Table 6, and the percentage 

error is 8.3%, demonstrating the efficacy of this new proposed algorithm. 



  

(a) (b) 

Figure 10 – An engineering part for case study II: (a) CAD model and (b) the printed part 

Table 6 – Build time results for case study II 

Actual time (s) 6237 

Predicted time (s) 6755 

Deviation (s) 518 

Percentage error (%) 8.3 

7.3 Discussion on the new build time estimation algorithm 

Based on the case studies and analysis, it can be identified that the developed estimation algorithm is able 

to predict build times and the predicted results do not have significant difference to the actual times. In 

comparison to other estimators28, 30, 31, 35, 38, this estimation algorithm offers a time-saving method, which 

only requires the part dimensions, i.e. 2D drawings. This eliminates considerable time used in slicing 

CAD models and post-processing them for build time calculation. 

Whilst the advantages of the proposed method have been documented and described, there are a number 

of other issues, which need to be addressed. Firstly, the algorithm shows advantages only for parts in 



which all the features involved are prismatic. However, it is currently not suitable for parts with 

sculptured free-form surfaces because the intermittent factor cannot precisely represent properties of such 

structures. Although it is possible to approximate shapes and volumes contained by free-form surfaces 

into a large number of prisms, Campbell et al.31 pointed out that estimated build times might still remain 

inaccurate. The major advantage of this algorithm is high efficiency, which is able to estimate build times 

based on the part dimensions in 2D drawings. As such, the algorithm only includes the four most 

significant factors documented in section 5. In the future, efforts will be made to enhance the 

functionality and accuracy of the algorithm for precisely predicting times for sculptured surfaces. A 

possible solution is to employ a correction factor used by Pham and Wang24, which partly depends on the 

ratio of the part volume to the volume of a bounding box around the STL file. By introducing this factor, 

more attributes including geometry complexity, wall thickness and the number of parts to be fabricated in 

one single set-up can be taken into consideration. 

Furthermore, the estimation algorithm is developed based on the deposition of polylactic acid (PLA) and 

the layer thickness of 0.25mm. PLA is now one of the most widely used materials for FFF. Changing 

material such as acrylonitrile butadiene styrene (ABS) will affect build time and the firmware of the FFF 

system will automatically adjust the relevant speeds accordingly, such as printing and travelling speeds of 

the deposition head, to ensure correct printing. Printing ABS is more time intensive when compared to 

PLA because the deposition head needs to go slower to allow for heat dissipation, requiring more time to 

cool the part to prevent overheating and lose of printing details. The printing temperatures for PLA and 

ABS are 200°C and 240-260°C, respectively. The main difference between printing PLA and ABS is 

welding. PLA creates an extremely strong weld to itself so that cooling fans can be used to accelerate the 

cooling process. In contrast, ABS bonds to itself very weakly, therefore adding cooling fans makes this 

worse and can initiate cracking. The relatively slow printing of ABS is also due to its Tg being higher than 

PLA. Although the method proposed in section 3 can still be used to develop a new estimation algorithm 



when material, layer thickness and other parameters are changed, it would still be better to introduce an 

adjustment factor into the current developed algorithm, which is able to adjust estimated results based on 

different materials and layer thicknesses. Additionally, Equation 5 in section 4.2 can always be used to 

accurately calculate build times for different materials in the circumstances where the CAD model is 

sliced into layers and the tool paths are generated. 

For different types of system, namely Cartesian and Delta systems, the key difference between them lies 

in the motion control mechanism, which can affect the dimensional accuracies of the printed parts. For 

low printing speeds (i.e. < 80mm/s), both Cartesian and Delta systems are able to fabricate parts, 

achieving the same (or very close) dimensional accuracies. However, for high printing speeds (i.e. > 

80mm/s), the Delta system usually shows better dimensional accuracy due to the low rotatory inertia of 

the motors for motion control and the low accumulative error in the XY plane. With respect to the build 

time for printing a part, the printing speed is defined by a user and then coded in a programme called G-

Code, which is similar to NC codes for CNC machines. Thus, as long as the same G-Code is used, the 

build times will be the same no matter which system the part is printed by. In this study, the printing 

speed of 60mm/s is used, which is the most stable and widely used speed for Cartesian FDM machines, 

such as Stratasys FDM40. Further to the filament diameter, it barely affects actual build times. This is 

because, for printing the same object, the build time is dependent on printing and travelling speeds of the 

deposition head. Based on the given speeds, the firmware calculates feedrate of the filament that is fed 

into the liquefier chamber. The feedrates for filament of ϕ1.75 or 3mm may be different, however, the 

volumes of the semi-melted material extruded from the nozzle per unit time are the same. 

7.4 Limitations and constraints in the development of the estimation algorithm 

This subsection summarises the limitations of the estimation algorithm and the constraints that led to the 

limitations during the algorithm development process. 



 Relatively simple features. The estimation algorithm has been developed to predict FFF build times 

for prismatic parts in the context of hybrid manufacture. While the iAtractive process13 is currently 

aimed at producing difficult-to-cut (internal structures) prismatic parts, the future trend is to realise 

high precision manufacture of both internal features and sculptured free-form surfaces. 

 Few factors considered. Only four factors, i.e. volume, height, density and intermittent factor, are 

taken into consideration due to the efficiency consideration in process planning for the iAtractive 

process. Process planning requires fast and efficient time estimation based on 2D drawings (feature 

dimensions), which are the most accessible geometrical information for the iAtractive process. This 

requirement has imposed a constraint to the estimation algorithm. Adopting existing time estimation 

methods presented in the papers26-30, 35, 38 is not viable since these methods need to further process the 

given CAD model (i.e. slicing it into layers and generating tool paths for the deposition head). Due to 

the limited number of factors included in the authors’ estimation algorithm, it is currently not able to 

provide high estimation accuracy for sculptured free-form surfaces. An effective approach to 

improving the accuracy, as identified in Equation 12, is to increase the number of factors in the 

algorithm. 

 Limited choices of FFF process parameters. The estimation algorithm was investigated in the 

condition where the material, layer thickness, printing speeds and infill patterns were set as PLA, 

0.25 mm, 60 mm/s and rectilinear, respectively, which are the FFF recommended settings46. This 

limitation has constrained a user from defining his/her preferred printing parameters and values for 

customised products. 

 Diminished estimation accuracy in predicting times for printing an array of parts (multiple objects). 

Parts are sometimes preferred to be fabricated simultaneously in a single FFF operation, in which 

case a large number of parts are arranged on a build platform with certain distances (defined by the 



user) with each other. This leads to an increase in the repositioning displacement (Srep_j_xy) (see 

Equation 5), which further results in the increased proportion of time in repositioning the deposition 

head from one-part cross section to another. The predicted build time is likely to be less accurate due 

to the poor predictions of the repositioning time. 

8 Conclusions and future work 

In this paper, a new build time estimation algorithm for the FFF process under the context of hybrid 

manufacturing has been developed. The input for the algorithm can be directly obtained from the part 

dimensions/drawings, providing a new, accurate and efficient approach to time estimation. The method 

for developing the algorithm was described and consisted of four major stages as described in Figure 1. 

The analytical model was first created to analyse process and geometry parameters. This analytical model 

was then used in the later stages to accurately calculate build times. The selection of influential 

parameters, the estimation algorithm development and evaluation were carried out in sequence. A robust 

experimental approach was used consisting of a design of experiments approach, and the results were 

statistically analysed and discussed at each stage. Part volume, height, porosity and intermittent factor 

together with their interactions have been identified as the significant parameters that affect build times. 

The estimation algorithm is capable of predicting build times with an average error of 6.7%, the 

maximum error of 13.5% on the total build time, and 80% of this error falls within an 8% deviation. The 

statistical analysis indicates that no significant difference was found between the estimated and actual 

build times. In addition, deviation is likely to increase for parts with a large intermittent factor (> 0.5) or 

volume of less than 50cm3. This clearly demonstrates the significance of this work and its influence on 

the emerging domain of hybrid manufacture. The build time estimation algorithm differs from existing 

methods by being able to directly predict build times based on part dimensions without the need to further 

process the CAD model or run complex algorithms. This provides a more fluid and robust method to 



predict build times. Beneficiaries of this new algorithm will be manufacturing engineers who fabricate 

functional parts using AM or hybrid processes, and designers who build prototypes to evaluate and 

validate designs. 

Future work will focus on implementation of this new algorithm for build time estimation on a wide range 

of AM methods particularly aligned to the combination of additive and subtractive manufacturing 

technologies. Further enhancements to the functionality of the algorithm to provide accurate prediction of 

build times for free-form complex surfaces and components will be made. This may require an extra 

parameter to compensate for the intermittent factor to reflect geometry complexity and changes in part 

volume. 
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