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Abstract

This work is framed within the Eighth Industrial Fluid Properties Simulation Challenge, with the aim

of assessing the capability of molecular simulation methods and force fields to accurately predict

adsorption in porous media for systems of relevant practical interest. The current challenge

focuses on predicting adsorption isotherms of n-perfluorohexane in the certified reference

material BAM-P109 standard activated carbon. A temperature of T ¼ 273 K and pressures of

p=p0 ¼ 0:1, 0.3, and 0.6 relative to the bulk saturation pressure p0 (as predicted by the model)

are the conditions selected in this challenge. In our methodology we use coarse-grained

intermolecular models and a top-down technique where an accurate equation of state is used

to link the experimental macroscopic properties of a fluid to the force-field parameters. The state-

of-the-art version of the statistical associating fluid theory (SAFT) for potentials of variable range as

reformulated in the Mie group contribution incarnation (SAFT-� Mie) is employed here. The

parameters of the SAFT-� Mie force field are estimated directly from the vapour pressure and

saturated liquid density data of the pure fluids using the equation of state, and further validated by

molecular dynamic simulations. The coarse-grained intermolecular potential models are then used

to obtain the adsorption isotherm kernels for argon, carbon dioxide, and n-perfluorohexane in

graphite slit pores of various widths using Grand Canonical Monte Carlo simulations. A unique and

fluid-independent pore size distribution curve with total micropore volume of 0.5802 cm3/g is

proposed for the BAM-P109. The pore size distribution is obtained by applying a non-linear

regression procedure over the adsorption integral equation to minimise the quadratic error

between the available experimental adsorption isotherms for argon and carbon dioxide and
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purpose-built Grand Canonical Monte Carlo kernels. The predicted adsorption levels of

n-perfluorohexane at 273 K in BAM-P109 are 72.75� 0.01, 73.82� 0.01, and 75.44� 0.05 cm3/g

at Standard Temperature and Pressure (STP) conditions for p=p0 ¼ 0:1, 0.3, and 0.6, respectively.

Keywords

Adsorption, perfluorohexane, activated carbon, force field, molecular simulation, SAFT-�, SAFT-

VR Mie, Grand Canonical Monte Carlo, coarse graining

Introduction

The aim of the Eighth Industrial Fluid Properties Simulation Challenge (IFPSC) is to assess
the capability of force fields and molecular simulation methods to accurately predict
adsorption in porous media for systems of relevant practical interest. Specifically, the
adsorption of n-perfluorohexane in the certified reference material BAM-P109 standard
activated carbon is the purpose of the current IFPSC.

Perfluorinated molecules are known to be challenging to describe. Their structural and
thermophysical properties are different to those of their analogous hydrocarbon compounds,
in part due to the size, polarisation, and highly electronegative nature of the fluorinated
group, which gives rise to the particularly steep nature of the repulsive interactions between
perfluorinated groups (Maitland et al., 1981; Yee et al., 1992). Force fields based on a
generalised Lennard-Jones (Jones, 1924a, 1924b; Lennard-Jones, 1931) or Mie potential
(Grüneisen, 1912; Mie, 1903), where the repulsive and attractive exponent can be varied,
allow a fine tuning of the steepness of the potential well and the range of the interaction,
which have proven to be especially useful to describe the fluid phase behaviour (Potoff and
Bernard-Brunel, 2009; Rubio et al., 1985) and second derivative thermodynamic properties
of perfluoroalkanes (Lafitte et al., 2013).

As a further complication, the use of force fields developed for bulk fluids to describe fluid–
solid interactions is not a straightforward task. In most cases empirical combining rules (e.g.
the traditional Lorentz–Berthelot) are used to obtain the unlike-interaction parameters. The
validity of such combining rules is however restricted to systems with similar type of molecular
interactions (Desgranges andDelhommelle, 2014;Haslam et al., 2008). Although not the focus
of this work, it is imperative to find robust and reliable approaches to obtain the fluid–fluid
and fluid–solid interactions particularly in the case of systems with limited experimental data.
It is also important to recognise that coarse-grained (CG) solid–fluid interactions will depend
in a complex way on the morphology of the surface (Forte et al., 2014).

In our current work, we use CG intermolecular potential models to represent the fluid
molecules and a collective of atomistically detailed graphite slit pores (kernel) to represent
the microporosity of the reference solid. The CG force fields employed in our molecular
simulations are developed using a top-down approach (Müller and Jackson, 2014), as this
provides robustness in the predictions of the key properties for adsorption such as condensed
liquid densities and vapour pressures. An essential element for top-down development of
force fields is an accurate equation of state (EoS) characterised by a well-defined
Hamiltonian enabling one to establish a formal link between target macroscopic
thermodynamic properties and the CG force field. The latest version of the statistical
associating fluid theory for potentials of variable range based on the Mie interaction,
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SAFT-VR Mie (Lafitte et al., 2013), and its group-contribution variant SAFT-� Mie
(Papaioannou et al., 2014) has been shown to be a reliable and robust method to develop
CG force fields for direct use in molecular simulation (Avendaño et al., 2011, 2013; Herdes
et al., 2015; Lafitte et al., 2012; Lobanova et al., 2015; Müller and Jackson, 2014;
Theodorakis et al., 2015). The same approach is also used here to develop SAFT-� Mie
CG force-field parameters that are then assessed by molecular dynamic (MD) simulations
and used within Grand Canonical Monte Carlo (GCMC) simulations to predict the
adsorption of the system of interest.

Modelling approaches and force fields

SAFT-VR Mie EoS

Here we use an extension of the SAFT EoS (Chapman et al., 1989, 1990) referred to as
SAFT-VR Mie (Lafitte et al., 2013). The generic SAFT approach stems from the
thermodynamic perturbation theory of Wertheim (1984a, 1984b, 1986a, 1986b, 1986c,
1987) to explicitly take into account the non-sphericity and directional interactions of
molecules. The SAFT-VR Mie (Lafitte et al., 2013) methodology is a reformulation of the
SAFT-VR EoS (Galindo et al., 1998; Gil-Villegas et al., 1997) for Mie potentials with
enhanced accuracy in the description of the fluid phase behaviour (particularly in the
near-critical region) and second derivative properties of fluids. Full details of the
development of the theory are given in Lafitte et al. (2013).

Within the SAFT-VR Mie formalism molecules are described as chains of m tangent
segments that interact through a Mie potential (Grüneisen, 1912; Mie, 1903)

uMieðrÞ ¼ C"ff
�ff
r

� ��r, ff
�
�ff
r

� ��a, ff� �
ð1Þ

where r is the distance between the spherical segments, �ff is the segment diameter (at which
the potential is zero), "ff is the potential depth, �r, ff and �a, ff are the repulsive and attractive
exponent, respectively, and the constant

C ¼
�r, ff

�r, ff � �a, ff

�r, ff
�a, ff

� � �a, ff
ð�r, ff��a, ffÞ

ð2Þ

ensures that the potential minimum is at �"ff. The subindex f (or s in the case of solid
particles) refers to the individual nature of the species that interact exclusively via pair-
wise forces.

The equation of state for a non-associating Mie fluid is written in a closed form in terms
of the Helmholtz free energy A as a sum of the following contributions

A ¼ Aideal þ Amono þ Achain ð3Þ

where Aideal corresponds to the free energy of an ideal gas, Amono is the change in free energy
due to the segment–segment repulsion and dispersion interactions, and Achain is the
contribution due to the possibility of bonding between the segments to form a chain of m
segments (Lafitte et al., 2013). As associating molecules are not considered in this work, the
relevant term is omitted here. For a pure fluid, the parameters of the SAFT-VR Mie EoS
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correspond to those that define the potential, i.e. m, �ff, "ff, �r, ff, and �a, ff. Hence, by
estimating the EoS parameters from macroscopic experimental data, one is simultaneously
obtaining the corresponding parameters of the underlying intermolecular potential. This
procedure guarantees the accuracy of the potential in representing the macroscopic
properties with a reliable effective (average) molecular model of the fluid and represents a
unique bridge between the microscopic and macroscopic scales.

Molecular models

The SAFT-VRMie (Lafitte et al., 2013) (and SAFT-gMie (Papaioannou et al., 2014)) EoS is
based on the assumption that the basic building blocks of a molecule are spherical segments.
This is particularly useful to describe molecules in a CG manner: we dispense with the
atomistic detail and represent molecules in terms of a tangent chain of beads. In our
current study, the carbon dioxide molecule is modelled as a tangent dimer,
n-perfluorohexane as a rigid trimer, and argon as a sphere. Note that potentials developed
with this methodology are referred to as SAFT-� Mie force fields in recognition of the more
generic group-contribution nature of the approach (Müller and Jackson, 2014).

There is a corresponding-states relationship between the exponents in a Mie potential in
such a way that an infinite number of pairs (�r and �a) provide essentially the same
description of the fluid phase properties (Ramrattan et al., 2015). For simplicity we fix the
value of the attractive exponent to the London value of �a, ff ¼ 6 throughout this work.

The estimation of the three remaining parameters (�ff, "ff, and �r, ff) of equation (1) for the
fluids of interest is undertaken through a comparison with experimental data. In particular,
based on the experimental information available for fluids adsorbed in BAM-P109, we
focused on argon, carbon dioxide, and perfluorohexane. SAFT-VR Mie parameters for
argon are already available (Dufal, 2013; Dufal et al., 2014). Argon is represented as a
single Mie sphere model (i.e. m¼ 1) and the corresponding parameters are obtained using
experimental data for the vapour pressures and saturated liquid densities in a range of
temperatures up to 95% the critical point. Previously published models for carbon dioxide
(Dufal, 2013; Dufal et al., 2014; Lafitte et al., 2013) and n-perfluorohexane (Lafitte et al.,
2013) are not used in our current work because non-integer SAFT chain models cause some
complications (e.g. the specification of the bond length) when used directly in molecular
simulation. Instead we develop a two-segment m¼ 2 model for carbon dioxide and three-
segment m¼ 3 model for n-perfluorohexane using vapour pressure and saturated liquid
density data in a range of temperatures of �20K in the vicinity of the temperature of
current interest (T ¼ 273K). The resulting SAFT-� Mie intermolecular model parameters
obtained are collected in Table 1 together with the deviations of the SAFT-VR Mie
description from the available experimental data (Dunlap et al., 1958; Khairulin et al.,
2007; Lemmon et al., 2014). The parameters in Table 1 are obtained using the EoS with a
standard parameter estimation procedure (see Lafitte et al. (2013) for details). The
comparison of the description of the vapour–liquid coexistence envelop and vapour
pressure curve with the corresponding experimental data can be seen in Figures 1 to 3.

Molecular simulation of fluid phase equilibria

Direct MD simulations of the vapour–liquid equilibria (VLE) of carbon dioxide, argon, and
n-perfluorohexane are carried out using the GROMACS open source suite (Van Der Spoel
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Figure 1. Coexistence of vapour–liquid densities, vapour pressures, and surface tensions for argon. The

dashed red curve corresponds to the SAFT-VR Mie EoS calculations, the continuous blue curve corresponds

to correlated experimental data (Lemmon et al., 2014), and the orange circles correspond to molecular

dynamics simulations, using the same parameters as the theory (color online).

Table 1. The SAFT-� Mie CG force fields for the fluids of interest (the attractive exponent is fixed at

�a, ff ¼ 6 in all cases) and percentage absolute average deviations (% AAD) of the theoretical description

from the experimental vapour pressures and saturated liquid densities in the range of temperatures at which

the parameter estimations were done.

Model parameters % AAD

Ref. m �ff /Å ("ff=kB)/K �r, ff �a, ff p �L Exp. Ref.

Ar Dufal (2013),

Dufal et al. (2014)

1.0 3.4038 117.84 12.085 6.0 0.2 0.7 Lemmon et al. (2014)

CO2 This work 2.0 2.8514 190.14 13.77 6.0 0.07 0.4 Lemmon et al. (2014)

C6F14 This work 3.0 4.4337 298.30 20.106 6.0 0.06 0.3 Dunlap et al. (1958),

Khairulin et al. (2007),

Lemmon et al. (2014)

kB refers to Boltzmann’s constant.
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et al., 2005). In the direct technique, a film of liquid surrounded by vapour (with two stable
vapour–liquid interfaces) is simulated to obtain the VLE and interfacial properties of the
system.

The simulations are performed in the canonical (NVT) ensemble, where the total density
and temperature are kept constant. The parallelepiped cells have aspect ratios of Lz=Lx ¼ 6
and Lx ¼ Ly ¼ 4, 5, and 6 nm to accommodate N¼ 1740 carbon dioxide, 4394 argon, and
1152 n-perfluorohexane molecules, respectively.

The MD simulations are thermostated every 2 ps using a Nose–Hoover algorithm
(Frenkel and Smit, 2002; Hoover, 1985; Nosé, 1984), and all non-bonded interactions are
truncated at rc ¼ 6�ff. The systems are simulated with a time step of 0.01 ps for at least 20 ns.
All reported properties are obtained as appropriate averages, taken over the final half of the
configurations explored. The simulated vapour–liquid coexistence densities, vapour
pressures, and surface tensions are also included in Figure 1 to 3 along with the

Figure 2. Coexistence of vapour–liquid densities, vapour pressures, and surface tensions for carbon

dioxide. Symbols as in Figure 1.
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experimental and SAFT-VR Mie description for completeness. The agreement between the
theory, simulation, and experiments is found to be excellent. The vapour pressure of
n-perfluorohexane at 273K predicted by the SAFT-� Mie CG force field is
p0 ¼ 0:008664MPa, which is in excellent agreement with the experimental value of
0.008548MPa (Dunlap et al., 1958; Khairulin et al., 2007; Lemmon et al., 2014).

Molecular simulation of the adsorbed phase

The adsorption isotherms are determined using GCMC simulations in the �VT ensemble. A
slit-like pore geometry is used to model a solid with the structure of graphite. Two solid
blocks (each comprising six carbon layers) are considered. Boundary conditions are imposed
in the Cartesian directions parallel to the surfaces of the solid. The pair potentials are
truncated at a distance proportional to the fluid segment diameter such that rc ¼ 6�ff, at
which the value of the potential is assumed to be negligible. No long-range corrections are

Figure 3. Coexistence of vapour–liquid densities, vapour pressures, and surface tensions for

n-perfluorohexane. Symbols as in Figure 1.
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employed. The solid is described based on the hexagonal honeycomb lattice typical of
graphite where the space between adjacent carbons is 1.42 Å, with the parameters
commonly employed for atomistically detailed carbon surfaces (Steele, 1973): �ss ¼ 3:40 Å,
"ss=kB ¼ 28:0K, �r, ss ¼ 12:0, �a, ss ¼ 6:0.

The unlike-interaction parameters between segments of different type (in this case fluid
and solid segments) are obtained using the Lorentz–Berthelot combining rules, i.e.

�fs ¼
�ff þ �ss

2
ð4Þ

and

"fs ¼
ffiffiffiffiffiffiffiffiffiffi
"ff"ss
p

ð5Þ

while the following relationship is used for the unlike attractive and repulsive exponents to
ensure that the geometric mean is retained for the unlike van der Waals attractive interaction
(Lafitte et al., 2013)

�k, fs � 3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�k, ff � 3Þð�k, ss � 3Þ

p
, k ¼ a, r ð6Þ

and no attempt was made to improve the description at low pressures (Henry’s law region).
The GCMC simulations are carried out using a standard procedure starting with an empty

pore which is filled until equilibrium is attained (Allen and Tildesley, 1989; Frenkel and Smit,
2002; Nicholson and Parsonage, 1982). For each Monte Carlo cycle, both the displacement/
reorientation of a randomly chosen fluid molecule and a random creation/destruction of a
fluid molecule are attempted. The systems are equilibrated at each pressure level and then
averages are determined from a further two million cycles. Block averages are also obtained
every 10,000 cycles and are used to compute standard deviations to calculate uncertainties.

In the GCMC simulations the temperature and the activity (Müller, 2010) (which is
directly related to the chemical potential) are specified. Simulations are also performed for
bulk fluids that would hypothetically be in equilibrium with the adsorbed fluid (i.e. these are
performed at the same temperature and activity) so that the density of the bulk fluid can be
calculated as a simple average. This density is then used to determine the pressure at a given
temperature using the SAFT-VRMie EoS. Since the EoS reproduces faithfully the volumetric
properties of the fluids (see Figures 1 to 3), this procedure is in essence equivalent to
generating these pressures from pure component simulations, albeit more efficiently.

Development of a kernel of adsorption isotherms

In order to characterise the experimental data provided in the challenge documentation, we
built a GCMC kernel of isotherms which are used to represent the known experimental
adsorption isotherms of argon and carbon dioxide in BAM-P109. This procedure guarantees
that we obtain a pore size distribution (PSD) compatible with the molecular modelling
strategy avoiding any uncertainties in the underlying theoretical treatment as would be
the case if the PSD provided in the challenge were used directly.

The pore widths that constitute our kernel are chosen to be consistent (or commensurate)
with the expected PSD of BAM-P109 as suggested in the challenge documentation. We employ
11 values: H¼ 0.320, 0.488, 0.656, 0.824, 0.992, 1.160, 1.328, 1.496, 1.664, 1.832, and 2.0 nm.
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The distances between the solid surfaces, measured from the centre of the carbon atoms,
correspond to Hþ �ss. For each one of the pore widths and fluids, six simulations are
performed to span the range of pressures of interest for the adsorption of argon and carbon
dioxide.

Unique PSD curve and estimation of the pore volume for BAM-P109

An important step towards the prediction of the adsorption isotherm is the determination of
a reliable PSD of the BAM-P109 activated carbon. The porosity analysis, provided as part of
the challenge documentation, comprises three differential pore volume distributions, two
from argon (using quenched solid density functional theory, QSDFT, and non-local
density functional theory, NLDFT, at 87K) and another from carbon dioxide (using
NLDFT at 273K), which we reproduce in Figure 4. Several problems are evident from an
inspection of Figure 4. One of the most obvious is the non-uniqueness of the PSD, as the
analysis for each fluid (argon and carbon dioxide) and each temperature differs considerably.
Another evident problem is the suggestion of unrealistically small pore sizes by means of the
more refined theory (QSDFT).

Given an experimental adsorption isotherm �ð pÞ, related to the PSD (denoted by f(H) as
a probability density function (Meyer and Klobes, 1999)) and the fluid adsorption isotherm
kernels �ðH, pÞ by the adsorption integral equation

�ð pÞ ¼

Z Hmax

Hmin

f ðHÞ�ðH, pÞdH ð7Þ

Figure 4. Differential pore volume distribution of BAM-P109. The blue curve (triangles) corresponds to

the quenched solid density functional theory analysis performed with argon at T¼ 87 K, the green curve

(squares) to the non-local density functional theory (NLDFT) analysis performed with argon at T¼ 87 K, the

red curve (diamonds) to the NLDFTanalysis performed with carbon dioxide at T¼ 273 K. Information taken

from the benchmark data of the Challenge. The black curve (filled circles) is the PSD determined for use in

our current work (color online).
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a consistent procedure to obtain the PSD is to invert equation (7) for each fluid, which
corresponds to a Fredholm integral equation of the first kind. This can be achieved by using
an appropriate regularisation procedure.

We aim to determine an averaged unique single-fluid independent PSD f(H) by
minimising the quadratic error between the experimental adsorption isotherms �ð pÞ for
argon and carbon dioxide with their respective GCMC adsorption isotherms kernels �ðH, pÞ.

Results and discussion

In Figures 5 to 7 we show the results obtained by simultaneously fitting the experimental
data to the kernels generated for each fluid: the averaged single fluid independent PSD f(H)
(with the ancillary pore volume variable, which we estimated to be a value of 0.5802 cm3/g at
p=p0 ¼ 0.6), the adsorption isotherms of argon at 87K and carbon dioxide at 273K. The
resulting unique PSD is characterised by a smoother profile and a mean-pore size which
appears to be shifted towards slightly larger pores, when compared with those provided in
the challenge documentation (see Figure 4). This is consistent, however, with the trends
observed by other researchers using similar GCMC kernels (Herdes et al., 2005; Miyahara
et al., 2014) and provides confidence in our findings. With the average PSD and the
construction of an appropriate GCMC kernel �ðH, pÞ for n-perfluorohexane, the
evaluation of the total adsorption �ð pÞ from equation (7) is an straightforward task. Our
predictions of this key target of the challenge are presented in Table 2.

Conclusions

We have demonstrated a synergetic use of molecular simulation methodologies, accurate
force fields, and experimental data for the prediction of adsorption isotherms of challenging

Figure 5. Calculated probability density function for the pore size distribution of BAM-P109.
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fluid–solid systems. It is expected that the determination of a unique PSD based on
simultaneous consideration of the isotherms of two distinct fluids will provide a sound
qualitative prediction of the unknown adsorption of a fluid, as the main goal specified in
the challenge. Had there been data for the adsorption isotherm of n-perfluorohexane, these
could have been considered within our methodology to provide further confidence in the

Figure 6. Result of the fitting of the experimental data (continuous curve) and GCMC kernel (circles) for

argon at T¼ 87 K.

Figure 7. Result of the fitting of the experimental data (continuous curve) and GCMC kernel (circles) for

carbon dioxide at T¼ 273 K.
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calculated values. The interaction between carbon and perfluorinated moieties is non-trivial
and this is most likely to be the largest source of uncertainty in the predicted results.

After the disclosure of the Benchmark results (Ross et al., 2016), we were pleased to
discover that our predictions had the correct behaviour. Our prediction and the
experimental data (made available at a special session sponsored by CoMSEF at the
AIChE annual meeting) are compared in Figure 8. As expected, we over-predicted the
adsorption (by approximately 20%) as our model surface was a perfect graphite slit pore.
In hindsight, the consideration of a structure with a tuneable degree of disorder such as
random carbon platelets could (Kumar et al., 2011, 2012) have improved the accuracy of the
predictions as was demonstrated by the entry of Sarkisov (2016) to this challenge.
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Table 2. Predicted adsorption of n-perfluorohexane �(p) in BAM-P109 at

273 K and standard deviation, SD, for various pressures p=p0 relative to the

bulk saturated pressure of the fluid model (p0¼ 8.664 kPa for C7F16).

p=p0 �(p)/(STP cm3g�1) �SD/(cm3g�1)

0.1 72.75 0.01

0.3 73.82 0.01

0.6 75.44 0.05
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