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Abstract—Three-phase imbalance causes uneven voltage drops 

along low voltage (LV) feeders. Under long-term load growth, the 
phase with the lowest terminal voltage will trigger network 
reinforcements, which are earlier than if the three phases were 
balanced. This leads to a higher voltage-driven reinforcement cost 
(VRC) than the balanced case. Three-phase power flow analyses 
are not suitable for VRC estimations under serious data 
deficiency (without customers’ phase connectivity and smart 
metering data), and are not scalable due to the iterative nature 
which brings a prohibitively high computation burden on a utility 
level with millions of feeders. To overcome the challenges, this 
paper proposes a novel scalable methodology for VRC estimations 
that is applicable from an individual feeder to millions of feeders 
where the level of information is insufficient to support accurate 
three-phase power flow studies. The key is to use five types of load 
current distributions to represent customers’ phase allocations 
and individual demands, and to incorporate these distributions 
into an equivalent impedance matrix which allows a 
straightforward VRC estimation without iterations. This paper 
applies this methodology to an individual feeder, showing that: 1) 
the VRC decreases (increases) with the increase of the K (beta) 
factor of the trapezoid (triangular-rectangular) distribution, 
given that other conditions remain the same; 2) the VRC is more 
sensitive to voltage imbalance than to current imbalance; and 3) if 
the three phases are balanced, the change of any single variable 
results in an increase of the VRC, given that all other input 
variables remain constant.  

Index Terms—power distribution, power system economics, 
three-phase electric power, low voltage network, network 
investment, three-phase imbalance 
 

I. INTRODUCTION 
HREE-phase imbalance causes inefficient uses of low 
voltage (LV) network assets. An imbalanced allocation of 
single-phase loads in a three-phase LV network causes 

voltage and current imbalance [1-3] and uneven voltage drops 
along the feeder [4]. At the same time, a long-term load growth 
causes a long-term decrease of the terminal voltages in LV 
networks [4], the majority of which are neither monitored nor 
controlled [5, 6]. When long-term load growth is coupled with 
three-phase imbalance in passive LV networks, there will be a 
phase whose voltage drops to the statutory lower limit earlier 
than the other two phases, thus prompting the distribution 
network operator (DNO) to take actions – a common practice is 
network reinforcements [7], which bring a voltage-driven 
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reinforcement cost (VRC). There are two major challenges 
associated with the VRC estimation: 1) the lack of visibility 
along LV feeders, as is the general case over the UK DNO’s 
service areas; and 2) VRC estimations at a utility level in future 
would require an efficient and scalable method, applicable from 
an individual feeder to millions of feeders. Three-phase power 
flow studies are capable of computing the VRC for individual 
feeders with full smart metering data, customers’ phase 
allocation data, and location-dependent impedance. But they 
are not applicable when these data are absent; and applying 
them to millions of feeders means a prohibitively high 
computational burden due to i) the extensiveness of LV 
networks with varying characteristics across different regions; 
and ii) the iterative nature of power flow analyses. To address 
the challenges, this paper focuses on the development of a 
scalable methodology for VRC estimations under severe data 
deficiency.    

Existing papers and reports on LV network reinforcement 
costs are mainly based on balanced three phases. Voltage 
constraints are a key driver for network reinforcements 
(especially for rural networks), of which the costs were 
quantified on a utility scale under balanced three phases [8]. 
Other references on LV network investments [9-11], LV 
network expansion planning [12, 13], and smart network 
planning strategies [14-16] all assumed balanced three phases. 
Reference [17] estimated the voltage drops under balanced 
three phases, considering three typical load current 
distributions.  

LV networks experience non-trivial three-phase imbalance 
[3, 18]. Numerous publications focused on power losses 
resulting from three-phase voltage and current imbalance 
[19-21]. Furthermore, a number of publications focused on the 
impact of voltage imbalance on the customer side, e.g. 
customers’ induction motors [22-24]. While power losses and 
potential damages to customers’ appliances are both key issues 
from three-phase imbalance, the increased reinforcement costs 
are no less important. However, there is very limited work on 
LV network reinforcement costs considering three-phase 
imbalance. References [25, 26] mentioned the impact of 
three-phase imbalance on network reinforcements 
qualitatively. Reference [27] quantified additional 
reinforcement costs from three-phase imbalance, considering 
thermal constraints only. Our recent paper on the quantification 
of the VRC for a typical LV circuit [4], however, has the 
following limitations: 1) it was limited to a typical LV circuit as 
a combination of a transformer and a feeder where the neutral 
line current is zero for this specific combination; and 2) it 
assumed a uniform distribution of load currents.  

Now this paper makes a fundamental upgrade to the 
methodology: we propose a novel scalable methodology for 
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VRC estimations where the level of information required for an 
accurate three-phase power flow study is not available. The 
methodology effectively addresses the limitations of the 
previous work by incorporating the impact of the neutral 
current into an impedance matrix and considering more general 
distribution patterns of load currents. It consists of a novel 
general VRC model and five novel specific VRC models: five 
typical load current distributions (uniform, head-dominated 
triangular, tail-dominated triangular, trapezoid, and 
triangular-rectangular distributions) are incorporated into an 
equivalent impedance matrix which is invariant under demand 
growth, thus allowing for a non-iterative estimation of the 
VRC.  

The proposed methodology allows DNOs to estimate VRCs 
under severe data deficiency – only substation-side voltages 
and currents are required. This is particularly useful in the UK 
where there is a lack of visibility along LV feeders [28]. 
Furthermore, it works not only for an individual feeder but is 
also scalable to a utility level because of its non-iterative 
analytical nature.  

It should be noted that network reinforcements are a common 
practice for DNOs to address the voltage issues caused by the 
demand growth in imbalanced three-phase LV networks [7, 8]. 
Such a practice is not necessarily the least-cost solution. In 
future, with increasing knowledge of customers’ phase 
connectivity, it is possible to adopt alternative solutions to 
address the voltage issues and defer network reinforcements, 
e.g. phase balancing [25], demand side managements, and 
energy storage [29, 30], and the use of static VAR compensator 
[31, 32] and other power electronic devices [33, 34], etc. The 
VRC of the conventional network reinforcement solution 
serves as a benchmark, with which the costs of alternative 
solutions can be compared. 

The rest of this paper is organized as follows: Section II 
presents a general VRC model based on equivalent impedance 
matrix; Section III presents five specific VRC models where 
each model considers a specific load current distribution; 
Section IV presents a case study; and Section V concludes the 
paper. 

II. GENERAL VRC MODEL BASED ON EQUIVALENT 
IMPEDANCE MATRIX 

    A general VRC model is proposed in this section, accounting 
for the location-dependent impedance of different feeder 
sections and a generic distribution of demand currents along 
each phase of the feeder. The model considers uneven voltage 
drops along the three phases, based on substation-side voltages 
and currents under peak demand.  Unless stated otherwise, all 
voltages and currents data used in this paper are monitored 
under the peak demand.  
    Denote 푥 as the distance between the point concerned and 
the substation. Suppose the location-dependent impedance 
matrix is Z(푥). The distribution of demand currents along phase 
∅ is denoted as 퐼̇ ∅(푥).  
    The phase current at location 푥 of phase ∅ is therefore given 
by 
 

퐼∅̇(푥) = 퐼̇ ∅(푙)푑푙 				where	∅ ∈ {푎,푏,푐} (1)  

where 퐿 is the length of the feeder. 
    The currents are monitored at the secondary side of the 
substation. They are given by 
 

퐼∅̇(0) = 퐼 ̇ ∅(푙)푑푙 			where	∅ ∈ {푎, 푏, 푐} (2)  

    The voltage drops at the end of the three phases are expressed 
as 
 ∆푉̇

∆푉̇
∆푉̇

= Z(푥)
퐼 ̇ (푥)
퐼 ̇ (푥)
퐼 ̇ (푥)

d푥 (3)  

    Define the equivalent impedance matrix as the one that 
would lead to the same voltage drops at the feeder end, given 
the same substation-side currents. The equivalent impedance 
matrix is defined in the form of 
 

Z =
푍

푍
푍

 (4)  

    Each diagonal element of Z ∅ is a function of 퐼̇ (0), 퐼̇ (0), 
and 퐼 ̇ (0), implicitly incorporating the mutual inductance and 
the impact of the neutral current, as explained later in this 
section. 
    There is 
 푍

푍
푍

퐼̇ (0)
퐼̇ (0)
퐼̇ (0)

= Z(푥)
퐼 ̇ (푥)
퐼 ̇ (푥)
퐼 ̇ (푥)

d푥 (5)  

    It should be noted that Z(푥) on the right hand side of (5) 
considers both the transposed and non-transposed conditions of 
feeders. Rather than being a physical impedance, each 
equivalent impedance on the left hand side of (5) represents the 
relationship between the substation-side current of the phase in 
question and the terminal voltage drop of that phase. Such a 
relationship does not change when the load currents of the three 
phases grow by the same percentage each year, regardless of 
whether the three phases are transposed or not – this is proven 
in the Appendix. The invariability of this relationship enables 
the use of the equivalent impedance matrix.    
    The only three non-zero elements of the equivalent 
impedance matrix are given by 
 푍

푍
푍

= 퐼∅̇(0) ∙ Z(푥)[
퐼̇ (푙)
퐼̇ (푙)
퐼̇ (푙)

푑푙 ]d푥 (6)  

where 
 

퐼∅̇(0) =
1/퐼̇ (0)

1/퐼̇ (0)
1/퐼̇ (0)

 (7)  

    In this way, the equivalent impedance matrix Z  is obtained.  
The mutual inductance and the impact of the neutral current 

are incorporated into Z(푥), resulting in non-zero off-diagonal 
elements of Z(푥). According to (6), the mutual inductance and 
the impact of the neutral current are therefore implicitly 
incorporated in the equivalent impedance matrix Z : rather 
than reflecting them in the off-diagonal elements, Z   
incorporates them in the diagonal elements 푍 ∅  (∅ ∈ {푎, 푏, 푐}) 
as the functions of 퐼̇ (0) , 퐼 ̇ (0) , and 퐼̇ (0) . The network 
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representation of the equivalent impedance matrix Z is 
presented in Fig. 1. 

 
Fig. 1 Network representation of the equivalent impedance matrix Z  
 

It should be noted that 푍 ∅  does not necessarily have a 
closed-form expression due to the integral nature, in which case 
numerical solutions should be sought for.  
    Suppose that the demand currents monitored at the 
substation grow by a percentage 푟  each year, reflecting a 
long-term demand growth. By the end of the nth year, the 
feeder-end voltage drops are given by 
 ∆푉̇

∆푉̇
∆푉̇

=
푍

푍
푍

퐼̇ (0)
퐼 ̇ (0)
퐼 ̇ (0)

(1 + 푟)  (8)  

where 푟 denotes the annual growth rate of the demands. 
    According to (8), the use of the equivalent impedance matrix 
is the key, as it allows the voltage drops to be expressed as the 
functions of phase currents. Furthermore, the equivalent 
impedance matrix is invariant under demand growth, i.e. it is 
not a function of the annual demand growth rate 푟, as proven in 
the Appendix. This enables a straightforward non-iterative 
calculation of the VRC. 
    The number of years it takes the feeder-end voltage of phase 
∅ to drop to the statutory lower limit is the solution to (8): 
 

푛∅ =
log ∆푉̇∅ − log 푍 ∅ − log 퐼∅̇(0)

log	(1 + 푟)  (9)  

where ∅ ∈ {a,b,c} ; ∆푉̇∅  denotes the maximum allowed 
voltage drop; and 푟  denotes the annual growth rate of the 
demands. Equation (9) shows that 푍 ∅  is the key to the 
calculation of 푛∅ (∅ ∈ {a,b,c}). 
    A time horizon is defined as the number of years it takes for 
the feeder-end voltage to drop to the statutory lower limit. The 
time horizon of the feeder is the time horizon of the phase of 
which the terminal voltage first drops to the lower limit.  
 푛 = min{푛 ,푛 ,푛 } 				where	∅ ∈ {푎,푏, 푐} (10)  

The VRC is therefore given by 
 푉푅퐶 =

퐼퐶
(1 + 푑)

 (11)  

where 퐼퐶 and 푑 denote the future reinforcement cost and the 
discount rate, respectively.  

The general VRC model considers a range of factors:  
1) The existence of different branch sections that have 

different impedance per unit length;  
And 2) various customer allocation patterns and individual 

demand currents incorporated into a generic distribution of 
demand currents.  

Theoretically, the demand current distribution can be 
infinitely accurate; but in reality, the exact location-dependent 
impedance matrix Z(푥) and the distribution of demand currents 

퐼 ̇ ∅(푥) are unavailable due to the high cost to obtain them and 
the excessive computational burden of accounting for them on a 
utility scale. Even for an individual feeder, these data are not 
always available. This prompts the need to develop specific 
VRC models, which are derived by applying simplifications to 
the general VRC model. Therefore, the general VRC model 
introduced in this section serves as the basis for the specific 
VRC models introduced in the next section. 
    It should be noted that the VRC models, whether general or 
specific, are applicable to demand-dominated LV feeders with 
a low penetration of renewable generation.  

III. SPECIFIC VRC MODELS BASED ON EQUIVALENT 
IMPEDANCE MATRIX 

    To overcome the challenges of data deficiency and 
scalability, approximations have to be made to the distributions 
of demand currents, thus leading to specific VRC models.    
    Kersting proposed a method to estimate voltage drops by 
assuming a constant load density in three typical geometric 
configurations, without considering three-phase imbalance 
[17]. These geometric configurations can be converted into the 
corresponding load current distributions along the feeder.  
    This paper makes a substantial enhancement by 
incorporating five demand current distributions into an 
equivalent impedance matrix for the VRC estimation under 
three-phase imbalance. The five distributions are the uniform, 
tail-dominated triangular, head-dominated triangular, trapezoid, 
and triangular-rectangular distributions.  
    Five specific VRC models are proposed based on two 
simplifications of the general VRC model:  
    1) A matrix of average impedance per unit length of the 
feeder is assumed, denoted as Z . 
    2) Each specific VRC model corresponds to a particular 
distribution of the demand currents.     

A. Uniform Distribution of Demand Currents 
    In this case, the demand current of each phase is distributed 
evenly along the feeder, as depicted in Fig. 2.  

 
Fig. 2 Uniform distribution of demand currents on phase ∅ 
     
    The demand currents are presented as the functions of the 
distance 푙 from the substation:  
 퐼 ̇ (푙)

퐼 ̇ (푙)
퐼 ̇ (푙)

=
퐼 ̇
퐼 ̇
퐼 ̇

 (12)  

    Substitute (12) and the average impedance matrix per unit 
length Z  into (6). The three non-zero elements of the 
equivalent impedance matrix form an equivalent impedance 
vector, given by 

l

Idφ 

L

I
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 푍
푍
푍

= 퐼̇∅(0)
−1

Z
퐼̇
퐼 ̇
퐼 ̇

(퐿 − 푥)d푥

=
1
2퐿 퐼̇∅(0)

−1
푍

퐼̇ (0)
퐼̇ (0)
퐼̇ (0)

 

(13)  

    Because 퐼∅̇(0), 퐿, and 푍  are all known, a characteristic 
impedance vector is defined as: 
 

[푍 ∅] =
푍
푍
푍

= 퐿 퐼̇∅(0)
−1
푍

퐼̇ (0)
퐼̇ (0)
퐼̇ (0)

 (14)  

    Substitute (14) into (13). The equivalent impedance vector is 
given by 
 푍

푍
푍

=
1
2

[푍 ∅] (15)  

    The number of years it takes for the feeder-end voltage of 
phase ∅ to drop to the statutory lower limit is calculated by 
substituting (15) into (9). The time horizon of the feeder is 
given by (10). The VRC is computed by (11). 

B. Tail-Dominated Triangular Distribution of Demand 
Currents 
    In this case, the demand current of each phase increases 
linearly with the distance from the substation, as depicted in 
Fig. 3. 

 
Fig. 3 Tail-dominated distribution of demand currents on phase ∅ 
  
    The demand currents are given as the functions of the 
distance 푙 from the substation: 
 퐼 ̇ (푙)

퐼 ̇ (푙)
퐼 ̇ (푙)

= 푙
퐾̇
퐾̇
퐾̇

 (16)  

    The phase currents measured at the substation are given by 
 퐼 ̇ (0)

퐼 ̇ (0)
퐼 ̇ (0)

=
퐼̇ (푙)
퐼̇ (푙)
퐼̇ (푙)

d푙 =
1
2퐿

퐾̇
퐾̇
퐾̇

 

 

(17)  

    There is 
 퐾̇

퐾̇
퐾̇

=
2
퐿

퐼̇ (0)
퐼̇ (0)
퐼̇ (0)

 (18)  

    Substitute (18) into (16) which is further substituted into (6). 
The three non-zero elements of the equivalent impedance 
matrix are given by 
 푍

푍
푍

= 퐼∅̇(0) 푍
퐾̇
퐾̇
퐾̇

∫ [∫ 푙d푙 ]d푥 =

퐿 퐼∅̇(0) 푍
퐼̇ (0)
퐼 ̇ (0)
퐼 ̇ (0)

  

(19)  

    Substitute the characteristic impedance vector [푍 ∅] defined 
in (14) into (19). The three non-zero elements of the equivalent 
impedance matrix are given by 
 푍

푍
푍

=
2
3

[푍퐶∅] (20)  

    With the equivalent impedance matrix obtained, the VRC is 
then computed from (9) – (11). 

C. Head-Dominated Triangular Distribution of Demand 
Currents 
    In this case, the demand current of each phase is decreasing 
linearly with the increase of the distance from the substation, as 
depicted in Fig. 4. 

 
Fig. 4 Head-dominated distribution of demand currents on phase ∅ 
 
    The demand currents are given as the functions of the 
distance 푙 from the substation: 
 

퐼̇ (푙)
퐼̇ (푙)
퐼̇ (푙)

=

⎣
⎢
⎢
⎢
⎢
⎡−

푎̇
퐿 푙 + 푎̇

−
푏̇
퐿 푙 + 푏̇

−
푐̇
퐿 푙 + 푐̇ ⎦

⎥
⎥
⎥
⎥
⎤

 (21)  

where 푎̇ = 퐼 ̇ (0), 푏̇ = 퐼̇ (0), and 푐̇ = 퐼 ̇ (0). 
    The phase currents measured at the substation are given by 
 퐼̇ (0)

퐼̇ (0)
퐼̇ (0)

=
퐼 ̇ (푙)
퐼 ̇ (푙)
퐼 ̇ (푙)

d푙 =
1
2 퐿

푎̇
푏̇
푐̇

 (22)  

    Therefore, 
 푎̇

푏̇
푐̇

=
2
퐿

퐼̇ (0)
퐼 ̇ (0)
퐼 ̇ (0)

 (23)  

    Substitute (23) into (21) which is then substituted into (6). 
The three non-zero elements of the equivalent impedance 
matrix are given by 
 

푍
푍
푍

= 퐼̇∅(0)
−1
∫ 푍 [∫

⎣
⎢
⎢
⎢
⎡−

̇ 푙 + 푎̇

−
̇
푙 + 푏̇

− ̇ 푙 + 푐̇ ⎦
⎥
⎥
⎥
⎤
푑푙 ]d푥 =

퐿 퐼̇∅(0)
−1
푍

퐼̇ (0)
퐼̇ (0)
퐼̇ (0)

  

(24)  

    Substitute (14) into (24). Equation (24) is expressed as 
 푍

푍
푍

=
1
3

[푍 ∅] (25)  

    With the equivalent impedance matrix obtained, the VRC is 
then computed by using (9) – (11). 

D. Trapezoid Distribution of Demand Currents 
    In this case, the demand current of each phase is depicted in 
Fig. 5.  

l

Idφ(l) 

L

I

0

l

Idφ(l) 

L

I

0
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Fig. 5 Trapezoid distribution of demand currents on phase ∅ 
    The demand currents are given by  
 

퐼 ̇ (푙)
퐼 ̇ (푙)
퐼 ̇ (푙)

=

⎣
⎢
⎢
⎢
⎢
⎡
ℎ − ℎ

퐿 푙 + ℎ
ℎ − ℎ

퐿
푙 + ℎ

ℎ − ℎ
퐿 푙 + ℎ ⎦

⎥
⎥
⎥
⎥
⎤

 (26)  

Where 푙 is the distance from the substation; ℎ ∅ and ℎ ∅ (∅ ∈
{푎, 푏, 푐}) are presented in Fig. 5.  
    The phase currents measured at the substation are given by 
 퐼 ̇ (0)

퐼 ̇ (0)
퐼 ̇ (0)

=
1
2
퐿
ℎ + ℎ
ℎ + ℎ
ℎ + ℎ

 

 

(27)  

    There is 
 

ℎ
ℎ
ℎ

=

⎣
⎢
⎢
⎢
⎢
⎡
2
퐿 퐼
̇ (0)− ℎ

2
퐿
퐼̇ (0)− ℎ

2
퐿 퐼
̇ (0)− ℎ ⎦

⎥
⎥
⎥
⎥
⎤

 (28)  

Where 0 ≤ ℎ ∅ ≤ 퐼∅̇(0) for a demand-dominated feeder.  
    Substitute (28) into (26) which is further substituted into (6). 
The three non-zero elements of the equivalent impedance 
matrix are given by 
 

푍
푍
푍

= 퐼̇∅(0)
−1
∫ 푍 [∫

⎣
⎢
⎢
⎢
⎡−

̇ 푙 + 푎̇

−
̇
푙 + 푏̇

− ̇ 푙 + 푐̇ ⎦
⎥
⎥
⎥
⎤
푑푙 ]d푥 =

퐿 퐼̇∅(0)
−1
푍

⎣
⎢
⎢
⎢
⎡ 퐼̇ (0)− 퐿ℎ

퐼̇ (0)− 퐿ℎ

퐼̇ (0)− 퐿ℎ ⎦
⎥
⎥
⎥
⎤
  

(29)  

    Substitute (14) into (29). The three non-zero elements of the 
equivalent impedance matrix are expressed as 
 푍

푍
푍

=
2
3 [푍 ∅] −

1
6
퐿 퐼̇∅(0)

−1
푍

ℎ1푎
ℎ1푏
ℎ1푐

 (30)  

    Equation (30) demonstrates that, for each phase, only one 
variable among ℎ ∅ and ℎ ∅ is independent. 
    The uniform, tail-dominated triangle, and head-dominated 
triangle distributions are the special cases of the trapezoid 
distribution, where ℎ ∅ = ℎ ∅ , ℎ ∅ = 0 , and ℎ ∅ = 0 , 
respectively. 
    Let ℎ ∅ = ∅ 퐼∅̇(0), where 퐾∅ is the K factor (0 ≤ 퐾∅ ≤ 2). 
Equation (30) is transformed into 
 푍

푍
푍

=
2
3 [푍 ∅] −

1
6
퐿 퐼̇∅(0)

−1
푍

퐾푎퐼̇푎(0)
퐾푏퐼̇푏(0)
퐾푐퐼̇푐(0)

 (31)  

    퐾∅ is the parameter that determines the shape of the load 
current distribution for phase ∅. A greater 퐾∅ means that the 

distribution is more skewed towards the substation side. The 
uniform, tail-dominated triangle, and head-dominated triangle 
distributions correspond to 퐾∅ = 1 , 퐾∅ = 0 , and 퐾∅ = 2 , 
respectively. 
    Given a lack of smart metering data, equation (30) can be 
simplified by assuming that the K factors are the same for the 
three phases: 
 

ℎ ∅ =
퐾
퐿 퐼∅̇

(0) (32)  

where 0 ≤ 퐾 ≤ 2. This is equivalent to assuming that the load 
current distributions of the three phases follow a similar 
pattern. 
    Therefore, the three non-zero elements of the equivalent 
impedance matrix are expressed as 
 푍

푍
푍

=
4−퐾

6 [푍 ∅] (33)  

Where [푍 ∅] is defined in (14).  
    With the equivalent impedance matrix obtained, the VRC is 
then computed from (9) – (11). 

E. Triangular-Rectangular Distribution of Demand Currents 
    In this case, the triangular-rectangular (TR) distribution of 
demand currents on phase ∅ is depicted in Fig. 6. 

 
Fig. 6 Triangular-rectangular distribution of demand currents on phase ∅ 
    The demand currents on phase ∅ are given by 
 

퐼̇ ∅(푙) =
∅( )

∅( ∅)
푙					when	0 ≤ 푙 < 푑∅

∅( )

∅
														when	푑∅ ≤ 푙 ≤ 퐿

  (34)  

Where 푑∅ (∅ ∈ {a, b, c}) is defined in Fig. 6 as the border point 
between the triangle and the rectangle. There is 0 ≤ 푑∅ ≤ 퐿. 
    The three non-zero elements of the equivalent impedance 
matrix are derived following the same process as in the 
previous section. 
 

푍
푍
푍

= 퐼̇∅(0)
−1
푍

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡퐼̇푎(0) ∙

3퐿2 −푑푎
2

3(2퐿− 푑푎)

퐼̇푏(0) ∙
3퐿2 − 푑푏

2

3(2퐿− 푑푏)

퐼̇푐(0) ∙
3퐿2 − 푑푐

2

3(2퐿− 푑푐)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (35)  

    The uniform and tail-dominated distributions are the special 
cases of the TR distribution, where 푑∅ = 0  and 푑∅ = 퐿 , 
respectively.  
    Let 푑∅ = 훽∅퐿 , where 훽∅  is the beta factor (0 ≤ 훽∅ ≤ 1 ). 
Equation (35) is transformed into 
 

푍
푍
푍

= 퐿 퐼̇∅(0)
−1
푍

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡퐼̇푎(0) ∙

3−훽푎
2

3(2− 훽푎)

퐼̇푏(0) ∙
3− 훽푏

2

3(2− 훽푏)

퐼̇푐(0) ∙
3− 훽푐

2

3(2− 훽푐)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (36)  

l

Idφ(l) 

L

I

0

h1φ 

h2φ 

l

Idφ(l) 

L

I

0 dφ 
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    훽∅  is the parameter that determines the shape of the load 
current distribution for phase ∅. A greater 훽∅  means that the 
distribution is more skewed towards the feeder end. The 
uniform and tail-dominated distributions correspond to 훽∅ = 0 
and 훽∅ = 1, respectively. 
    Given a lack of smart metering data, equation (35) can be 
simplified by assuming that the beta factors are the same for the 
three phases: 
 푑∅ = 훽퐿 (37)  
Where 0 ≤ 훽 ≤ 1. This is equivalent to assuming that the load 
current distributions of the three phases follow a similar 
pattern. 
    Therefore, the three non-zero elements of the equivalent 
impedance matrix are given by 
 푍

푍
푍

=
3− 훽2

3(2−훽) [푍 ∅] (38)  

Where [푍 ∅] is defined in (14).  
    With the equivalent impedance matrix obtained, the VRC is 
then computed from (9) – (11). 

IV. CASE STUDY 
    The methodology is applied to an individual feeder, based on 
the substation-side three-phase currents and voltages data. The 
input data for the base case are presented in Table I.  

TABLE I: GENERAL INPUT DATA 
Variable Value Variable Value 
퐼 (0) 72A 푉 (0) 245V [4] 
퐼 (0) 69A 푉 (0) 245V 
퐼 (0) 58A 푉 (0) 245V 
퐿 1500m 푟 1.9% [35] 
푑 6.9% [35]  Power factor 0.95 [36] 
Z+ 0.868+j0.092Ω/km 

[37] 
Z0 0.760+j0.092Ω/km 

[37]  
IC* £5,800 [8]   

*Future reinforcement cost 
    Suppose that the demand currents of the three phases follow 
a trapezoid distribution with the same K factor (uniform, 
tail-dominated triangular, and head-dominated triangular 
distributions are the special cases of the trapezoid distribution). 
The VRCs are computed under a range of K factors, as depicted 
in Fig. 7.   

 
Fig. 7 VRCs under varying K factors 
    Fig. 7 shows that the VRC decreases with the increase of the 
K factor, because an increasing K factor causes the demand 
current distributions to be skewed towards the substation side, 

thus reducing the voltage drops of the three phases and leading 
to a decrease of the VRC.  
 

 
Fig. 8 VRCs under varying 훽 factors 
    Suppose that the demand currents of the three phases follow 
a triangular-rectangular distribution with the same 훽  factor, 
where uniform and tail-dominated triangular distributions are 
the special cases. The VRCs are computed under a range of 훽 
factors, as depicted in Fig. 8.   
    Fig. 8 shows that the VRC increases with 훽 , because an 
increasing 훽  corresponds to an increasing skewness of the 
demand current distributions towards the feeder terminal, thus 
increasing the voltage drops of the three phases and the VRC.  

A. The Impact of Voltage Imbalance on VRCs 
    According to Table I, the substation-side phase voltages  
푉∅(0) are assumed to be balanced at 245V for the base case. In 
this section, the impact of voltage imbalance on the VRC is 
investigated by considering a range of 푉 (0) , whilst 
maintaining other input variables constant. Suppose that the 
demand current distributions of the three phases follow a 
trapezoid distribution with the same K factor. The VRCs are 
computed under a range of 푉 (0) deviations from the balanced 
value, as depicted in Fig. 9.  
    Fig. 9 shows that the VRC is highly sensitive to voltage 
imbalance. Given any K factor, the VRC first decreases with 
the increase of 푉 (0) when the percentage deviation is less 
equal to 0%, i.e. when 푉 (0) ≤ 245V; then, the VRC remains 
constant when the percentage deviation is positive, i.e. when 
푉 (0) > 245V.  This is because:  
    1) When 푉 (0) ≤ 245V, phase a is the phase of which the 
terminal voltage will first drop to the statutory lower limit 
under long-term demand growth – phase a determines the 
voltage spare room of the feeder and the VRC. An increasing 
푉 (0) within the range enlarges the voltage spare room and 
reduces the VRC.  
    2) When 푉 (0) > 245V, phases b and c restrain the voltage 
spare room. An increasing 푉 (0) does not enlarge the voltage 
spare room, hence not affecting the VRC.  Tail-dominated 
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Fig. 9 VRCs under varying degrees of voltage imbalance 

B. The Impact of Current Imbalance on VRCs 
    Suppose that 퐼 (0) = 퐼 (0) = 72A. All other data are the 
same as in Table I. The impact of current imbalance on the 
VRC is investigated by considering 퐼 (0) within a percentage 
deviation range of [-20%, 20%], i.e. 퐼 (0) ∈ [57.6A, 86.4A]. 
Suppose that the demand currents of the three phases follow the 
trapezoid distribution with the same K factor.  
    The VRC results are depicted in Fig. 10. Given any K factor, 
the VRC reaches its minimum when the currents are balanced, 
corresponding to a 0% deviation of 퐼 (0) from the balanced 
value. This is because: 
    1) When 퐼 (0) is less than the currents of the other two 
phases (the percentage of deviation is negative), a decreasing 
퐼 (0) causes a relatively slow decrease of the terminal voltages 
for phases b and c due to the mutually coupling nature reflected 
by the impedance matrix Z , leading to a relatively slow 
increase of the VRC.  
    2) When 퐼 (0) is greater than the currents of the other two 
phases (the percentage of deviation is positive), an increasing 
퐼 (0) causes a relatively fast decrease of the terminal voltage 
for phase a, causing a relatively fast increase of the VRC.  
    The words ‘fast’ and ‘slow’ are relative between the above 
two cases. The results demonstrate that the VRC is more 
sensitive to voltage imbalance than to current imbalance.  
    It should be noted that the results are true when only one 
input variable is changed, whilst all other input variables 
remain constant. 

 
Fig. 10 VRCs under varying degrees of current imbalance 
 

C. The Impact of K-Factor Imbalance on VRCs 
    In this section, 퐼 (0) = 퐼 (0) = 퐼 (0) = 72A. Other data are 
presented in Table I. Phases b and c have the same K factor, 
퐾 = 퐾 . The impact of the K factor on VRCs is investigated 
by considering a range of 퐾 ∈ [0.0, 2.0], whilst maintaining 
other input variables constant. The VRC results are plotted in 
Fig. 11.  
    The VRC reaches its minimum when 퐾 = 퐾 = 퐾 , i.e. 
when the load current distributions of the three phases have the 
same K factor, given that 퐼 (0) = 퐼 (0) = 퐼 (0) and 푉 (0) =
푉 (0) = 푉 (0). This is because: 
    1) When 퐾 = 퐾 = 퐾 , the three phases are balanced, with 
a phase current of 72A. 
    2) When 퐾 ≠ 퐾 = 퐾 , at least one phase has a current 
greater than 72A, resulting in a lower feeder-end voltage of that 
phase and a greater VRC than that in the balanced case.  

 
Fig. 11 VRCs under imbalanced K factors 

D. The Impact of Beta-Factor Imbalance on VRCs 
    In this section, 퐼 (0) = 퐼 (0) = 퐼 (0) = 72A. Other data are 
the same as in Table I. Phases b and c have the same 훽 factor, 
훽 = 훽 . The impact of the K factor on VRCs is investigated by 
considering a range of 훽 ∈ [0.0, 1.0], whilst maintaining other 
input variables constant. The VRC results are plotted in Fig. 12.  
    The VRC reaches its minimum when 훽 = 훽 = 훽 , i.e. 
when the load current distributions of the three phases have the 
same 훽  factor, given that 퐼 (0) = 퐼 (0) = 퐼 (0) and 푉 (0) =
푉 (0) = 푉 (0). The reason is similar to that in the previous 
section:  
    1) When 훽 = 훽 = 훽 , the three phases are balanced, where 
the phase current is 72A. 
    2) When 훽 ≠ 훽 = 훽 , at least one phase has a current 
greater than 72A, resulting in a lower feeder-end voltage of that 
phase and a greater VRC than that in the balanced case.  
 

 
Fig. 12 VRCs under imbalanced 훽 factors 

Sections IV. C – D prove that the balanced condition 
corresponds to the minimum VRC; if any single variable 
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deviates from the balanced condition whilst other input 
variables remain unchanged, the VRC will increase.   

E. Discussions 
The conclusions in Sections IV. A – D are true under the 

condition that the average impedance matrix per unit length of 
the feeder is based on the approximate line model introduced in 
[17]. The approximate line model is applicable when the 
negative sequence impedance is unknown, which is normally 
the case in reality.  
    The proposed methodology applies to demand-dominated 
LV networks with a low penetration of renewable energy. 
Future work will extend the methodology to consider a high 
penetration of renewable energy. 
    The method has the prospect to be scaled up to a utility level 
due to: 1) its non-iterative nature as opposed to 
power-flow-based methods; 2) the ability to account for a 
variety of load current distributions; and 3) the suitability where 
the level of information is insufficient to support 
feeder-by-feeder power flow studies. The next stage of the 
research will be applying the method to a utility scale with 
millions of feeders.   

V. CONCLUSIONS 
    This paper proposes a novel scalable methodology for 
voltage-driven reinforcement cost (VRC) estimations where the 
level of information required for an accurate three-phase power 
flow study is not available. The methodology consists of a 
novel general VRC model and five novel specific VRC models. 
The five models incorporate five typical load current 
distributions (i.e. the uniform, head-dominated triangular, 
tail-dominated triangular, trapezoid, and triangular-rectangular 
distributions) into an invariant equivalent impedance matrix for 
a straightforward non-iterative estimation of the VRC. The 
following conclusions are drawn from the case study: 
    1) The VRC decreases with the increase of the parameter K 
for the trapezoid distribution, given other conditions the same.   
    2) The VRC increases with the beta factor of the 
triangular-rectangular distribution, given other conditions the 
same.  
    3) The VRC is highly sensitive to voltage imbalance. If two 
phases have the same voltage magnitude at the substation side, 
the VRC reaches the minimum when the third phase has a 
voltage of which the magnitude is no less than that of the other 
two phases, given other conditions the same and that the phase 
angles are 120º apart from each other.  

4) If the three phases are originally balanced, the change of 
any single variable will result in an increase of the VRC, given 
that all other input variables remain unchanged and that the 
average impedance matrix is based on the approximate line 
model introduced in [17].   
    The VRC models demonstrate suitability for cases with 
severe data deficiency and the prospect to be scaled up to a 
utility level with millions of feeders.   
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pp 

APPENDIX: PROOF OF INVARIABILITY OF THE EQUIVALENT 
IMPEDANCE MATRIX UNDER DEMAND GROWTH 

    The invariability of the equivalent impedance matrix used in 
the VRC models is proven in this section: after N years’ 
demand growth, the demand current and phase current are 
given by 
 퐼 ̇ ∅′ (푙) = 퐼 ̇ ∅(푙)(1 + 푟)  (39)  
 퐼∅̇′ (푙) = 퐼∅̇(푙)(1 + 푟)  (40)  
where 푙 and 푟 denote the distance from the substation and the 
annual demand growth rate, respectively.  
    The three non-zero elements of the equivalent impedance 
matrix are given by 

 푍
푍
푍

=
1

(1 + 푟)
퐼∅̇(0) ∙ Z(푥)[(1 + 푟)

퐼 ̇ (푙)
퐼 ̇ (푙)
퐼 ̇ (푙)

푑푙 ]d푥 (41)  

    Equation (41) leads to 
 푍

푍
푍

= 퐼∅̇(0) ∙ Z(푥)[
퐼 ̇ (푙)
퐼 ̇ (푙)
퐼 ̇ (푙)

푑푙 ]d푥 =
푍
푍
푍

 (42)  

    Therefore, the equivalent impedance matrix is proved to be 
invariant under demand growth, i.e. it is not a function of the 
annual demand growth rate r. This is a very important feature as 
it allows the VRC to be calculated in a straightforward 
non-iterative way. 
 


