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ABSTRACT 

The shaking table is an essential testing tool in the development of earthquake resistant buildings and 

infrastructure, so improving its performance is an important contribution to saving lives.  Currently the 

bandwidth and accuracy of shaking tables is such that earthquake motion often cannot be replicated with 

the desired fidelity.  A new model-based motion control method is presented for multi-axis shaking tables. 

The ability of this method to decouple the control axes is demonstrated.  A linear parameter varying modal 

control approach is used – i.e. the modes of vibration of the system are controlled individually, with the 

modal decomposition repeated at each time step to account for parameter variations.  For each mode, a 

partial non-linear dynamic inversion is performed in the control loop.  Feedback is based on a combination 

of position and acceleration measurements.  A command feedforward method is proposed to increase the 

tracking bandwidth, thus the controller has a two degree-of-freedom structure.  Experimental and simulation 

results are presented for a large (43 tonne total) six degree-of-freedom shaking table.  The simulation results 

are based on a detailed, validated model of the table.  Experimental results show that the controller gives 

exceptional performance compared a conventional proportional controller: for example the horizontal 

acceleration bandwidth is six-times higher at over 100Hz, which is also many times higher than the 

hydraulic resonant frequency.  These results will allow a step change in earthquake simulation accuracy. 

 

KEYWORDS: shaking table, electrohydraulic servosystem, earthquake simulation, multi-axis control, 

parallel kinematic mechanism, modal control. 
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NOMENCLATURE 

 

Cat  Table acceleration vector in Cartesian space 

A  Piston area 

A(s) Actuator second order characteristic polynomial 

A1(s) Product of A(s) and h 

B  Diagonal damping matrix 

c  Actuator damping 

Wcox  x coordinate of origin of frame {C} defined in frame {W} 

Wcoy  y coordinate of origin of frame {C} defined in frame {W} 

Wcoz  z coordinate of origin of frame {C} defined in frame {W} 

di  Disturbance for axis i 

D  Actuator to internal (or deformation) force transformation 

Cft  Table force vector in Cartesian space 

fh  Actuator force (product of pressure different and piston area) 

Fstall Actuator stall force 

g  Estimate of ratio H0/h used to scale control signal in final controller 

G(s) Low pass motion estimation filter 

h  Valve/actuator velocity gain 

hc  Centre of gravity height 

H0  Maximum value of h. 

Ix, Iy, Iz Moments of inertia about axes x, y, z 

I  Identity matrix 

It  3x3 moment of inertia matrix 

Ji  Jacobian relating actuator body to table velocity vectors 

k  Actuator stiffness 

kp   Proportional gain 

kpi   Proportional gain, position axis i 

kpf   Proportional gain, force axis 

Km   Actuator mounting stiffness 

Kc   Actuator pushrod stiffness 

K  Stiffness matrix 

Lh   Horizontal (x) actuator offset from table centre line 
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Lv   Vertical (z) actuator offset from table centre line 

m  Mass moved by actuator 

mt   Mass of table and payload 

M  Total mass matrix in frame {C} 

Mai  Mass matrix of actuator body, actuator i 

Mc  Mass matrix of table in frame {C} 

Mcg  Mass matrix of table about centre of gravity 

N  Number of actuators 

p1, p2 Cylinder chamber pressures 

pacc, Accumulator hydraulic pressure 

Pr,  Return hydraulic pressure 

P  Modal to Cartesian space transformation 

q1, q2 Cylinder flowrates 

Q  Cartesian to actuator space transformation 

ri  Position command, axis i 

rs  Accumulator pressure, as a proportion of its maximum 

R  Modal to actuator space transformation 

s  Differential operator 

u  Control signal 

ui  Control signal for actuator i 

ui’  Control signal for augmented plant, actuator i 

ui’’  ui’ filtered by A1(s) 

vi  Valve spool displacement for actuator i 

v  Vector of spool displacements 

V1, V2 Cylinder chamber volumes 

V(s) Valve dynamics model 

W(s) Factor of augmented plant (without integrator) 

xi  ‘No-load’ actuator displacement 

x  Vector of non-load actuator displacements 

y  Vector of actuator displacements 

yi  Effective displacement of actuator i 

zi  Displacement of piston i  
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Greek letters 

  Valve dead time 

  Roll (rotation about x axis) 

  Pitch (rotation about y axis) 

  Diagonalised frequency matrix 

c  Characteristic time (delay) 

i   Natural frequency of modal axis i 

nv   Valve natural frequency 

  Yaw (rotation about z axis) 

  Valve damping ratio 

 

Subscripts 

c  Cartesian coordinates 

m  Modal coordinates 

i  For axis or actuator i 

 

Diacritical mark 

^  Estimate of 
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1.  INTRODUCTION 

Servohydraulic shaking tables are used to simulate earthquake-induced ground motion for the seismic 

testing of large structures.  Such testing is a vital part of the development of earthquake resilient buildings 

and infrastructure (e.g. bridges and dams), and thus plays a part in safeguarding many thousands of lives.  

However the control of shaking tables to accurately replicate the desired motion is a very significant 

challenge.  This is due to both the high bandwidth requirements, and the desire for simultaneous multi-axis 

control with minimal cross-coupling.  This paper presents, for the first time, a linear-parameter-varying 

modal controller which is shown in practice to achieve high bandwidth multi-axis control for a large six 

degree-of-freedom over-constrained shaking table. 

 

Fig. 1 shows a typical arrangement for a 6 degree-of-freedom (DOF) multi-axis shaking table with a payload 

capacity of a few hundred kilograms.   Such tables are used for a range of multi-axis vibration testing tasks, 

not only for earthquake simulation.  Servohydraulic actuators provide high force and acceleration with 

relatively low mass and size.  A parallel kinematic arrangement of servohydraulic actuators provides greater 

stiffness than a serial connection of actuators, and hence the potential for multi-axis motion with the highest 

achievable dynamic response.  Larger tables are often preferred for earthquake testing of model buildings 

so that the scale factors are not so extreme; these can typically accommodate payloads of at least several 

tonnes.  Fig. 2 shows an example at the IWHR research institute in Beijing, for which results are presented 

in this paper.  The Japanese E-defense facility commissioned in 2006 is the world's largest shaking table 

can handle payloads up to 1200 tonnes – large enough for the testing of four-storey buildings at full scale 

[1].  In a very large table such as this high mass is moved by long-stroke actuators, giving low hydraulic 

resonant frequencies; the E-defense table with a 1200 tonne payload has resonant frequencies in the range 

3Hz to 8Hz, yet the aspiration for earthquake simulation is for accurate control up to 15Hz, presenting a 

significant controller design challenge [1].  Alternatively, if a scale model of the test structure is used with 

a smaller table, this necessitates compressing the timescale of the earthquake signal and hence demands a 

higher bandwidth for the closed-loop system.  The need to operate at frequencies beyond the hydraulic 

resonance is an unusual and difficult problem for hydraulic servo engineers, and compensation for this 

characteristic is essential [2].  The servo-valve response, particularly its phase lag, will also have a 

significant impact, and a high performance controller cannot be designed without accounting for it.  Further, 

a high centre of gravity and large horizontal accelerations may be encountered, generating a large 

overturning moment which tends to cause the table to pitch.  In many structural testing applications iterative 

control enables the best drive signals to learnt, but destructive seismic testing does not permit repeated 

trials, so the real-time control accuracy must be relied upon. 
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In this paper, a practical motion control method is presented for shaker tables.  Modal control is used – i.e. 

the modes of vibration of the table are controlled individually, and this requires a parameter varying 

controller with on-line modal decomposition to account for the variation of actuator stiffness with operating 

point.   Many shaker tables are over-constrained, i.e. have more actuators than degrees-of-freedom in order 

to spread the actuation loads, and thus internal force control is used to prevent actuators 'fighting' one 

another; in this work the measured forces are transformed to force control axes which formally complement 

the modal motion coordinates.  A model-based feedforward scheme is also developed.  The performance of 

the approach is demonstrated for the 6 DOF shaking table shown in Fig. 2, both in simulation and 

experimentally. 

 

A modal decoupling approach for shaking tables was first described in [3].  Simulation results were 

presented using a very simple (proportional plus lag) closed-loop compensator.  A model-based controller 

was demonstrated for a 3-axis shaking table in simulation in [4].  Experimental research into multi-axis 

control of vibration tables is fairly sparse, although a number of uni-axial studies have been performed (e.g. 

[5,6]).  An overview of shaking table control schemes is presented in [7]. 

 

The published works on motion control of large multi-degree of freedom seismic testing tables which do 

exist have been mostly undertaken in Japan.  This has been motivated by the Japanese government’s 

investment in large-scale testing facilities following the  Hanshin-Awaji  earthquake at Kobe in 1995 [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  A 6 DOF multi-axis shaking table with 1.5m square table, 6 actuators, 0.5 tonne capacity.  
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(a)  The arrangement of actuators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) The shaking table laboratory, with mast test specimen on the table. 

 

Fig. 2  A  5m x 5m  6 DOF shaking table with 7 actuators and 20 tonne capacity. 
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Although iterative control is often used to obtain the required base accelerations, many tests involve the 

failure or partial failure of the specimen, and thus iteration cannot be used in these cases [2].  Hence 

improvements in closed-loop control have been sought. 

 

Proportional-integral (PI) positional control, sometimes with acceleration or differential pressure feedback, 

has often been used for this application in the past. However, Three-Variable Control is now becoming 

common, increasing flexibility and providing command feedforward to improve the bandwidth [2,8].  In 

current practice, tuning the controller depends on the expertise of the operator; however a model-based 

pole-placement tuning method is proposed in [9], and an approach using an inverse-model is described in 

[10]. 

 

Recently, attention has been given to model-based design of the command feedforward term.  Philips et al 

[11] use acceleration feedforward to improve the tracking response of a Linear Quadratic Gaussian feedback 

controller.  Nakata [12] has also proposed and experimentally verified the use of a model-based acceleration 

feedforward term, and similarly to the present paper delays the command to the feedback loop to improve 

synchronization of feedforward and feedback control action. 

 

Adaptive control has been studied for shaking tables, which has the attractive potential of adapting to new 

specimens or changes within an existing specimen during testing.  Trials with first order MCS (Minimal 

Control Synthesis) are described by Stoten and Gomez [13] for two shaking tables.  First order MCS 

provides adaptive tuning of gains in a proportional or PI controller, and can be used alone, or (as for the 

results shown) in conjunction with an existing fixed gain controller.  Tests include 1Hz or 2Hz sinusoidal 

commands, and earthquake signals with frequency content up to around 6Hz.  Similarly, some improvement 

in tracking response is demonstrated using MCS compared to a detuned fixed controller in [14], where both 

one and two-axis control of a 40 tonne table with a 41 tonne flexible specimen are described.  The same 

MCS algorithm has also been used to adaptively tune a command signal filter to improve tracking response 

[15].  Another study by Shen et al [16] has used a combination of off-line and adaptive inverse modelling 

to control one axis of a shaking table.  An adaptive command filter is shown to work well experimentally 

for a 2 DOF table in [17]; this table has four actuators and so is overconstrained, and the benefit of using 

internal force control is demonstrated. 

 

A novel approach to reducing the influence of the specimen on the table response is introduced in [18].  

Specimen force is measured and fed forward to cancel force disturbance on a position loop.  The full 

derivation is contained in [19], where a third-order lead term is used in the force feedforward signal as an 
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approximate inverse of the transfer function from valve drive to specimen force.  Results are shown for a 

flexible 600kg specimen mounted on a small uni-axial shaking table, and the disturbance due to specimen 

resonance at either 3.8 Hz or 6.8Hz (depending on specimen configuration) is much reduced.  A similar 

approach was patented in 1985 [20], but there is no evidence that it was used successfully at this time. 

 

Four European shaking tables are reviewed in [21], with sizes between 3m and 5.6m square; the hydraulic 

resonances are mostly in the range 10 to 50Hz depending on axis and specimen.  Real earthquake signals 

do not have significant frequency content above 8Hz [22], but the frequency must be scaled up when 

reduced-scale model buildings are tested, and many such shaking tables are required to test up to 100Hz.  

Thus the desire is to achieve acceptable motion tracking in a frequency range extending well beyond the 

hydraulic resonances. 

 

This paper describes the derivation of a motion controller based on a physical model.  Specifically, the final 

controller has the following key features which are found to be necessary to achieve excellent performance: 

1. decomposition of multi-axis dynamic behavior into separate modes in real-time, based on mass 

matrix (fixed) and stiffness matrix (variable with piston position), and controlling modes explicitly, 

2. a time-varying inverse second-order actuator model in the forward path (in modal co-ordinates),  

forming an ‘augmented plant’ in which the actuator dynamics are cancelled, 

3. command velocity feedforward, and proportional feedback of a disturbance estimate (the difference 

between expected and actual motion), and the use of optimal motion estimation based on position 

and acceleration measurements, 

4. force control for redundant actuators to keep internal loads small.  

The time-varying multi-axis modal control and dynamic compensation described in points 1. and 2. are new 

methods, and the control structure of point 3. has not been applied to a multi-axis system before.  The 

experimental demonstration of the combined approach applied to a substantial, commercial shaking table 

is a major original contribution. 

 

Section 2 covers modeling and controller design for a single servohydraulic axis, including a preliminary 

robustness investigation.  Motion measurement issues are also discussed.  Section 3 extends the controller 

to the multi-axis case, where a modal control approach is used.  Compensation for non-linearities, and the 

case where the number of actuators exceeds the number of degrees-of-freedom, are both considered.  

Section 4 describes the example shaking table, including simulation and experimental results. 
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2  SINGLE AXIS MODELLING AND CONTROL 

 

2.1 Modelling 

 

Firstly, the model of a single servovalve-controlled actuator driving an inertial load will be considered (Fig. 

3). As shown in the Appendix, a linear model of the position response of the actuator is given by 

 ii v
ssA

y
)(

1
 , (1) 

where )1(
1

)( 2  s
k

c
s

k

m

h
sA , (2) 

and where yi is the piston position, vi is the valve spool position, m is the mass driven by the actuator, c is 

the effective damping, k is the hydraulic and mechanical stiffness and h is the steady state gain of actuator 

velocity over spool position.  Also shown in the Appendix is that this can be considered a linearisation of a 

non-linear differential equation in which gain h is a function of load force and accumulator pressure 

(equation A24), and the stiffness k is a function of piston displacement (equation A28).  It is assumed that 

the hydraulic resonant frequency given by equation (2) is the same order of magnitude as the valve 

bandwidth, so the valve dynamics cannot be ignored.  The response of the valve spool position to control 

signal ui can be approximated by this second order transfer function plus delay [22]:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3   An actuator showing the hydraulic parameters. 
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 ii usVv )( , (3) 

where 
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For example, Fig 4 shows a plant frequency response; this is the experimental Y-direction position response 

of the shaking table shown in Fig 2 and analyzed in Section 4. A best-fit model is shown for comparison.  

In this case the best-fit model parameters are: h = 53/s, m = 23 000kg, c = 1.20x106 Ns/m, k = 484x106 

N/m,  = 0.002s, nv =754 rad/s,  = 0.70. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.  An example plant frequency response (input ui, output yi). 

 

 

2.2 Controller design for augmented plant 
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Fig. 5.  The servohydraulic position control system  for a single axis. 

 

The augmented plant is the plant with the actuator dynamics cancelled out, and so its dynamic 

characteristics are those of the valve.  The motivation for this is that, unlike the actuator dynamics, the valve 

dynamics should be well damped and so the augmented plant is amenable to a simply-tuned proportional 

controller.  This is demonstrated in this Section, along with the method used for calculation the proportional 

gain.  The detailed derivation of the augmented plant from the model of Section 2.1 is described in Section 

2.3.  

 

The augmented plant factor W(s) will be the second order lag plus delay of the valve.   So from equation 

(4), 
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The following heuristic rule will be adopted to calculate the proportional gain: 
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where c̂  is the estimate of a characteristic time c given by 
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This rule stems from the fact that W(s) can be approximated by a deadtime of c at frequencies well below 

nv; controller design rules based on this type of model reduction are described in [20]. Each servovalve 

has its own closed loop controller, often with mechanical feedback, set up to achieve a desired spool 

dynamic response characteristic V(s).  Typically damping  will be in the range 0.7 to 1.0.  Fig. 6 shows 
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disturbance step responses for some different combinations of delay and natural frequency with  = 0.7, 

using propotional gain given by equation (7), and assuming accurate knowledge of the plant ( cc  ˆ ).  

Overshoot is in the range 4% to 8%.   

 

Fig. 7 is an example of the variation in response with modelling error.  In this example, there are errors in 

the estimate of delay and natural frequency amounting to a 20% error in the characteristic time estimate c̂

; this effects both )(ˆ sW  and kp.  
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Fig.  6.  Disturbance response examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7   The robustness of the disturbance response ( = c/2, =0.7). 
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From equation (5) it is clear that the closed loop tracking response is identical to the augmented plant factor 

W(s) when )()(ˆ sWsW  .  The effect of errors in the augmented plant model is shown in the tracking 

response to a step input in Fig. 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8   The robustness of the tracking response ( = c/2, =0.7). 

 

 

2.3  Augmented plant 

 

The augmented plant includes a compensator to cancel the second order lag in the actuator dynamics given 
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where  )(
)(

)(ˆ
)( sV

sA

sA
sW  , (12) 

and )(ˆ sA is an estimate of the actuator dynamics )(sA .  Note that W’(s) would be the same as W(s) if there 

were no error in the actuator dynamics modelling. 

 

Fig. 9 shows the controller including the inverse actuator model.  The inverse actuator model can be split 

into  
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and  ii usAu  )(ˆ
1 . (15) 

As indicated in equation (14), a variable stiffness is used in the inverse actuator model, the value being 

dependent on the piston position according to equation (A28). In addition, a variable gain value is used in 

equation (13), estimated in line with equation (A24).  However in the latter equation, the current actuator 

force fh is required, along with the current spool position vi.  As there is a lag in applying the gain correction 

to the actuator due to the valve response characteristic, a prediction of future values of these variables is 

appropriate.  The actuator force will be predicted using the product of command acceleration and mass, and 

iu  will be used as a prediction of vi.  The accumulator pressure pacc is also required (expressed as a ratio rs, 

equation (A22)), and it is assumed that this is measured.  Hence, 
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To illustrate the robustness of the controller in relation to errors in the inverse actuator model, consider the 

case where there are only modelling errors in )(ˆ
1 sA .   Figures 11 and 12 illustrate the effect on the closed 

loop step response of errors in the first and second coefficients in equation (14).  A larger (50%) error in 

damping coefficient estimate ĉ is shown as this is likely to be harder to estimate, and in reality will vary.  

These results are for a valve V(s) which has  = c/2 and =0.7, and an actuator A(s) with a damping ratio 

of 0.2 and a natural frequency 10% of the valve natural frequency nv .  These actuator parameters are 

similar to those for the experimental system described later in the paper. 
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2.4  Position measurement 

 

The objective is to control the motion of the table; in fact, although position yi is shown as the controlled 

variable, it is the acceleration iy which is of most concern for this type of vibration test equipment.  

Typically, the only position measurement available is from a sensor attached to the hydraulic cylinder, 

providing a measurement of relative piston-to-cylinder position (zi in Fig. 3). 

 

As implied by equation (10), there is a requirement for generating first and second derivatives from the 

position signal, and thus the measurement noise must reduce with increasing frequency.  It is assumed that 

there is no direct measurement of table position (only relative piston-to-cylinder position zi), however it is 

straightforward to measure acceleration iy  using a table-mounted accelerometer.  Position zi is a reasonable 

estimate of table position at low frequency when the inertial forces are small, but not so at higher 

frequencies due to compliance in the cylinder mounting and the pushrod and joints forming the table 

connection.  Acceleration and position measurements are combined to estimate table position thus: 

 mmi y
s

sG
zsGy 

2

)(1
)(ˆ


 . (17) 

where my and zm are measurements of table acceleration and relative piston-to-cylinder displacement. The 

form of the low pass filter G(s) is important to ensure the accuracy of the resulting estimate, and it is 

designed according to[25]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  The single axis position control system, 

 including plant augmentation using the inverse actuator model. 
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Fig. 10.  The robustness of the tracking response to error in inverse actuator model parameter m̂ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.  The robustness of the tracking response to error in inverse actuator model parameter ĉ . 
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3 MULTI-AXIS MODAL CONTROL 

 

3.1  Linear model and decoupling control 

 

A linear multi-axis model can be derived as an extension of the single axis model.  The derivation is shown 

for a six degree-of-freedom (DOF) motion system, although the approach is not limited to such a system.  

Shaker tables have a fairly small range of motion, so that the geometry-related non-linearities do not have 

a significant influence on the dynamic properties, and will be neglected.  For an N actuator table (N  6), 

column vectors y, v and u will be used to represent all actuator displacements, valve spool displacements, 

and control signals respectively, with sequential elements yi, vi and ui respectively for individual actuators, 

where i = 1 to N.   Six element column vector yc will be used to indicate table position defined in Cartesian 

co-ordinates, and a matrix Q introduced as the linear algebraic transformation from Cartesian to actuator 

space (i.e. yc to y).  The same transformation defines the the relationship between other quantities expressed 

in Cartesian space, denoted with subscript c, and actuator space, e.g. between uc and u.  A modal 

decomposition will also be introduced, and subscript m will be used to indicate vectors defined in modal 

space, thus ym is the six element column vector of modal displacements, and um is the modal control signal 

vector of the same dimensions.  A matrix P will be introduced giving the linear transformation from modal 

to cartesian space, and matrix R transforms from modal to actuator space. 

 

First, reconsider equations (1) and (2).  Defining xi to be the ‘no load’ actuator position, 

 ii v
s

h
x  . (18) 

The damping term, which originates from hydraulic leakage (see Appendix) is expected to be small [2]. So 

neglecting this term, 

   ii x
kms

k
y




2
, (19) 

or 0)(2  iii xykyms . (20) 

 

For a 6 DOF table, a 6x6 mass matrix M can be derived relating small perturbations in table acceleration 

to total table force, and a 6x6 stiffness matrix K can be derived relating small perturbations in table postion 

to external table force.  Table motion and forces are defined in terms of three orthogonal linear axes (X,Y,Z) 

and three orthogonal rotary axes (roll , pitch  and yaw  Euler angles) of a table-fixed frame {C} relative 

to a world frame (see Fig. 12). The calculation of M and K are described in section 3.2.  If these are found 

for the mid-position of the table, then the multi-axis model linearized about this mid-position is 
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 0)(2  ccc xyKyMs , (21) 

or 0)(12  
ccc xyKMys , (22) 

 

where yc is the vector of 6 table Cartesian displacements (linear and angular) of frame {C},  i.e. 

 

  T
zo

W

yo
W

xo
W ccc cy , (23) 

 

and xc is the equivalent vector of 6 no load displacements, defined as the table displacement yc which would 

occur if the actuators were insensitive to force and thus dictated only be the valve spool positions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12   Table co-ordinate frame definitions.  
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The 6 axes in this model will only be decoupled if M-1K is diagonal, which in general is not the case.  

However transforming the displacements into some other co-ordinate system provides an opportunity to 

diagonalize M-1K.  A linear transformation into ‘modal displacements’ ym is given by 

 cm yPy
1      cm xPx

1 , (24) 

Thus giving 

 0)(2  
mm

11
m xyKPMPys . (25) 

 

The 6x6 Matrix P should be chosen to diagonalize P-1M-1KP.   If P has as its columns the eigenvectors of 

M-1K, and the eigenvectors are linearly independent so that P is non-singular, then this diagonalization is 

achieved, and 

 ΩKPMP
11 

, (26) 

 

where: 























2

2

2

2

1

0

0

N






Ω . (27) 

Each i
2 term is the square of the natural frequency of one mode; these are the eigenvalues of M-1K.  The 

modal decomposition described by equation (26) will always be possible, and efficient methods for 

calculating P exist; see [26] for details. 

 

Define an Nx6 matrix Q which transforms the frame {C} table displacements into individual actuator 

displacements:  

 cyQy  , (28) 

 

where y is the vector of N actuator displacements yi.  Thus referring to equation (24)  

 

 myRy  , (29) 

where 

 QPR  . (30) 

 

Completing the system model, the valve dynamics and velocity gain (h) are assumed to be the same for 

each actuator. So 

 uv )(sV , (31) 
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where u is the vector of valve drive signals, v is the vector of spool positions, and V(s) is the scalar transfer 

function of equation (3) representing valve dynamics.  Note that scaling factors and matching filters can be 

applied to the ultimate control signal to correct the velocity gain and valve dynamics for each actuator if 

they do differ.  Combining equations (31) and (18) gives 

 ux
s

shV )(
 , (32) 

and mm ux
s

shV )(
 , (33) 

where cm uPu
1 . (34) 

 

From equations (25), (26) and (33), the complete model is  

 0)
)(

(2  mmm uyΩy
s

shV
s ,  

or mm uΩyΩI )()( 2 shVss  . (35) 

 

This is diagonal, so each control loop can be designed independently based on scalar plant models of the 

form 

 
im

ii

i
im usV

sbss

h
y )(

)(
22

2






 . (36) 

Note that a damping term bi has been re-introduced: as damping is small it can be approximated by de-

coupled terms. The complete multi-axis controller is shown in Fig. 13, in which (s)Â  is an estimate of the 

multi-variable inverse actuator characteristic A(s) given by 

 )(
1 21

ΩBIΩA(s)   ss
h

, (37) 

 

where B is the diagonal damping matrix containing elements bi.  With N = 6, R is a square matrix, and so 

its inverse can be used for the actuator to modal position conversion in the feedback path.  The case for 

over-constrained systems (N > 6) is presented in Section 3.4. 
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Fig. 13  The multi-axis decoupling controller (N = 6). 

 

3.2    Mass and stiffness matrices 

 

The linearised equation of motion for the combined table and payload is 

 t

C

t

C
af M , (38) 

where Cft is the vector of three orthogonal forces and three orthogonal moments acting on the table at frame 

{C}, Cat is the vector of three orthogonal linear accelerations and three orthogonal angular accelerations of 

frame {C}. 

 

Define the mass matrix about the table/payload centre of gravity as 

 









tI

I
M

0

03t

cg

m
, (39) 

where mt is the table plus payload mass, I3  is the 3x3 identity matrix, and It is the 3x3 matrix of moments 

and products of inertia.  This needs to be transformed to frame {C}, and also the mass contributions from 

moving actuators and/or pushrods need to be added, giving  

 





N

i

c

1

1

iai

T

i JMJMM , (40) 

where Mc  is the transformed table/payload mass matrix, the Jacobian matrices Ji relate actuator body 

velocities to table velocities, and Mai are the actuator mass matrices.  Derivation of mass matrices is 

discussed in [28]. 
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The hydraulic stiffnesses referred to frame {C} are given by 

 QQK
T





















Nk

k

k

0

0

2

1


, (41) 

where ki  is the individual stiffness for each actuator. 

 

3.3  Non-linear control 

 

The controller compensates for some non-linear characteristics of the plant.  In reality, the actuator stiffness 

varies with piston position according to equation (A28).  Using this equation for each individual actuator 

stiffness, the stiffness matrix K is also time-varying. Thus the decoupling matrix P and the modal 

frequencies are recalculated at each controller time-step, giving time-varying inverse model, equation (37). 

 

The variable gain in equation (16) can also be incorporated into the multi-variable controller.  However the 

variable compensation is required on each individual valve control signal, ui, rather than the modal control 

signals in vector um.  Thus the gain is constant in the inverse actuator model: 

 0
ˆˆ Hh  , (42) 

but before each control signal is output ui is scaled by 

 


















)sgn(
ˆˆ

ˆ
1ˆ

1
),ˆ,(

i

stalls

ih

s

iihacci

u
Fr

f
r

ufpg , (43) 

where each actuator hydraulic force 
ihf̂ is predicted from the product of the mass matrix and Cartesian 

command acceleration vector, subsequently transformed into actuator space.  Individual valve control 

signals can also be scaled and filtered to correct for any differences in velocity gain and valve response. 

 

The type of system under consideration has relatively small actuator strokes compared to the overall rig 

dimensions, and so the error in using a linear geometric transformation is small.  However for maximum 

positional accuracy, precise non-linear inverse and forward kinematic calculations are used in the results 

which follow, rather than the linear transformation Q (which is a component of the transformation R, 

equation (30)) 
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3.4  Force controlled axes 

 

In the case where there are more actuators than degrees of freedom, i.e. N > 6, matrix R is non-square.  

Using the pseudo-inverse of R to calculate the modal displacements is a good choice as it gives the ym 

which corresponds to an average of the measured actuator displacements (in a least squares sense): 

 

 yRR)(Ry
T1T

m
 . (44) 

 

The system is now overconstrained, and a number of additional force control loops are required, equal to 

the number of additional actuators, to ensure that internal structural loads are small.  As shown in Fig. 14, 

measured actuator forces f should be transformed by Nx(N-6) matrix D into N-6 ‘deformation forces’.  The 

(N-6) x (N-6) matrix C(s) would typically be a diagonal proportional plus integral compensator.  As 

discussed in detail in [28], the choice of matrix D is not unique, but it should be consistent with 
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Fig. 14  The multi-axis decoupling controller for N > 6. 
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4.  EXAMPLE 

 

4.1 Example system 

 

The shaking table of Fig.s 2 and 12 is used here as an example.  It is a 6 DOF system driven by seven 

actuators.  The table has a 5mx5m surface area and a payload capacity of 20 tonnes.  The three horizontal 

actuators drive the table through pushrods; the cylinder bodies themselves are fixed.  These actuators are 

equipped with 3-stage servovalves.  The four vertical actuators are jointed at both ends, and are each 

equipped with four 2-stage servovalves.  Ball joints are used throughout.  The blind end of the double-

ended vertical actuators are pressurised to support the dead weight of the table. Horizontal velocities of 

nearly 0.5 m/s can be achieved, and accelerations of over 10m/s2 . The intended test frequency range for 

this table extends up to 120Hz, functioning either in position or acceleration control.  Key parameters for 

the hydraulic actuation system are given in Table 1.  The hydraulic actuators, 3-stage servovalves, and 

mechanical hardware are design and manufactured by Instron Structural Testing (IST GmbH).  The 2-stage 

servovalves are from Moog.  The real-time controller platform is an Instron 8800 with Accelerator module 

for running auto-generated code from Mathworks’ Simulink ®. 

 

By choosing the frame {C} as shown in Fig 12, with its origin at the intersection of the lines of symmetry 

between the actuators in all three planes, then the matrix Q which relates table to actuator displacements 

(equation (28)) is given by 
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h

h

vv
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vv

vv

L

L

LL

LL

LL

LL

Q . (46) 

 

The dimensions for this table, defined in Fig. 2(a), are Lv = 1.75m, Lh = 2.8m.  From equation (45), a valid 

choice is 

  T0001111 D , (47) 

which defines the deformation force axis.  There is only one deformation axis as there is one degree of 

over-constraint.  This force can be physically interpreted as twisting the table. 
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Table 1  Actuator parameters. 

 

Parameter Value for actuators 1 to 7 

1-4 5, 6 7 

Cylinder Piston area (A), cm2 74 127 220 

 Stroke, mm 60 80 80 

 Cylinder+manifold volume (2V), cm3 630 1600 2670 

 Internal leakage @ 70 bar, l/min 2.7 6 8 

Valve Rated flow @ 70 bar pressure drop, l/min 100 200 320 

 Valve body flow @ 70 bar, l/min 560 600 1000 

 Manifold flow @ 70 bar, l/min 300 400 1000 

 Dead time (), ms 2 3.5 3.5 

 Natural frequency (nv), Hz 120 120 120 

 Damping ratio () 0.7 0.7 0.7 

 Slew rate limit, 100% per sec 200 200 200 

 Overlap, % 0 0.7 1 

Mechanical Stiffness (Kp
-1 +Km

-1)-1 , kN/mm 1030 426 664 

General Supply pressure (Ps), bar 275  

 Return pressure (Pr), bar 5  

 Estimated bulk modulus (B), GN/m2 1.2  

 

 

 

The combined table and payload mass, mt, is 43 000kg, and the moments of inertia are Ix = 134 000kgm2, 

Iy = 114 000kgm2  and Iz = 102 000kgm2. With the payload in question, when the table is level the centre 

of gravity is vertically above the origin of frame {C}, at a height of hc = 0.93m.  The inertial contribution 

from the attached actuators/pushrods is small and will be neglected; the products of inertia are also small.  

This gives the mass matrix 
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The frame {C} origin is at the ‘centre of stiffness’ in this case, i.e. at a point where there is no cross-axis 

stiffness interaction.  So the stiffness matrix K determined from equation (41) is diagonal.  Elements vary 

with stroke, but at mid-stroke (when the table is at its nominal zero position), the stiffness matrix is 
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From equation (10), this gives (at mid-position) 
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P .  (50) 

 

The decoupling matrix R can be derived as in equation (30), and the modal frequencies (at mid-position) 

are 15.2Hz, 14.1Hz, 8.4Hz, 27.8Hz, 30.5Hz and 29.6Hz respectively. 

 

As proposed in section 3.4, matrix C(s) is a diagonal proportional plus integral controller, but in this case 

just has dimensions 1x1 as there is one degree of overconstraint.  Both unity proportional and integral gains 

are used (where input and output signals have been non-dimensionalized by dividing by their maximum 

values), so  

 
s

1
1C(s) . (51) 
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4.2  Simulation Results 

Simulation results have been obtained using a detailed and well validated non-linear model of the system 

including valves, actuators and table [29].  Swept-sine horizontal acceleration responses have been acquired 

from which frequency responses are calculated.  Note that acceleration commands are converted to position 

commands so that the position controller described in this paper can be used.  Two aspects of the response 

are investigated: 

1. the tracking response: X-direction command acceleration to achieved acceleration 

2. the overturning sensitivity: X-direction command acceleration to pitch () angular acceleration. 

 

From Fig. 15 it can be seen that the bandwidth (-3dB point) is over 100Hz, and the worst case overturning 

sensitivity is -12dB (which is 0.25 rad/m).  The gain used here is kp = 80 (in fact the same gain is used for 

all modal motion control axes). 

 

For comparison, the same plots are shown in Fig 16 for a proportional controller.  Fig 17 shows the structure 

of this controller, for which the proportional loops are closed in frame {C} position co-ordinates, by using 

matrix Q (equation 46) to transform from actuator space.  This approach is sometimes described as degree-

of-freedom control, and is commonly used for this type of test rig [2].  As shown in the figure, a single 

deformation force loop is included, defined by D as given in equation (47), and with proportional force 

control C(s) reduces to a scalar constant, kpf.  The gains kp1 to kp6 and kpf are tuned manually to give a fast 

response; kpi = 50 for all i, and kpf = 1.  Now the bandwidth (Fig. 16) is around 15Hz and the response is 

highly oscillatory.  The overturning sensitivity is about 1.0 rad/m.  Fig. 18 compares the tracking response 

of the controllers in the time-domain, in response to a filtered step position command commencing at 

0.005s; the step is filtered so that its first and second derivatives can be generated.  The oscillation exhibited 

with proportional control would be reduced with a lower gain, but at the expense of even greater lag.  The 

gains used are considered to be the maximum feasible gains which maintain adequate (though small) 

stability margins.  The proportional gains used in the model-based controller are higher by a factor of 1.6 

than the proportional controller gains but still with higher stability margins due to the modal actuator 

dynamic compensation, and the tracking response is further aided by feedforward rather than being solely 

reliant on the feedback path.  Simply adding a feedforward path to the proportional controller is likely to 

improve the tracking response, particularly if the disturbance observer structure of Fig. 5 is used, but it 

would not reduce cross-coupling (e.g. overturning sensitivity), and would still exhibit an oscillatory 

response due to the uncompensated lightly damped resonant modes associated with the hydraulic actuator 

compliance. 
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a)  Tracking response (X direction acceleration). 

 

 

b) Overturning sensitivity (pitch over X acceleration command, rad/m). 

 

Fig. 15    Simulation results for the model-based controller. 
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a)  Tracking response (X direction acceleration). 

 

 

b) Overturning sensitivity (pitch over X acceleration command, rad/m). 

 

Fig. 16    Simulation results for the proportional controller. 
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Fig. 17  The baseline multi-axis proportional controller. 

 

 

 

Fig. 18  A comparison of position responses to a filtered step command signal.  (Command is a step 

filtered by a pair of second order lags, each with 100rad/s natural frequency and unity damping 

ratio) 
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Fig. 19 shows the model-based controller, but with the matrix P set to the identity matrix.  Thus the 

modal decoupling is not achieved, and both the tracking response and overturning sensitivity are 

consequently inferior (particularly above 10Hz). 

 

 

a)  Tracking response (X direction acceleration). 

 

 

b) Overturning sensitivity (pitch over X acceleration command, rad/m). 

 

Fig. 19    Simulation results for the model-based controller without decoupling. 
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4.3  Experimental results 

 

Experimental results with the model-based controller have been obtained.  As before, results are presented 

for the tracking response in the X-direction, and also the overturning (pitch) sensitivity to X-direction 

motion.  Fig 20 shows the frequency response for the model-based controller compared to a proportional 

 

 

a) Tracking response (X direction acceleration). 

 

b) Overturning sensitivity (pitch over X acceleration command, rad/m). 

 

Fig. 20    Experimental results for X-direction motion. 
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controller.  The model-based controller has a bandwidth (-3dB point) well over 100Hz, and the worst case 

overturning sensitivity is -3dB.  The proportional controller has a bandwidth of about 18Hz, and worst case 

overturning sensitivity of 4dB.  The overturning sensitivity is very similar for the two controllers up to 

10Hz, above which the model-based controller is better by between 5dB and 15dB (i.e. between a factor of 

1.8 and 5.6).  All six axes of control have been compared and similar improvements are found in every 

case.  For example Fig. 21 compares the tracking response magnitude in the Y direction.   As in simulation, 

all the proportional controller gains have been tuned manually to give a fast response, but the resulting 

gains are a little more cautious so the tracking resonant peak is lower. 

 

Comparing figures 15 and 16 with 20, although there are differences between the simulation and 

experimental results (particularly in the case of the overturning sensitivity), the trends are similar, including 

the very significant improvement in the tracking response compared to proportional control.  Note that in 

simulation, the proportional controller (Fig. 16) exhibits a tracking resonant peak and maximum overturning 

sensitivity at about 15Hz, which is the first modal frequency; from equation (50) it can be seen that this 

mode is dominated by X-direction motion.  This resonant peak is eradicated by the model-based controller 

(Fig. 15), and the maximum overturning sensitivity is now at about 30Hz, which is the fifth modal 

frequency; this mode is dominated by pitch rotation.  In the equivalent experimental results (Fig. 20), the 

proportional controller exhibits a resonant peak at a similar frequency (the first modal frequency) in the 

tracking response, but the peak overturning sensitivity is now at the fifth modal frequency.  This difference 

results from errors in the modelling of coupling between the axes. 

 

 

 

 

Fig. 21   Experimental results for Y-direction acceleration tracking response.  
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7.  CONCLUSIONS AND DISCUSSION 

 

A decoupling modal control approach has been described which could be applied to a range of multi-axis 

servohydraulic mechanisms with simple inertial loads.  The model-based controller incorporates: 

 command velocity feedforward, and proportional feedback of a disturbance estimate, 

 an inverse actuator model to form an ‘augmented plant’ in which actuator dynamics are cancelled, 

 non-linear compensation in the inverse actuator model in the form of a force dependent gain and 

variable actuator stiffness, 

 decomposition of multi-axis dynamic behavior into separate modes in real-time, based on mass 

matrix (fixed) and stiffness matrix (variable with piston position), 

 force control for redundant actuators to keep internal loads small,  

 motion estimation based on an optimized combination of position and acceleration measurements. 

 

Although the decoupling approach is (apart from variable stiffness), based on a linearised dynamic analysis, 

it is shown to work well for a large 6 DOF shaking table.  In particular a favorable comparison is shown 

between the full controller with and without decoupling in simulation.  Comparing the new controller with 

a proportional controller shows a very significant increase in performance; the bandwidth of the system is 

increased by a factor of 6.  The proportional controller used has been tuned manually, and a high gain 

selected to maximize the performance, even though the response is a little under damped.  Thus this ‘base-

line’ controller has not been artificially de-tuned. 

 

In practice, integral action may need to be added to the controller.  Although this is not required when 

considering the table acceleration, for set-up and centering purposes accurate position control is still 

required.  Due to steady effects such as valve null errors or inexact weight compensation, steady state 

position errors will inevitably result if integral action is not used, as evidenced by the final position error 

seen in Fig. 18. 

 

Model-based controllers must be insensitive to modeling errors.  Some preliminary robustness results are 

included in the paper, showing the effect of parametric errors in the augmented plant, and parametric errors 

in the inverse actuator model.  The closed loop behavior is shown to be reasonably tolerant to parameter 

variation of 20%.  A more comprehensive robustness study is the subject of further work. 

 

The complete controller is very complex compared to a proportional controller.  Nevertheless, the controller 

is easily determined from plant model parameters.  Many of these parameters can be found from known 
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physical data (e.g. piston areas, kinematics, some inertial data, hydraulic pressures etc.).  Other parameters 

are best found empirically (e.g. valve transfer functions, mechanical stiffness).  Detailed information about 

estimating model parameters can be found in [29].  A powerful real-time computer platform is required to 

implement the controller, but the cost of this is now very small compared to the complete system.  A sample 

rate of 2.5kHz was used in this case. 

 

The displacement range of this type of vibration or seismic testing table is often quite small, and so the 

geometric non-linearities would not normally be significant. For servohydraulic motion systems with a 

larger displacement range, such is flight simulator motion systems, the geometric linearization used here 

may not be applicable.  However, the calculation speed of modern real-time computer systems is such that 

it would be feasible to calculate the decoupling matrix entirely on-line, and to use a linearized controller 

appropriate to the current local operating point.  Since the current controller already re-calculates the 

decoupling matrix to account for varying stiffness, and uses accurate non-linear kinematic transformations 

to improve static accuracy, the additional computational overhead is not so great.   

 

The objectives of achieving a high bandwidth and a high ‘pitching stiffness’ (insensitivity to inertial 

overturning moment) have been achieved, but only based on the assumption of the table and payload behave 

as a rigid body.  In the case where the specimen has structural resonances within the test frequency range, 

the controller should still be applicable if the specimen mass is small compared to that of the table.  

However, for larger specimen masses, an alternative modal controller formulation would be required where 

the specimen flexibility is taken into account.  Such a control strategy would be less convenient due to the 

detailed a priori specimen knowledge required. 
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APPENDIX – ACTUATOR MODEL  

 

Flow – velocity relationship 

An actuator is modelled driving a load of mass m as shown in Fig. 3. The figure also shows that the stiffness 

of cylinder mounting and load connection cannot be neglected [8]. The model includes fluid 

compressibility, leakage across the piston, and the valve orifice equations. 

 

The cylinder flow equations are 
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and where the fluid stiffness on each side of the cylinder is
1
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modulus;  and Cl is the internal leakage coefficient.   

 

Using the following approximation, which becomes exact at mid-stroke, 

 VVV  21  (A3) 

 1221 KKK   (A4) 

each side of the system is the same (symmetrical) and it can be shown that 

 qqq  21  (A5) 

and racc Pppp  21  (A6) 

 

Thus summing (A1) and (A2) gives 
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where s is the differential operator, and the hydraulic force is defined as 

 Appfh )( 21   (A9) 

Note that zi is the relative displacement between piston and cylinder body, and from Fig. 3 it can be seen 

that this is related to the table displacement by 
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Substituting into equation (A8): 
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where combined mechanical and hydraulic compliance is  
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Also, assuming that piston and cylinder body masses are negligible compared to the table mass, then 

 ih ymsf 2  (A13) 

and so from equation (A11): 
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where 
2A

mkC
c l .   

 

Valve orifice equations 

Given the function definition xxxφ )sgn()(  , the valve orifice equations are 

  11 ppφvKq acciv          for 0iv  (A15) 
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  riv PpφvKq  22         for 0iv  (A17) 

  22 ppφvKq acciv          for 0iv  (A18) 

where vi  is the valve spool displacement.  Assuming that )()( 21 racc Pppp  , using the symmetry 

argument gives 
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Gathering together the constant terms in (A20): 
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and H0 is a constant:  
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If the hydraulic force is small compared to the actuator stall force, and the accumulator is near full charge 

(i.e. pacc  Ps, so that rs   1) then h  H0 . 

 

Complete single actuator model 

Combining equations (A14) and A(23), the relationship between valve spool displacement and table 

displacement can be expressed as 

 ii hkvykcsmss  )( 2  (A26) 

This is linear if h = H0 is used, or non-linear if h is given by equation (A24).  Another non-linearity which 

can be important is the variation in stiffness with piston position.  This has been neglected by assuming a 

constant, equal volume either side of the piston, as in equations (A3) and (A4).  In reality, the stiffness 

varies with piston position according to: 
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and so equation (A12) can be rewritten as 
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Here V is the volume trapped between one side of the piston and the valve at mid-stroke. 

 

 


