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Abstract: 

The aim of the present study was to investigate the effect and possible mechanism of 

action of zingerone, the main constituent of ginger, on vascular reactivity in isolated aorta from 

diabetic rats. The results show that incubation of aortae with zingerone alleviates the 

exaggerated vasoconstriction of diabetic aortae to phenylephrine, as well as the impaired 

relaxatory response to acetylcholine in a concentration-dependent manner.  Furthermore, 

zingerone stimulates aortic nitric oxide generation but has no effect on advanced glycation end 

product formation. The vasorelaxatory response is significantly attenuated by the nitric oxide 

synthase inhibitor Nω-nitro-L-arginine methyl ester hydrochloride and the guanylate cyclase 

inhibitor methylene blue but no effect of either the potassium channels blocker 

tetraethylammonium chloride, or the cyclooxygenase inhibitor indomethacin was observed. In 

conclusion, zingerone ameliorates enhanced vascular contraction in diabetic aortae which may 

be partially attributed to its ability to increase the production of NO and guanylate cyclase 

stimulation. 

Key words: diabetes, zingerone, vasorelaxant, nitric oxide, advanced glycation end products, 

vascular complications. 
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1. Introduction 

It is well established that vascular disease is a complicating feature in patients with 

diabetes mellitus and responsible for its morbidity and mortality (Christrieb 1973, Schalkwijk 

et al., 2005). These vascular complications may be partially attributed to impairment of 

vasomotor function of smooth muscles (Nugent et al., 1996). In this respect, the reactivity of 

vascular smooth muscles to contractile and vasorelaxant agents in diabetic rats has been 

previously studied (Kamata et al., 1989, Stanley et al, 2013). Many studies have investigated the 

mechanism of the enhanced contractile response of diabetic blood vessels but the mechanism 

of enhancement is still unknown. However, an impaired endothelial activity (MacLeod, 1985), 

increased response to Ca2+ (Buluc et al., 2006), and increased production of vasoconstrictor 

prostanoids prostaglandin F2 alpha,  prostaglandin H2 or thromboxane A2 due to increased 

superoxide anion (Kanie et al., 2000) might be responsible for the increased contractile 

responses in diabetic rat vessels. In addition, the generation of reactive oxygen species (ROS) 

within the vascular wall scavenges nitric oxide (NO), decreasing its ability to stimulate soluble 

guanylate cyclase (sGC) and hence produce cGMP (Guerci et al., 2001). 

Herbal medicines have recently attracted the interest of scientific communities as 

alternative therapy. The rhizome of Zingiber officinale (ginger) is consumed worldwide as a 

spice and flavoring agent. Zingerone is a phenolic alkanone which is present in a significant 

amount of about 9 % in ginger (Zhang et al., 2012). Previous studies have showed that 

zingerone has anti-inflammatory and antioxidant effects (Kim et al., 2010). In addition, 

zingerone was found to inhibit contractile movements of isolated colonic segments (Iwami et 

al., 2011). Although these useful effects have been demonstrated, the molecular mechanism of 

zingerone on relaxation of smooth muscle was not fully studied and poorly understood. 

Therefore, the aim of this study is to examine the effect and potential mechanism of action of 

zingerone on aortae from diabetic rats. 
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2. Materials and Methods 

2.1.Drugs and chemicals 

Zingerone, Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), methylene 

blue (MB), tetraethylammonium chloride (TEA), indomethacin (INDO), aminoguanidine 

(AG), ribose, bovine serum albumin (BSA), acetylcholine (ACh) and phenylephrine (PE) were 

purchased from Sigma-Aldrich Chemical company (Munich, Germany). 4-amino-5-

methylamino-2′,7′-difluorofluorescein (DAF-FM) diacetate was purchased from Molecular 

Probes (New York, USA). All chemicals were dissolved in ultrapure deionized water except 

for zingerone and DAF-FM diacetate, which was dissolved in dimethylsulphoxide (DMSO). 

The final DMSO concentration did not exceed 0.1%, which has no effect on vascular reactivity 

according to our preliminary studies.  

2.2.Animals and grouping 

Male Wistar rats (King Abdulaziz University, Saudi Arabia) weighing 120–140 g, 6 

weeks age, were housed in clear polypropylene cages (3-4 rats per cage) and kept under 

constant environmental conditions with equal light–dark cycle. Rats had free access to 

commercially available rodent pellet diet and purified water. All the experimental procedures 

were performed in accordance with Saudi Arabia Research Bioethics and Regulations, which 

are consistent with the Guide for the Care and Use of Laboratory Animals published by the US 

National Institutes of Health. The experimental protocol was approved by the Unit of 

Biomedical Ethics, Faculty of Medicine, King Abdulaziz University. Animals were randomly 

divided into two experimental groups; control (C) and Diabetic (D) groups (6-8 rats in each 

group). Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ, 50 

mg/kg). Glucose levels in tail blood were determined using a glucose meter (ACCU-CHEK, 

Roche, Mannheim, Germany) with noble metal electrode strips. Diabetes was confirmed by a 
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stable hyperglycemia (blood glucose levels of 250-350 mg/dl) after 2 weeks of STZ injection. 

Rats were left for an additional 8 weeks to develop vascular complications based upon results 

of recent work from our laboratories (El-Bassossy et al., 2012).  

2.3.Vascular reactivity  

Vascular reactivity was assessed using the isolated artery technique previously 

described in previous work of our laboratories (El-Bassossy et al., 2014). Briefly, animals were 

sacrificed by decapitation with a rodent guillotine. The thoracic aorta was then cleaned of fat 

and connective tissue and cut into 3 rings (2-3 mm length). Rings were suspended in an organ 

bath containing 10 ml Krebs–Henseleit buffer and temperature was maintained at 37∘ C. 

Krebs–Henseleit solution (pH 7.4) was composed of (mM) sodium chloride 118.1, glucose 

11.7, magnesium sulphate 0.5, sodium bicarbonate 25.0, dihydrogen potassium phosphate 1.2, 

potassium chloride 4.69, and calcium chloride 2.5. In order to avoid anoxic condition, and a 

continuous supply of oxygen was maintained throughout experiment using carbogen (95% 

oxygen and 5% carbon dioxide). Isolated aortae from diabetic group were incubated with 

different concentrations of zingerone (1-100 µM) for 30 min before studying the 

vasoconstriction and vasodilatation responses, whereas the isolated aortae from the control 

group were incubated in DMSO. The suspended tissue equilibrated for 1 h under 1.5 g resting 

tone as previously described (Kesler et al. 2002). Tissues were then treated with cumulative 

phenylephrine concentrations (PE, 1 nM to 10 µM) to study the contractile response before. 

Cumulative concentrations of acetylcholine (ACh, 1 nM to 10 µM) were added to aortic rings 

precontracted with maximal concentrations of PE (10 µM) and the response was recorded as a 

percent of PE precontraction response. Changes in the isometric tension in control and treated 

conditions were measured with force-displacement transducer (AD Instruments) coupled with 

PowerLab data acquisition system (AD Instruments, Sydney, Australia) and data stored and 
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analyzed with LabChart 8 software (AD Instruments, Sydney, Australia) running on a personal 

computer.  

2.4.Studying the possible mechanism of vasodilatory effect of zingerone 

To clarify whether the direct vasorelaxant effect of zingerone is specific for diabetic 

aortae or not, it was tested on normal control aortae precontracted with PE or KCl using the 

isolated artery technique as follows. Cumulative concentrations of zingerone (1-100 µM) were 

added to the organ bath containing isolated aortae precontracted with PE (10 µM) or KCl (80 

mM) and compared with non-zingerone treated ones and the decrease in tension was recorded.  

In other sets of experiments, the nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine 

methyl ester hydrochloride (L-NAME, 100 µM), the guanylate cyclase (GC) inhibitor 

methylene blue (MB, 5 µM), the calcium-activated potassium channels blocker 

tetraethylammonium chloride (TEA, 10 mM), or the cyclooxygenase (COX) inhibitor 

indomethacin (INDO, 5 µM) was added 30 minutes before investigating the vasorelaxant effect 

of zingerone as above.  

2.5.Advanced glycation end-product (AGE) assay  

The effect of zingerone on AGE formation was carried out and the formation of 

fluorescent AGE measured using a monochromator SpectraMax® M3 plate reader according 

to Adisakwattana et al. (2010).  

2.6.Statistical analysis 

Statistical analysis was performed by the one or two-way analysis of variance 

(ANOVA) followed by Dunnett’s post hoc test using GraphPad prism version 5 software. All 

data are expressed as mean ± standard error of mean (SEM). In all the analyses P < 0.05 was 

considered significant. 



7 
European Journal of Pharmacology 2016 (accepted version pre-proof) 

3. Results 

3.1.Effect of zingerone on vascular reactivity of diabetic aortae 

 The current study showed that diabetic aortae exhibited exaggerated vasoconstriction 

in response to PE (10-9 to 10-5 M) compared to control aortae (figure 1 A, B). This enhancement 

of vasoconstriction was highly significant (P < 0.001) at PE concentrations of 3x10-6 to 10-5 M 

(figure 1 C, D & E and figure 2). Thirty minutes incubation with zingerone (1–100 μM) 

alleviated the exaggerated vasoconstriction of diabetic aortae in a concentration-dependent 

manner. The inhibition of PE (10-5 M)–induced contraction was highly significant (P < 0.001) 

at the 3 concentrations of zingerone tested (1, 10, 100 μM) and the highest concentration 

alleviated the exaggerated response to PE to below the control value.  

Diabetic aortae showed impaired vasodilation to ACh (10-9 to 10-5 M) compared to 

controls and this impaired relaxation was highly significant (P < 0.001) at an ACh 

concentration of 10-5 M. This impaired relaxation was alleviated after incubation with 

zingerone in a concentration dependent manner and this alleviation was highly significant with 

100 μM zingerone concentration (figure 3). 

3.2.Mechanism of vasorelaxant effect of zingerone 

 Addition of cumulative concentrations of zingerone (3 x 10-5 to 10-3 M) to the organ 

bath led to a concentration-dependent vasodilation of isolated normal aortae precontracted with 

PE or KCl that was statistically significant (p<0.005) compared to non-zingerone treated 

normal aortae precontracted with PE or KCl (figure 4A).  

Moreover, addition of cumulative concentrations of zingerone (3 x 10-5 to 10-3 M) to the organ 

bath led to a concentration-dependent vasodilation of isolated diabetic aortae precontracted 

with PE that was statistically significant (p<0.005) at zingerone concentrations of 3 x 10-4 and 

10-3 M. Thirty minutes pre-incubation with L-NAME or MB (at 100 and 5 µM) before the 
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cumulative addition of zingerone significantly inhibited the zingerone-induced vasodilation 

(both at P<0.005). In contrast, pre-incubation with TEA (10 mM), or INDO (5 µM) did not 

significantly affect the zingerone-induced vasodilation (figure 4B). 

3.3.Effect of zingerone on AGE 

Incubation of BSA with ribose increased AGE significantly (P < 0.001), as assessed by 

fluorimetry. This increased level of AGE was significantly (P < 0.001) ameliorated when 

incubated with AG (1 mM, as positive control) while there was no effect when incubated with 

different concentrations of zingerone (figure 5) 

4. Discussion 

Vascular complications of diabetes mellitus pose an extensive socioeconomic burden 

on public health. Approximately 50% of patients with diabetes die prematurely of a 

cardiovascular cause (van Dieren et al., 2010). The current study demonstrates, in agreement 

with previous studies, that STZ-induced DM caused increased vascular responsiveness to 

phenylephrine as well as impaired relaxation response to ACh in diabetic rat aorta (Abebe et 

al., 1990, Orie et al., 1993, Roghani et al., 2004). Hyperglycemia appears to contribute to 

endothelial dysfunction (Cagliero et al., 1991, Tesfamariam et al., 1992). Tesfamariam et al. 

(1991) found that hyperglycemia activates protein kinase C in endothelial cells, which 

increases the production of vasoconstrictor substances and vascular growth factors, which 

directly and indirectly enhance vasomotor reactivity and vascular remodeling and growth. 

Ginger has been found to have antihypertensive effect (Ghayur and Gilani 2005, 

Manosroi et al., 2013, Akinyemi et al., 2014). Despite that previous studies demonstrated the 

protective effect of ginger on diabetes mellitus and its ameliorative effect on renal derangement 

in diabetes (Shidfar et al., 2015, Zhu et al., 2015, Kazeem et al., 2015), the present study is the 

first to show the protective effects of zingerone, a pungent component of ginger, on vascular 
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tissue in STZ-induced diabetic rats. In addition zingerone was found to have a relaxant effect 

on colon (Iwami et al., 2011). Previous pharmacokinetic studies of zingerone has revealed that 

administration of zingerone either orally or intraperitoneally results in oxidation of side chain 

at all available sites. During catabolism of zingerone, glucuronidation and sulfation occur 

which leads to excretion of glucuronide compounds and sulphate conjugates in urine within 24 

hours of consumption (Ahmad et al, 2015). In addition, zingerone is insoluble in water and 

decompose under light (Shimoda eta l., 2007) 

The current study showed that zingerone has significantly ameliorated the enhanced 

contractile response of diabetic aortae to PE at all concentrations. In addition, the impaired 

relaxation of diabetic aortae to ACh was alleviated after incubation with zingerone and this 

alleviation was highly significant at 100 μM zingerone concentration. This is in agreement with 

the reported antihypertensive effect of aqueous ginger extract and its phenolic constituents in 

rats through stimulation of muscarinic receptors (Ghayur et al., 2005). In addition, Ghayur and 

Gilani (2005) reported that the methanolic extract of fresh ginger exhibits hypotensive, 

endothelium-independent vasodilator property through its specific inhibitory action at the 

voltage-dependent calcium channels. Aside from ginger itself, some of ginger components, 6-

gingerol and 6-shogaol have been studied for their effects on BP in laboratory animals 

(Suekawa et al., 1984) where both were found to produce a depressant effect, at lower doses, 

although a tri-phasic effect (consisting of an initial hypotensive followed by a sharp 

hypertensive and then a delayed hypotensive effect) was observed at higher doses. In addition, 

the present study revealed vasorelaxant effect of zingerone even in normal nondiabetic rat 

aortae precontracted with PE. 

To further investigate the mechanism of action of this ameliorative effect, we have 

studied the effect of zingerone on normal aortae precontracted with KCl. The present results 

revealed significant relaxant effect of zingerone which indicate that the relaxant effect is 
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through direct vascular mechanism and not related to interfering with PE. Moreover, the effect 

of zingerone on AGE generation was studied as it is implicated in the development of 

cardiovascular complications in diabetics (Mukohda et al., 2012). In addition we have 

investigated the possible mechanism of action of zingerone on NOS, GC, COX and potassium 

channels.   The present study revealed that the possible mechanism(s) by which zingerone 

alleviates vasoconstriction of diabetic aortae could be by direct vasodilation through NO 

generation and stimulation of GC. The vasodilator effect of zingerone was significantly 

inhibited by the NOS inhibitor (L-NAME) and the GC inhibitor (MB) while not affected by 

the COX inhibitor indomethacin or the calcium-activated potassium channel blocker TEA. It 

was previously found that 6-gingerol, 8-gingerol, and 10-gingerol have potent vasodilator 

effects on isolated rat aortae (Connell and McLachlan, 1972). The observed vasodilator effect 

of gingerols is insensitive to atropine pretreatment but considerable blockade is observed in the 

presence of L-NAME, a NO synthase inhibitor (Thorin et al., 1998). In addition, Imanishi et al 

(2004) found that ginger rhizome contributed to activation of macrophage-inducible NOS. 

The current study found no evidence that zingerone affects AGE formation, suggesting 

that the observed alleviation of exaggerated vasoconstriction by zingerone is through inhibiting 

the effects of AGE on vessels rather than on AGE formation. Previous study by Rao and Rao  

(2010) found that zingerone  has anti-apoptotic and anti-lipid peroxidative potency, probably 

due to its antioxidant/free radical scavenging ability and by the suppression of  oxidative stress. 

 In conclusion, our data provides preliminary evidence that zingerone ameliorates 

enhanced vascular contraction in diabetic aortae and the possible mechanism of this 

vasodilatory effect may be attributed to the stimulation of aortic NO generation and GC 

stimulation. Further studies in this direction are warranted in addition to further investigations 

to evaluate the possible beneficial vascular effect of zingerone treatment in diabetic animals. 
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Figure legends 

Figure 1: Representative racing showing the vasoconstrictor response to phenylephrine (PE) 

in control rats (A), the exaggerated vasoconstrictor response in diabetic rats (B) and the 

ameliorative effect of different concentrations of zingerone (C, D and E). 

Figure 2: Concentration-response curve showing the effect of incubation with zingerone (1-

100 μM) on the isolated aorta responsiveness to PE in STZ-induced diabetes (D) compared to 

control group (C). Values shown are mean ±SEM, n =8-10.   

***Significantly (P < 0.001) different from the respective control values. 

###Significantly (P < 0.001) different from the respective diabetic values. 

NOTE fig 2 and 3 – difficult to discriminate between symbols and colours for diabetic and 

controls (green versus black circles look quite similar).  Suggest you increase point size on all 

symbols and use different symbol shapes to clarify differences – open circles in all figures for 

non-diabetic controls might be better, and filled circles for diabetics? 

 

Figure 3: Concentration-response curve showing the effect of incubation with zingerone (1-

100 μM) on the isolated aorta responsiveness to ACh (B) in STZ-induced diabetes (D) 

compared to control group (C). Values shown are mean ±SEM, n =8-10.   

***Significantly (P < 0.001) different from the respective control values. 

###Significantly (P < 0.001) different from the respective diabetic values 

Figure 4: Effect of cumulative doses of zingerone on normal control aortae precontracted with 

phenylephrine (PE) or potassium chloride (KCl) compared with nonzingerone precontracted 

ones (4A). Effect of the nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester 

hydrochloride (L-NAME, 100 µM), the guanylate cyclase inhibitor methylene blue (MB, 5 
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µM), the calcium-activated potassium channels blocker tetraethylammonium chloride (TEA, 

10 mM), and the cyclooxygenase inhibitor indomethacin (INDO, 5 µM) on the direct 

vasorelaxant effect of zingerone on diabetic aorta.  

***Significantly (P < 0.001) different from the respective control values. Points show mean ± 

SEM of n=5-8 tissues. 

Figure 5: Effect of zingerone (1 µM – 100 µM) on generation of advanced glycation end 

products (AGE) compared to bovine serum albumin (BSA) with glucose (Glu) and 

aminoguanidine (AG).  Bars show mean ± SEM of n=6. 
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Figures 
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