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Pattern Formation on Networks: 
from Localised Activity to Turing 
Patterns
Nick McCullen1 & Thomas Wagenknecht2,✠

Networks of interactions between competing species are used to model many complex systems, such as 
in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit 
is important for understanding their behaviour. The emergence of patterns on complex networks with 
reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network 
edges. Through the application of a generalisation of dynamical systems analysis this work reveals 
a fundamental connection between small-scale modes of activity on networks and localised pattern 
formation seen throughout science, such as solitons, breathers and localised buckling. The connection 
between solutions with a single and small numbers of activated nodes and the fully developed 
system-scale patterns are investigated computationally using numerical continuation methods. These 
techniques are also used to help reveal a much larger portion of of the full number of solutions that exist 
in the system at different parameter values. The importance of network structure is also highlighted, 
with a key role being played by nodes with a certain so-called optimal degree, on which the interaction 
between the reaction kinetics and the network structure organise the behaviour of the system.

Patterns on networks
Patterns are found throughout nature and much of science is dedicated to identifying and understanding the 
origin and growth of such patterns. Alan Turing first developed a mathematical theory of pattern formation for 
spatial media in an attempt to explain cellular differentiation and morphogenesis1. His analysis looked at a sym-
metry breaking bifurcation in reaction-diffusion systems of partial differential equations (PDEs) in continuous 
media and subsequent research by Othmer and Scriven2 generalised this to discrete lattices in a framework that 
can be applied to other, potentially complex, network topologies.

Many natural and human systems can be represented as networks3,4, where individual elements are repre-
sented by nodes on a graph and interactions between them as edges. There is also growing interest in using 
models of reaction-diffusion systems organised on complex network topologies, particularly in systems with 
activator-inhibitor dynamics on the nodes, to explain interesting biological applications such as pattern develop-
ment arising in networks of activating and suppressing genes involved in embryonic development5 or the evolu-
tion of complex structures (autocatalytic sets) in systems of competing proteins, such as could lead to the origin of 
life from a random starting condition6. However, the networks connecting such species, genes or individuals in a 
social system often have non-local connections7 and non-trivial topologies8,9, making the concept of a pattern less 
clear in such non-spatial domains. Recent numerical results have revealed a multiplicity of bulk activation states 
(referred to as Turing modes) in a predator-prey type reaction-diffusion model on a scale-free (Barabási–Albert) 
type network5.

The work here demonstrates how smaller-scale patterns of activity on random networks are closely related 
to localised patterns in continuous media such as solitons or localised buckling10–12. These are connected to 
increasingly larger patterns of activity and bulk-modes via a winding solution structure known as “snaking”13,14. 
Numerical methods used in dynamical systems on regular topologies are used to reveal much about the solution 
space and the multiplicity of coexisting states across the range of driving parameters. The importance of network 
structure in the dynamics is also demonstrated, with the important role played by the so-called optimal degree15 
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node playing a crucial role. The solution structure for these systems have a highly complex “turmoil” of coexisting 
states, necessitating a statistical approach to understanding the behaviour of the system.

Pattern formation and reaction-diffusion systems
Alan Turing laid down the basis for pattern formation on a spatial domain, based the loss of stability of an unpat-
terned equilibrium to another non-trivial (patterned) state1, in an attempt to explain morphogenesis in embry-
onic development. Such situations can be set up as a system of competing chemical species in a reaction-diffusion 
system of PDEs:

ε

σε

= + ∇

= + ∇





u f u v u
v g u v v

( , ) ,
( , ) , (1)

2
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where u and v are activator and inhibitor chemical species, f and g are functions for the internal reaction com-
ponent at any location and ∇ 2 is the Laplacian diffusion operator. Such formulations have been widely used to 
describe pattern formation in a wide variety of systems on a spatial domain. In numerical investigations of such 
systems space is discretised, with the reactions taking place on nodes on a regular mesh and diffusion occurring 
to neighbouring nodes via local network edge connections on the lattice. In these cases the diffusion operator is 
replaced with the discrete Laplacian matrix L in the system of equations:

Figure 1. The growth of small-scale patterns of activity of nodes. (a) A bifurcation diagram showing the 
solution-space connecting patterns of increasing numbers of differentiated nodes. The control parameter is σ is 
plotted against the magnitude of the activation vector of the two species . Thick (blue) and thin (red) lines show 
stable and unstable solutions, respectively. The first three solutions are shown in (b–d), with nodes ordered left–
right by decreasing node degree (ki network neighbours – also shown in colour) and the lines show the links 
between adjacent nodes.
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The matrix L represents the difference terms, with entries Li,j =  1 if nodes i and j are connected, Li,j =  0 other-
wise, and Li,i =  −ki, where ki is the degree of node i, such that each row sums to zero. The matrix L therefore 
describes diffusion in a system such that the flux to node i is given by the term: ∑ = L uj

N
i j j1 , .

Diffusion on complex networks
In contrast to the continuous case, diffusion in discrete models can also take place along the edges of a more 
irregular underlying network. If the network has N nodes …n n n, , N1 2 , diffusion is mediated by the network 
Laplacian L, defined here in the same way as the regular case above. However, it must be noted that an alternative 
convention for network Laplacian is commonly used in areas of network science other than reaction-diffusion 
systems, whereby its sign is reversed, such that L =  D −  A, where D is the diagonal degree matrix and A is the 
adjacency matrix, defined in the same way as the off-diagonal elements above16.

Nakao and Mikhailov5 studied the Turing instability in large Barabási–Albert9 networks, which have a well 
known scale-free degree distribution on average. Their numerical investigations revealed the coexistence and 
multi-stability of a huge variety of patterns, as can be seen in Fig. 3 of their paper. They also found that stable 
patterns can exist before the homogeneous equilibrium becomes unstable, in a subcritical bifurcation. However, 
in related work it has been shown that the subcritical bifurcation from which the Turing instability originates 
can be made supercritical under the influence of feedback control17, or in fact from a change in parameters of the 
current system.

The role of network structure and the optimal degree. Using an extension of a mean-field approach18, 
in order to understand the origin of patterns in this system, Wolfrum15 analysed a reduced system by considering 
the single-node dynamics. He studied the stability of an individual node of degree ki, with all other nodes consid-
ered fixed at the equilibrium u v( , ), resulting in the single-node system:

ε
σ ε

= + −
= + − .
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An analysis of the fixed-points of (3) reveals how the most basic single differentiated node (SDN) states bifur-
cate from the undifferentiated equilibrium-state. From this the lowest value of the parameter σ can be found 
where solutions exist, for any choice of ki. There is also a value of =

⁎k ki  which itself results in the solution 
extending down to some minimum value of σ. This is referred to as the optimal degree and depends on the par-
ticular form of the functions f and g and choice of parameters therein. In this case, using the same system and 
parameters as Wolfrum (given in the Methods section) results in an optimal degree =

⁎
k 9. This reveals the inter-

action between the reaction kinetics and the node degree and shows an important connection between network 
structure and the dynamics of the system. In the current work we demonstrate that the relative position of the 
optimal degree nodes in the network hierarchy can affect the emergent behaviour of the system as a whole by 
modifying the solution structure.

Figure 2. Growth from localised activity to system scale Turing-type patterns in a network with attachment 
degree M = 10. (a) The snaking bifurcation diagram, with solutions at turning points numbered and (b) a bulk-
mode pattern on the network nodes. The optimal degree nodes (shown in green) are towards the periphery of 
the network.
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Localised patterns and snaking solutions
As well as Turing patterns covering the whole spatial domain, spatially localised patterns have also been 
observed in a variety of experimental and numerical systems. In particular, localised buckling was observed 
in experiments on cylindrical shells by Hunt et al.19, and explained using numerical continuation using 
discretisation schemes. Numerical continuation and certain well-controlled experiments have shown that 
localised patterns of increasing spatial extent are connected by a winding structure in the solution structure 
known as snaking bifurcations. As the solution curves snake upwards in amplitude, the spatial pattern grows 
incrementally by one wavelength for each solution curve, as summarised by Hunt in his review of shell-
buckling20. The origin and development of these localised solutions via snaking has now been extensively 
investigated in numerical and analytical studies of reaction–diffusion systems on regular lattices21. The 
mechanism for the transition between localised patterns via snaking is therefore theoretically well established 
for such regular systems.

Aside from reaction-diffusion systems, similar localised patterns have also been observed in physical experi-
ments and bifurcation studies on other systems. Examples include experimental observations in optical systems22, 
numerical results for plain Couette flow23, as well as experimentally and analytically for hexagonal localised pat-
terns in magnetic fluids24.

Results
From localised patterns to large-scale activation. In order to explore the growth of node-activity 
in networks and reveal the link to localised patterns in regular media, numerical continuation techniques were 
employed to track solutions in the parameter space (see Methods section). Starting from single differentiated 
node (SDN) solutions and following the solutions in the solution space transitions between the SDN states and 
those with multiply differentiated nodes (MDN) was investigated. The connection between different states in the 
system was uncovered, as well as their coexistence with the fully developed (“Turing”) patterns reported by Nakao 
and Mikhailov5.

The growth of activation patterns. Figure 1 shows the result of following the solution from the ground-state 
(obtained using the numerical continuation techniques described in the Methods section), initially along an 
unstable branch which then becomes stable for a single excited node. It can be seen that, for certain cases, the 
solution curve exhibits a clear snaking behaviour, winding backwards and forwards under the influence of the 
parameter σ. Each of the bifurcation curves fold back to the left at some point, with the associated solutions 
becoming unstable as another node on the network becomes differentiated from the ground-state. This is directly 
analogous to the snaking behaviour seen in regular topologies as larger patterns develop from more localised 
ones. In Fig. 1(a) each stable branch of the solution curve corresponds to a different activation state with different 
numbers of differentiated nodes (three of which are shown in the node activation diagrams Fig. 1(b–d)), corre-
sponding to larger values of the magnitude (L-2 Norm) of the vector displacements u v, , plotted on the y-axis. 
In the example shown, with a clear snaking structure, the branches connect solutions with increasing numbers of 
differentiated nodes, the rest of the network remaining largely the same (see supplementary video snaking.mov). 
This universal snaking behaviour therefore appears to provide a strong connection to localised pattern formation 
and opens up the possibility of applying this well developed theory to problems in random networks.

The solutions can be continued further, with the solution structure becoming highly complicated. However, 
for this network realisation, where the optimal degree (shown in green) is somewhere part-way between the 
core and periphery of the network, the bifurcations do not directly connect the patterns of “localised” activity to 

Figure 3. Full set of solution branches at lower σ values, showing both stable and unstable branches 
together. Colours indicate the number of differentiated nodes on each curve. (a) The M =  5 networks with 
intermediate in position, and (b) the M =  10 network with near the periphery.
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the bulk “Turing-type” modes. These modes are abundant, but exist in a disconnected subset of the turmoil of 
solutions.

Development of large scale activation. Different network structures can effect different system behaviour, 
whereby the localised states do indeed connect to the Turing modes of full-blown system-scale activation. For this 
alternative network realisation a degree of attachment of M =  10 was used to generate the network. In this case the 
optimal degree =

⁎
k 9 nodes were instead found towards the periphery of the network, being amongst the lowest 

degree. The connection between the two regimes is again via a complicated snaking structure, as shown in the 
example in Fig. 2, where the “snakes” are found to wind up and down as different nodes become differentiated and 
undifferentiated. This provides a clear connection between the small-scale patterns analysed by Wolfrum and the 
larger bulk patterns of activity seen in the work of Nakao and Mikhailov. The difference between this and the 
previous case reveals the importance of the network structure, its interaction with the reaction dynamics and the 
resulting behaviour of the system. The position of the optimal degree nodes within the network strongly affects 
the connectedness of solutions as these are preferentially the first nodes to be activated.

Multiplicity of solutions. It is clear that at there exist an enormous number of coexisting combinations of differ-
entiated nodes, connected by a vast number of complicated structures in the solution space, covering a range of 
parameter values. Understanding the statistical distribution of states over these values will be valuable in under-
standing the variety of patterns and possible configurations that can be exhibited by such systems.

The numerical continuation methods used in this work can be used to uncover larger portions of this struc-
ture and give insight into the level of complexity likely to exist under different conditions, forced by the external 
driving parameters. As before, the initial SDN solutions were isolated before being continued in the parameter 
space, as can be seen in the lower branches of Fig. 3. The region that these solutions occupy closely agrees with the 
predictions of the reduced-system approach of Wolfrum. In addition, the stable branches that appear for for the 
lowest value of σ are those with the optimum degree, as predicted from Wolfrum’s work. Each of these SDN states 
were then used as initial conditions for the continuation further up into MDN solutions. The solutions for all 
accessible states with up to 9DN are shown together in Fig. 3. These different solutions coexist multistably at the 
same parameter values. The clear bunching seen for SDN solutions becomes more diffuse as more nodes become 
differentiated and the nodes interact more strongly. Solutions are tightly bounded in the bifurcation space and 
contained in a region which continues to high values of σ and bulk modes of activity.

A notable feature of the results is that the column of solutions curves markedly to the right. This can be 
explained heuristically by considering that, for each number of differentiated nodes there exists some stable 
branch that appears for minimal σ, which consists of solutions with differentiated nodes of optimal degree, as 
predicted by Wolfrum15. However, at some point he MDNs run out of nodes with optimal degree to be differen-
tiated and instead another node activates, which necessarily has a higher activation σ. Determining these regions 
of existence for networks should be amenable to analytical treatment and provide an important area for future 
investigation in such complex systems.

Statistical density of states. Thousands of realisations were initiated and continued in order to produce a statis-
tical description of the state density at different parameter values. Two clear peaks can be seen in the histograms 
of Fig. 4(a,c), with the broader of the two peaks appearing at higher σ associated with bulk modes of the system. 

Figure 4. Statistical distributions of solutions, shown as the both histogram and 2D density plot over the 
bifurcation space for a range of values of the control parameter σ (a,b) are for the M =  5 case where the small-
scale patterns do not directly connect to the system-scale patterns and (c,d) for the M =  10 case where they do 
connect. In both cases two peaks can be seen, one for the snaking column and the other for the bulk solutions.
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The narrow peak at low σ is associated with the cluster of localised solutions and the growth to extended patterns, 
connected via the snaking bifurcations. Clear differences can be seen for the two different network topologies, 
again highlighting the important role of network structure in organising the dynamics. In the more highly con-
nected M =  10 network the bulk solutions are most abundant at lower values of the control parameter σ and are 
more smoothly connected than in the case where the optimal degree is buried deep in the network. The region of 
existence described in the previous section can be most clearly seen in the two dimensional density plot shown in 
Fig. 4(b,d), showing the density of bifurcation curves over a wide range of the parameter σ. The projection onto 
a one-dimensional histogram in σ shown in (b) clearly shows the number of available system configurations at 
each of the parameter values.

These results reveal the potential states accessible to this system, and similar treatment could shed light on 
the potential configurations possible in a vast number of systems of this type arising in nature. Examples of such 
systems with both activator-inhibitor kinetics as well as complex interaction topologies include: gene networks; 
protein species interaction networks, such as those seen in early evolution; and competition networks in other 
complex natural and human systems, such as social and economic systems.

Discussion
In this research a reaction diffusion system on a complex network topology has been numerically investigated 
in detail for symmetric networks with a particular reaction dynamics, with generally applicable methods and 
results. The results have revealed the transition between the single-node solutions analysed by Wolfrum, which 
originate from the undifferentiated state, and the fully developed patterns reported by Nakao and Mikhailov. This 
was carried out by numerical continuation of the solutions in the parameter-space of the system and study of the 
solutions found along the various multistable branches found at each set of values. The states of the system have a 
snaking solution structure, showing a deep theoretical connection to localised patterns seen in reaction-diffusion 
systems on regular topologies. The universality of this snaking behaviour therefore opens up the possibility of 
applying the well developed theory of homoclinic snaking to problems in random networks. Through this the 
results reveal the origin of and connection between the multistability of states found previously.

A statistical analysis of the solution-structure has been used to present the multiplicity of configurations avail-
able to systems on networks. Understanding the density of solutions and bifurcation curves that exist within 
certain regions of the control parameter space is expected to reveal much about the underlying systems being 
modelled. In systems of competing chemical or biological agents the density of states could indicate the diversity 
of species that can exist at different values of some external environmental parameter. Similar analogies could 
be made when modelling social systems, as well as many other complex systems, as competing interactions via 
networks.

The important connection between network structure, reaction kinetics and resulting system behaviour has 
also been demonstrated, including the importance of the optimal degree nodes discovered by Wolfrum. This adds 
to the growing interest in the interplay between network structure and dynamics that have been investigated in 
the context of ecological networks and elsewhere25–27. Already in-roads have been made into other theoretical 
aspects of related systems such as multiplex networks28, including generalisations of Wolfrum’s original analysis 
to such systems29. Other research has investigated oscillatory Turing patterns (originating from a so called “wave 
bifurcation”) for symmetric networks in the context of ecological networks30, as well as directed networks31. The 

Figure 5. An example network used in this investigation (a), using the preferential attachment scheme of 
Barabási and Albert (BA). The number of nodes is N =  50 and degree of attachment for each newly added node 
is M =  5. (b) The degree distribution for the network used in the first network reported in this work. The BA 
scheme is known to produce scale-free degree distributions on average and in the limit of N →  ∞  but here, 
where N is finite, it is only approximately scale-free.
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current work provides insight into the nature of emergent patterns of activity at different scales in networks of 
interacting species and, by connecting various areas of research, hopes to open the field up to deeper study.

Methods
The Mimura-Murray model. The current investigation focusses on the Mimura-Murray model of 
prey-predator populations32, following on from the work of Nakao and Mikhailov5. The kinetics of the reac-
tion-diffusion system (eq. (2)) are described by the following equations:

=
+ −

− = − −f u v au bu u
c

uv g u v uv v dv( , ) , ( , ) , (4)

2 3
2

where u denotes the activator (or prey) and v the inhibitor (or predator). In these investigations σ is the bifurca-
tion (control) parameter, related to the relative strengths of the diffusion terms. The current study was carried out 
using the values a =  35, b =  16, c =  9, d =  2/5, ε =  0.12, at which the system possess the equilibrium 

=u v( , ) (5, 10). This undifferentiated state is stable for small values of σ but loses stability in a subcritical bifurca-
tion at σ ≈  15.5. In continuous media this would result in the emergence of alternating activator-rich and 
activator-low domains (a periodic Turing-type pattern in the supercritical case), but organised on networks can 
also display small-scale (“localised”) patterns of node activity in these subcritical cases. Using the current param-
eter values in the reaction functions (4), linear stability analysis of equation (3) results in an optimal degree of 

=
⁎

k 9, which is shown in this work to play a key role in organising the behaviour of the system.

Network properties. In order to investigate the development and growth of “patterns” of activity on 
non-regular network topologies, the system was set up with the reaction species (on the nodes) interacting via the 
edges of a Barabási–Albert9 network.

A network with 50 nodes was used for these investigations, where new nodes added at each generation step 
have five edges assigned preferentially to higher degree existing nodes. The routines in the NetworkX module for 
Python were used to generate and visualise the networks. Different topologies with the same characteristics were 
investigated to ensure consistent qualitative behaviour, but only one representative realisation is shown here. For 
the majority of results in this work the degree of attachment M =  5 was used in the network generation scheme 
(Fig. 5). In these cases it can be seen that numerous nodes of the optimal =

⁎
k 9 lie towards the middle of the 

degree distribution. For the later (comparison) cases M =  10 was used to generate the network, in which the opti-
mal degree nodes instead have amongst the lowest degree in the network (being close to the periphery), resulting 
in important differences in the system behaviour.

Numerical techniques. Computations were started from the single-node (SDN) solutions, studied in previ-
ous work15, which bifurcate from the undifferentiated state at the point σT. All possible singly differentiates node 
(SDN) solutions were found by numerically integrating the equations of the system from some random initial 
condition then refining using numerical root finding (using the widely available fsolve routine). The solutions 
were then followed back and forth in their meander through the parameter space of the system using numerical 
continuation techniques provided by the AUTO bifurcation software33.
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