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Abstract 
This paper describes a new method to determine the heat transfer coefficient, ℎ, and the adiabatic-surface 

temperature, 𝑇𝑎𝑑 , from transient measurements of the surface temperature of a test piece. Maximum Likelihood 

Estimation (MLE) is used in conjunction with Fourier’s 1D equation to determine the optimum values of ℎ and 

𝑇𝑎𝑑 , and also their 95% confidence intervals, without having to measure the air temperature. Validation 

experiments are conducted in a small purpose-built wind tunnel, and a novel infra-red (IR) sensor is used to 

measure the surface temperature of the test piece. A mesh heater is used to generate either a step-change in the air 

temperature or a ‘slow-transient’ in which the air temperature - and consequently 𝑇𝑎𝑑  – increases slowly with 

time.  Numerical simulations, using ‘noisy data’, show that the computations give accurate estimates of ℎ and 𝑇𝑎𝑑  

for both the step-change and slow-transient cases. The values of ℎ and 𝑇𝑎𝑑  determined from the measurements in 

the wind-tunnel are in good agreement with empirical correlations for turbulent flow over a flat plate.  

An advantage of the new method is that it can be used for all transient experiments, even those slow transients 

that violate the assumption of a semi-infinite solid, an assumption that is used in most existing analysis methods. 

The new method, which was applied here to boundary-layer flow with one stream of fluid, could also be applied 

to ‘three-temperature problems’, like film cooling, which involve two streams of fluid. The significant advantage 

of using the method for these problems is that both ℎ and 𝑇𝑎𝑑  could be determined accurately from a single 

experiment. 

 

Nomenclature 

𝐴 cross-sectional area of wind-tunnel 

𝐴𝑒 effective area of the freestream outside boundary layer (𝛿∗) 

𝐵𝑖 Biot number (= ℎ𝐿/𝑘𝑠) 

𝐶 constants 

𝐶𝑝 specific heat 

𝐹𝑜 Fourier number (= 𝛼𝑡/𝐿2) 

𝐹𝑜𝜏 nondimensional time constant (= 𝛼𝜏/𝐿2) 

𝑔 gravitational acceleration 

𝐺𝑟 Grashof number 

ℎ heat transfer coefficient 

𝑘 thermal conductivity 

𝑙 vertical height of IR sensor; negative log of likelihood function 

𝐿 thickness of solid 

𝑁 number of data points 

𝒩 normal distribution 

𝑁𝑢 Nusselt number(= ℎ𝑥/𝑘𝑎𝑖𝑟) 

𝑃 likelihood function 

𝑃𝑟 Prandtl number 

𝑞𝑠 heat flux from fluid to solid 

𝑅 recovery factor 
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𝑅𝑒 Reynolds number(= 𝜌𝑈𝑥/𝜇) 

𝑇 temperature 

𝑡 time 

𝑢 streamwise velocity inside  boundary layer 

𝑈0 freestream velocity at 𝑥 = 0 

𝑈∞ velocity of the free stream outside boundary layer 

𝑥 streamwise coordinate measured from mesh heater 

𝑦 normal distance from surface in boundary layer 

𝑍 nondimensional value of z (= 𝑧/𝐿) 

𝑧 normal distance from  surface in solid 

𝛼 thermal diffusivity (= 𝑘/𝜌𝐶𝑝)  

𝛽 volume expansion coefficient  

𝛽𝑛 eigenvalue in quenching solution 

𝛿 boundary layer thickness 

𝛿∗ displacement thickness 

𝛩 theoretical nondimensionial temperature(= (𝑇 − 𝑇𝑖𝑛)/(𝑇𝑎𝑑 − 𝑇𝑖𝑛)) 

𝜃 experimental nondimensionial temperature(= (𝑇 − 𝑇𝑖𝑛)/(𝑇𝑠,𝑚𝑎𝑥 − 𝑇𝑖𝑛)) 

𝜇 dynamic viscosity 

𝜈 kinematic viscosity 

𝜌 density 

𝜎 standard deviation 

𝜏 time constant 

𝜙 parameters in MLE 

𝜒 parameter in semi-infinite solution (= 𝐵𝑖𝐹𝑜1/2) 

 

Subscripts 

𝑎𝑑 adiabatic  

𝑎𝑖𝑟 air 

𝑎𝑚𝑏 ambient 

𝑓 film 

𝑖𝑛 initial value 

𝐼𝑅 infra-red  

𝐿 back face of solid 

𝑚𝑎𝑥 maximum  

𝑜 parameters estimated from MLE 

𝑟𝑒𝑓 appropriate reference value 

𝑠 experimental value on surface; surface 

𝑡𝑢𝑟𝑏 turbulent 

𝑤 true value on surface 

𝑥 value at distance 𝑥 from mesh 

𝜏 time constant 

∞ freestream value 

 

Acronyms 

CI confidence interval 

IR infra-red 

MLE maximum likelihood estimation 

PID proportional integral derivative 

 

 

 

1. Introduction 

The object of most heat transfer experiments is to determine the heat transfer coefficient, ℎ, which is defined 

here as 

ℎ =
𝑞𝑠

(𝑇𝑎𝑑 − 𝑇𝑠)
 (1.1) 
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where, 𝑞𝑠  is the convective heat flux from a fluid into the solid, and 𝑇𝑠  and 𝑇𝑎𝑑   are the surface and adiabatic 

temperatures respectively. This definition ensures that, for a finite value of ℎ,  𝑞𝑠 = 0 when 𝑇𝑠 = 𝑇𝑎𝑑 . In general, 

𝑇𝑎𝑑  depends on the fluid dynamics, and for external boundary-layer flows it can often be calculated from 

𝑇ad = 𝑇∞ + 𝑅
𝑈∞

2

2𝐶𝑝

 (1.2) 

where, 𝑇∞ and 𝑈∞  are the static temperature and velocity of the free stream outside the boundary layer, 𝐶𝑝 is the 

specific heat of the fluid and 𝑅 is the recovery factor, which depends on the Prandtl number of the fluid and on 

whether the flow is laminar or turbulent.  For many practical cases, 𝑇𝑎𝑑  is unknown.  

 The development of thermochromic liquid crystal (TLC) in the 1980s makes it relatively simple, providing 

there is suitable optical access, to measure the variation of 𝑇𝑠 with time over the entire surface of a solid test piece. 

The test piece is usually made from a material that is a poor thermal conductor (e.g. acrylic or polycarbonate, 

where 𝑘 ≈ 0.2W/mK), and the values of ℎ and 𝑇𝑎𝑑  can then be determined from the inverse solution of the one-

dimensional (1D) Fourier’s equation. (The term inverse solution refers to the case where ℎ is determined from the 

known variation of 𝑇𝑠  with time; the direct solution refers to the case where the variation of 𝑇𝑠  with time is 

calculated from a known value of ℎ.) 

A narrow-band crystal can be used to determine the time at which the surface of a test piece reaches the 

activation temperature of the crystal. If 𝑇𝑎𝑑  is known and if a step-change in 𝑇∞  can be generated (by a mesh 

heater, for example), ℎ can be calculated from analytical solutions of the 1D Fourier’s equation for a semi-infinite 

solid. This method of determining ℎ has been discussed by, for example, Jones and Hippensteele (1988), Kasagi 

et al. (1989), Camci et al. (1991) and Baughn (1995).  

 In a similar manner, two narrow-band crystals can be used to calculate both 𝑇𝑎𝑑 and ℎ. Treuren et al. (1994), 

Pountney et al. (2013) evaluated both ℎ and 𝑇𝑎𝑑  in this way by using a coating of several narrow-band crystals. 

However, as shown by Yan and Owen (2002), judicious choice of crystal is needed to minimise the uncertainties 

in ℎ and 𝑇𝑎𝑑 , and the uncertainty in the computed h will be larger than that for the case where 𝑇𝑎𝑑  is known. In 

addition, these methods are only applicable for transient experiments with a step-change in 𝑇∞ , which is not 

always possible. 

Even if a step-change can be generated by the upstream heater, the transient temperature of the fluid at the test 

section is unlikely to remain constant, and it can be seen from Eq. (1.2) that if 𝑇∞  varies with time then 𝑇𝑎𝑑  must 

also vary with time. For these so-called slow-transient cases, the measured surface-temperature history can be 

used as a boundary condition for the solution of Fourier’s equation for a semi-infinite solid to determine both ℎ 

and 𝑇𝑎𝑑 . For the case where the air temperature rises exponentially with time, Gillespie et al. (1998) obtained an 

analytical solution of Fourier’s equation, which was then used to determine ℎ from transient experiments. Newton 

et al. (2003) further developed the technique using two crystals to determine ℎ  and 𝑇𝑎𝑑  by representing the 

measured temperature rise of the air by an exponential series; the series was then used as a boundary condition 

for Fourier’s equation. Kan et al. (2014) evaluated ℎ and Tad by applying Duhammel’s theorem to time-varying 

temperatures measured at several locations inside a finned channel.  

 In all the above slow-transient cases, Fourier’s equation was solved for a semi-infinite solid, which –  as 

discussed in Section 2.1 below  – limits the time for which the solution is valid. In some cases – like those 

discussed by Pountney et al. (2013) – the long time-constant for the air temperature can violate the semi-infinite 

assumption. In such cases, the boundary conditions on both surfaces of the test piece have to be used in the inverse 

solution of Fourier’s equation. However, inverse solutions are error-prone: small errors in the measured values of 

𝑇𝑠  can create very large uncertainties in the computed values of ℎ and 𝑇𝑎𝑑. In this paper, it is shown how the 

statistical technique of Maximum Likelihood Estimation (MLE) can be used to accurately determine both ℎ and 

𝑇𝑎𝑑 , and their confidence intervals, from the numerical solution of Fourier’s equation. The method is applicable 

to all cases, even those slow transients that violate the semi-infinite-solid assumption. 

In principle, the MLE method could also be applied to the so-called three-temperature problem for film-cooled 

surfaces, where the heat transfer depends not only on 𝑇s and 𝑇∞ but also on the film temperature, 𝑇𝑓. For these 

cases, 𝑇𝑎𝑑, which depends on both 𝑇∞  and 𝑇𝑓, is often determined from steady-state experiments using a model 

made from a good thermal insulator (e.g. polystyrene or Rohacell where 𝑘 ≈ 0.03W/mK) coated with wide-band 

crystal so that the measured surface temperature provides a good estimate of 𝑇𝑎𝑑 (see Newton et al., 2009). Having 

estimated values of 𝑇𝑎𝑑  over the surface of the good insulator, a new model made from a poor insulator can then 

be used to determine ℎ from transient experiments, as described above. By applying MLE to a three-temperature 

problem, both ℎ and 𝑇𝑎𝑑  could be determined from a single transient experiment. 

Numerical simulation showing how an MLE model can be used to determine ℎ  and 𝑇𝑎𝑑   from transient 

experiments is presented in Section 2. In Section 3, a novel IR sensor and the experimental apparatus used to 

validate the model are described, and experimentally-determined values of ℎ and 𝑇𝑎𝑑  are compared with accepted 
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correlations in Section 4. The principal conclusions are presented in Section 5, and additional details of the MLE 

model are given in the Appendix. 

 

2. Analysis of transient data 

2.1 Analytical solutions of Fourier’s equation 

The nondimensional form of the 1D Fourier’s equation (see Pountney et al. 2012) can be expressed as  

 

𝜕𝛩

𝜕𝐹𝑜
=

𝜕2𝛩

𝜕𝑍2
 (2.1) 

where  

𝛩 =
𝑇 − 𝑇𝑖𝑛

𝑇𝑎𝑑 − 𝑇𝑖𝑛

 (2.2a) 

          

𝐹𝑜 =
𝛼𝑡

𝐿2
 (2.2b) 

and 

𝑍 =
𝑧

𝐿
 (2.2c) 

 

𝑇in, 𝑧, 𝐿  and 𝛼  being the initial temperature of the solid, the normal distance from the heated surface, the 

thickness of the solid and its thermal diffusivity respectively.  

For the case of a step-change in the fluid temperature, there are analytical solutions for two models that are 

particularly useful for experimenters: the semi-infinite solid and the quenching problem. The former model 

assumes that the slab has an infinite thickness and that the solution is valid for a slab of finite thickness 𝐿 if the 

temperature change at 𝑍 = 1 is much smaller than the step-change in the fluid temperature; this limits the value 

of 𝐹𝑜  for a transient experiment. In the quenching problem it is assumed that the back surface at 𝑍 = 1 is 

adiabatic; if the back surface could be perfectly insulated, the solution would be valid for any value of 𝐹𝑜. 

The solution used here is for the quenching problem, the boundary conditions for which are: 

− (
𝜕𝛩

𝜕𝑍
)

𝑧=0
= 𝐵𝑖(1 − 𝛩𝑠) (2.3a) 

  

(
𝜕𝛩

𝜕𝑍
)

𝑧=1
= 0 (2.3b) 

 

The solution for the surface temperature, where 𝛩 = 𝛩s at 𝑍 = 0, is given by  

 

𝛩𝑠 =
𝑇𝑠 − 𝑇𝑖𝑛

𝑇𝑎𝑑 − 𝑇𝑖𝑛

= 1 − 2 ∑ exp (−𝜒2 𝑐𝑜𝑡2 𝛽𝑛)(
𝑠𝑖𝑛 𝛽𝑛 𝑐𝑜𝑠 𝛽𝑛

𝛽𝑛 + 𝑠𝑖𝑛 𝛽𝑛 𝑐𝑜𝑠 𝛽𝑛

)

∞

𝑛=1

 

(2.4) 

 

where  

𝜒 = 𝐵𝑖𝐹𝑜
1
2 (2.5a) 

 

𝛽𝑛 = 𝐵𝑖 𝑐𝑜𝑡 𝛽𝑛 (2.5b) 

 

and the Biot number is defined as  

𝐵𝑖 =
ℎ𝐿

𝑘𝑠

 (2.5c) 

 

𝑘𝑠 being the thermal conductivity of the solid.  
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The effect of 𝐵𝑖 on the variation of 𝛩𝑠 with 𝐹𝑜 computed from Eq. (2.4) by Pountney et al. (2012) is shown in 

Fig. 1. The ‘semi-infinite solutions’, and the loci of the 1% and 5% differences between the two solutions, are 

also shown; for 𝐵𝑖 < 16 and 𝐹𝑜 < 0.2, the differences are less than 1%. If a step-change could be achieved, and 

𝐹𝑜 were sufficiently small, either solution could be used. However, for slow transients where 𝐹𝑜 is no longer 

small, the quenching problem provides a more useful analytical model. 

 
Fig. 1: Effect of Bi on variation of 𝜣𝒔 with Fo for a step-change in fluid temperature (Pountney et al. 2012) 

However, if a step-change cannot be generated at the test section, or if the back face of the test piece is not 

adiabatic, then the numerical method used below can be used. 

                    

2.2 Numerical solution of Fourier’s equation 

2.2.1 Numerical method 

Details of the Maximum Likelihood Estimation (MLE) used below are given in the Appendix.  

The Crank-Nicolson method was used for the numerical solutions of Fourier’s equation, with step-lengths of 

𝛿𝑍 =  0.01  and 𝛿𝐹𝑜 =  5.93 × 10−6 , and second-order derivatives were used for the convective boundary 

conditions at the two surfaces. The test piece (which corresponded to that used in the experiments described in 

Section 4) was 15-mm-thick polycarbonate, the properties of which were taken as 𝜌 = 1200 kg/m3 , 𝑘𝑠 =
0.2 W/mK and 𝐶𝑝 = 1250 J/kgK.  A value of 𝐵𝑖 = 6.375, corresponding to ℎ = 85 W/m2K (which is typical 

of the experimental values) was used in the simulations; this is referred to as ‘the true Biot number’.  

For the simulations, given values of ℎ and 𝑇𝑎𝑑  (which are referred to as the ‘true values’) were used in the direct 

solution of Fourier’s equation to generate the time history of 𝑇s for the quenching problem (i.e. an adiabatic back 

surface was assumed).  The sampling rate of the simulated experimental data was 10 Hz, and normally-distributed 

random errors (modelling noisy measurements with a standard deviation of 𝜎 = 0.2oC) were added to the sampled 

values of 𝑇𝑠; the sampling rate and noise levels were representative of those used in the actual experiments. The 

noisy temperatures were then used as the boundary condition for the MLE model. 

As 𝑇𝑎𝑑  was treated as an unknown for the MLE model, it is convenient to define three new nondimensional 

temperatures, all of which are based on 𝑇𝑠,𝑚𝑎𝑥, the maximum value of the simulated surface temperatures. (As 

these temperatures were noisy, a smoothing curve was used to fit the data, and 𝑇𝑠,𝑚𝑎𝑥 was taken as the maximum 

value of the smoothed data.) The new definitions are  

 

𝜃 =
𝑇 − 𝑇𝑖𝑛

𝑇𝑠,𝑚𝑎𝑥 − 𝑇𝑖𝑛

 (2.6a) 

 

𝜃𝑠 =
𝑇𝑠 − 𝑇𝑖𝑛

𝑇𝑠,𝑚𝑎𝑥 − 𝑇𝑖𝑛

 (2.6b) 

 

and 

𝜃𝑎𝑑 =
𝑇𝑎𝑑 − 𝑇𝑖𝑛

𝑇𝑠,𝑚𝑎𝑥 − 𝑇𝑖𝑛

 (2.6c) 
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The above definitions imply that 𝜃𝑠 = 1 and 𝜃𝑎𝑑 > 1 when 𝑇𝑠 = 𝑇𝑠,𝑚𝑎𝑥 . Fourier’s equation, Eq. (2.1), and the 

boundary conditions, Eqs. (2.3a,b), are still valid if 𝛩 is replaced by 𝜃.  

For the simulations, it was assumed for the MLE that the adiabatic temperature could be represented by a two-

term exponential series, where  

 

𝜃𝑎𝑑 = 𝐶1 (1 − exp (−
𝐹𝑜

𝐹𝑜𝜏1

)) + 𝐶2 (1 − exp (−
𝐹𝑜

𝐹𝑜𝜏2

)) (2.7)  

 

where  

𝐹𝑜𝜏 =
𝛼𝜏

𝐿2
 (2.8) 

 

Consequently. 

(
𝐹𝑜

𝐹𝑜𝜏

) =
𝑡

𝜏
 (2.9) 

 

and the steady-state value of 𝜃ad is equal to 𝐶1 + 𝐶2. 

 

The four constants in Eq. (2.7), together with the values of 𝐵𝑖 and 𝜎, were computed by the MLE model. For 

the range of parameters used in this paper, a series of numerical experiments showed that accurate values of 𝐵𝑖 
could only be obtained if 𝑁 > 300, where 𝑁 is the number of values of 𝑇𝑠 used in the computation, and if the 

duration of the experiment was large enough to ensure that the value of 𝜃𝑎𝑑 was within 0.5% of its steady-state 

value. These limits are valid for the experimental results in Section 4 (where a 10 Hz sampling rate was used, 4 <
𝐵𝑖 < 8 and 𝐹𝑜𝜏 < 0.065), but they should not be taken as a golden rule for all experiments. It is recommended 

that experimenters should become sufficiently familiar with the use of MLE to be confident in its application and 

limitation for their particular experiments. 

 

2.2.2 Numerical simulations 

 

 
Fig. 2: Comparison between computed and true temperatures for perfect step-change in air temperature 

Simulations are shown for three different transients in the air temperature: a perfect step-change; an approximate 

step-change; a slow transient. As stated above, 𝜃𝑠 = 1 and 𝜃𝑎𝑑 > 1 when 𝑇𝑠 = 𝑇𝑠,𝑚𝑎𝑥 .  

Except for the perfect step change, a two-term exponential was used to generate the air temperature and, for all 

three different transient cases, a two-term exponential series (which was found to be necessary to represent the 

experimental results discussed in Section 4) was used for the MLE. The ‘true values’ of 𝜃s and 𝜃𝑎𝑑 were used to 

generate the noisy data, as described above, and the computed values and 95% confidence interval of the computed 

𝐵𝑖 was found from the MLE model. Here, and in the cases discussed below, the value of the standard deviation in 

𝜃𝑠 obtained from the MLE model agreed very closely with the value used to generate the noisy data. 
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Fig. 2 shows the case of a perfect step-change where the variations of the computed temperatures with 𝐹𝑜 are 

in very good agreement with the true variations. The computed values of 𝐵𝑖  and 𝜃𝑎𝑑  were 6.381 ± 0.06 and 

1.247, and these compared closely with the true values of 6.375 and 1.246 respectively.  For this case, where the 

steady-state value of 𝜃𝑎𝑑  was achieved at the start of the simulation, a value of 𝑁 = 3000  was used for the 

computation. 

 
Fig. 3: Comparison between computed and true temperatures for approximate step-change in air temperature 

Fig. 3 shows very good agreement for the case of the approximate step-change. The true value of  𝜃𝑎𝑑 was 

produced with the values of 𝐶1, 𝐶2, 𝐹𝑜𝜏1
 and 𝐹𝑜𝜏2

 of 1.220, 0.025, 2.968 × 10−4 and 0.05 , respectively. As 

described above, a two-term exponential series (see Eq. (2.7)) was assumed for the MLE model, and the optimum 

values of 𝐶1 , 𝐶2 , 𝐹𝑜𝜏1  and 𝐹𝑜𝜏2  were computed to be 1.222, 0.0151, 2.968 × 10−4  and 0.0423, respectively. 

The computed steady-state value of 𝜃𝑎𝑑 was therefore found to be 1.237 compared with the true value of 1.245. 

The computed value of 𝐵𝑖 was 6.515 ±  0.175, which compared with the true value of 6.375; the CI of ± 2.7 % 

captures the true value. 

 
Fig. 4: Comparison between computed and true temperatures for slow transient in air temperature 

Fig. 4 shows very good agreement for the case of a slow transient, where the values of 

𝐶1, 𝐶2, 𝑎𝑛𝑑 𝐹𝑜𝜏1
𝑎𝑛𝑑 𝐹𝑜𝜏2

 were 1.024, 0.01, 0.0593 𝑎𝑛𝑑 0.05 , respectively. The values of 𝐶1 , 𝐶2 , 𝐹𝑜𝜏1 and 

𝐹𝑜𝜏2  produced by the MLE model were 1.023, 0.0194, 0.0593 and 5.93 × 10−6  respectively, so that the 

computed steady-state value of 𝜃𝑎𝑑 was 1.042 compared with the true value of 1.034. The computed value of 𝐵𝑖 
was 6.419 ±  0.094, which compares closely with the true value of 6.375; the CI of ± 1.5 % captures the true 

value. 

In all the above simulations, the MLE model accurately captured the transient temperatures and the true value 

of the Biot number. The model is used in Section 4 to compute the values of 𝐵𝑖  and 𝜃𝑎𝑑  obtained from the 

experimental apparatus described in Section 3.   
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3. Experimental facility and IR temperature measurement 
3.1 Experimental apparatus  

Fig. 5 shows a close-up of the test section, which had a cross-section of 100 mm × 20 mm and a length of 

400 mm. Air, with mainstream velocities up to 𝑈∞ = 40 m/s, entered through a bell-mouth inlet and was 

extracted by a ‘blower’ (operating in the suction mode) downstream of the test section. An upstream ‘mesh heater’ 

(made to the design of Ireland et al. (1996) and powered by a 6 kW programmable supply (Magna-Power XR 

Series)) was used to generate an effective step-change of around 30 ℃ in the air temperature.  

The test section was modular with ‘target plates’, or test pieces, constructed for different purposes, such as 

calibration of the IR sensor described below and for the experiments described in Section 4. Except for the IR 

calibration, the target plate was made from 15-mm-thick polycarbonate (𝑘 = 0.2 W/mK ) and its surface was 

sprayed with black paint (Hallcrest SPBB). According to Kakade et al. (2009), the paint had an emissivity of 0.96, 

a thickness of approximately 10 μm, and (assuming a typical thermal conductivity of 0.2 W/mK)  the temperature 

drop across the coating was estimated to be < 0.05 ℃. To minimise heat loss from the test section, the other 

surfaces were insulated with Rohacell 51 foam (𝑘𝑠 = 0.03 W/mK). The IR sensor was flush-mounted at the 

vertical-centre of the wall opposite the target plate and at a horizontal distance of 20 mm from it, and the sensor 

could be inserted at streamwise locations of  𝑥 = 80, 140 and 200 mm, where 𝑥 is the distance downstream from  

the mesh heater. 

 

 

 
Fig. 5: Test section (Cho et al., forthcoming) 

3.2 Measurement of air velocity 

The air velocity was measured using pitot tubes of 0.5-mm-diameter located in the air and static pressure taps 

in the wall of the test section at 𝑥 = 65, 125 and 185 mm. The pressures were measured by a calibrated transducer 

(ESI PR3202), and the uncertainty in the velocity was estimated to be ± 0.7 m/s.  

The  cross-sectional area of the wind tunnel, A,  was 2000 mm2 but, owing to the boundary layers on the four 

walls, the effective area, Ae, of the freestream outside the boundary layers decreased as 𝑥  increased. As the 

experiments were conducted for incompressible flow, it follows from continuity that  

        

𝑈∞ =
𝑈0𝐴

𝐴𝑒

 (3.1) 

 

where 𝑈0 is the  freestream velocity at 𝑥 = 0 and 𝑈∞ is the value  a distance 𝑥 from the mesh. The value of 𝐴e 

was calculated using a displacement thickness of  𝛿∗ ≈ 0.125 𝛿 for turbulent flow, where the boundary-layer 

thickness, 𝛿, was taken as the value where 𝑢/𝑈∞ = 0.99, 𝑢 being the streamwise velocity inside the layer. The 

values of 𝑈∞ measured at 𝑥 = 65, 125 and 185 mm were in good agreement with the values calculated from Eq. 

(3.1). 

The wire mesh in the heater ensured that turbulent boundary-layer flow occurred from the start of the test section, 

and the velocity profiles were determined from cross-stream traverses of the pitot tubes at increments of 0.5 mm. 

As shown in Fig. 6a, the measured velocity profiles were consistent with the 1/7 power law (see White, 1994), 

where 
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(
𝑢

𝑈∞

)
𝑡𝑢𝑟𝑏

= (
𝑦

𝛿
)

1/7

 (3.2) 

 

 Fig. 6b shows good agreement between the values of 𝛿/𝑥 determined in this way and the correlation given by 

White (1994), where  

𝛿

𝑥
= 0.16𝑅𝑒𝑥

−
1
7 (3.3a) 

and 

 

𝑅𝑒𝑥 =
𝜌𝑈∞𝑥

𝜇
 (3.3b) 

 

 
Fig. 6a: Typical velocity profile measured at 𝒙 = 𝟏𝟖𝟓 𝐦𝐦 when 𝑼∞ = 𝟑𝟎. 𝟔 𝐦/𝐬 and 𝜹 = 𝟒. 𝟕𝟑 𝐦𝐦 (Eq. (3.2)) 

 
Fig. 6b: Comparison between measured boundary-layer thickness and correlation (Eq. (3.3a)) 

3.3 Measurement of air temperature  

 

Fast-response thermocouples were manufactured using 0.025-mm-diameter K-type unsheathed wire with a 

beaded junction. The thermocouples, with a response time of 40 ms and a recovery factor of 0.72 (see Lock et al., 

2005) were used to measure the mainstream air temperature, 𝑇∞, at 𝑥 = 25, 80, 140 and 200 mm downstream of 

the mesh heater. The thermocouples were individually calibrated in a water bath, and the voltages were measured 

using a National Instrument USB-9213 input module and a pre-calibrated platinum-resistance thermometer; the 
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uncertainty in the temperature measurements was estimated to be ±0.1 ℃ . A typical step-change in air 

temperature measured at 𝑥 = 25 mm using a fast response thermocouple is shown in Fig. 7. 

 

 
Fig. 7: Typical step-change in air temperature 25 mm downstream of mesh heater 

 

3.4 Measurement of surface temperature 

3.4.1 IR sensor 

This section introduces a new IR sensing instrument which provided accurate temperature measurements under 

transient condition. The basic IR sensor used here (Melexis MLX90614ESF-DCI) was able to compensate for 

different levels of steady ambient temperature. However, it was unable to provide accurate measurements under 

transient conditions in its unconditioned state. A new instrument was designed to specifically address this problem 

and is described below.  

 
Fig. 8: Details of IR sensor (Cho et al., forthcoming) 

Figure 8 illustrates the IR sensor, which was an assembly of components developed by Cho (2014). The basic 

sensor, which had an outside diameter of 9 mm, was surrounded by a copper sleeve of 2 mm thickness, with 

‘thermal grease’ used to reduce the contact resistance. A thin-film heater was used to heat the copper sleeve (and 

consequently the IR sensor), and the entire assembly was insulated by a 2-mm-thick sleeve of Rohacell 51 (𝑘 =
0.03 W/mK). The temperature of the basic IR sensor was measured by a built-in temperature sensor, and a PID 

(Proportional Integral Derivative) feedback controller was used to control the temperature to within ±0.3 ℃ of its 

set value. When located 20 mm from the target plate, the sensor determined the average surface temperature over 

a circular area of approximately 6.7 mm diameter. The response time of the sensor was 0.1 s and the sample rate 

was up to 10 Hz.  
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3.4.2 Calibration of IR sensor 

The calibration was first conducted under steady-state conditions and then under transient conditions to simulate 

the heat transfer experiments. For all calibrations (and subsequent tests) the sensor was set at a constant 

temperature of 35.0 ± 0.3 ℃, which was the typical average temperature in the transient experiments described 

in Section 4. Instead of the polycarbonate target plate used for the experiments, a 1-mm-thick copper plate was 

used for the calibration, and its surface was sprayed with the same black paint (Hallcrest SPBB) used on the target 

plates.  

For the steady-state calibrations, the heated flow was left to stabilise, and the surface temperature was then 

simultaneously measured and averaged over a period of 30 s by both the IR sensor and a reference K-type 

thermocouple .The thermocouple, which was 0.025-mm-diameter and had a response time of 0.1s, was calibrated 

in a water bath; the estimated 95 % uncertainty was ±0.1 ℃. For the transient calibrations, an approximate step-

change in air temperature was created by the mesh heater, and the surface temperature of the copper plate was 

simultaneously measured by both the IR sensor and the reference thermocouple.  

 

 
Fig. 9: Typical errors in transient tests for controlled and uncontrolled sensor  

The errors shown in Fig. 9 were the differences between the IR measurements and 𝑇𝑟𝑒𝑓 , the latter being 

measured by the thermocouple in the copper plate; around 3000 data points were collected at 10 Hz as the surface 

was heated from 20 ℃ to 55 ℃. It can be seen that the transient measurements for the controlled sensor agree 

closely with the reference temperature whereas those for the uncontrolled sensor show a significant error that 

increases as the surface temperature increases. The controlled sensor was used for the experimental results 

discussed below, and the 95 % uncertainty in the surface temperature was estimated to be ±0.2 ℃. 

 

4. Transient heat transfer measurements 

4.1 Analysis of experimental data 

A series of transient heat transfer experiments was conducted at locations of 𝑥 = 80, 140 and 200 mm. The 

measured surface temperatures were used, as described in Section 2, to compute both 𝐵𝑖 and the transient values 

of 𝜃𝑎𝑑.  

For the boundary conditions for Fourier’s equation, the measured 𝜃𝑠 data were used for the front surface. As the 

temperature increase on the back surface was very small (less than 3 ℃ at 𝑡 = 300 s), a laminar free-convection 

heat transfer coefficient was used as the boundary condition at z = L. The correlation given by Incropera et al. 

(2006) for an isothermal vertical surface is: 

𝑁𝑢 =
ℎ𝑙

𝑘𝑎𝑖𝑟

= (
𝐺𝑟

4
)

1/4 0.75𝑃𝑟1/2

(0.609 + 1.221𝑃𝑟1/2 + 1.238𝑃𝑟)1/4
 (4.1) 

where 

𝐺𝑟 =
𝑔𝛽(𝑇𝐿 − 𝑇𝑎𝑚𝑏)𝑙3

𝜈2
 (4.2) 

 

𝑃𝑟  is the Prandtl number, 𝐺𝑟  the Grashof number, 𝑔  the gravitational acceleration,  𝛽   the volume expansion  

coefficient, 𝜈  the kinematic viscosity, and 𝑙 = 50 mm is the vertical height of the IR sensor measured from the 

bottom of the target plate. For the results discussed below, 0 < ℎ𝐿 < 2.2 W/m2K. In practice, the difference in 
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the solution of Fourier’s equation using free-convection or adiabatic back surface boundary condition was 

quantitatively insignificant. 

The front-surface temperatures were measured using the controlled IR sensor described in Section 3. The value 

of the experimental adiabatic-surface temperature was calculated from Eq. (1.2) using a recovery factor for 

turbulent flow over a flat plate of 𝑅 = 𝑃𝑟1/3, which for air corresponds to 𝑅 = 0.89;  𝑇∞ was determined from 

the fast response thermocouple, which had a recovery factor of 0.72; and 𝑈∞ was measured by the pitot tube in 

the free stream. In the experiments, 𝑇𝑎𝑑 − 𝑇∞ was less than 0.7 ℃. 

 

 4.2 Experimental results 

Two transient tests are discussed here: an approximate step-change (𝐹𝑜𝜏 ≈ 1.19 × 10−4) and a slow transient 

(𝐹𝑜𝜏 ≈  0.021). The approximate step-change was achieved using the mesh heater described in Section 3, and the 

slow transient was obtained by gradually increasing the power output from the  programmable supply.  

Figure 10 shows a typical result for the approximate step-change case, where 3000 values of  𝜃𝑠 were collected 

over approximately 300 s. As described in Section 2, a two-term exponential series was assumed for 𝜃𝑎𝑑 in the 

MLE model, and the computed results for 𝜃𝑎𝑑  and 𝜃𝑠 show very good agreement with the measured values. The 

computed and measured maximum values of 𝜃𝑎𝑑  were 1.269 ± 0.047 and 1.256, respectively; the measured 

value of  𝜃𝑎𝑑,𝑚𝑎𝑥 was taken as the maximum value of the smoothed data.   

The computed Nusselt numbers were compared with the correlation given by Holman (1997) for turbulent 

boundary-flow over a flat plate where 

𝑁𝑢𝑥 =
ℎ𝑥

𝑘𝑎𝑖𝑟

= 0.0296𝑅𝑒𝑥
0.8𝑃𝑟

1
3 (4.3) 

 

For the experimental results, where 𝑅𝑒𝑥 = 2.74 × 105, the value of  𝑁𝑢𝑥 from Eq. (4.3) is 591; the computed 

value of 578.8 ± 16.6 is approximately 2 % lower than the correlation. The value of 𝜎 found from the MLE was 

0.009, which corresponds to an uncertainty in the measured surface temperature of 0.2 ℃. 

 

Figure 11 shows a typical result from a slow-transient test where again it can be seen that the agreement between 

the computed and measured values of 𝜃𝑎𝑑 and 𝜃𝑠 is very good. The computed and measured values of  𝜃𝑎𝑑,𝑚𝑎𝑥  

were 1.123 ± 0.016 and 1.130, respectively.  For the experimental results, where 𝑅𝑒𝑥 = 2.76 × 105, the value 

of  𝑁𝑢𝑥  from Eq. (4.3) is 595; the computed value of 618.9 ± 43.2 is approximately 4% higher than the 

correlation. The value of 𝜎 found from the MLE was 0.014, which corresponds to an uncertainty in the measured 

surface temperature of 0.2 ℃. 

 

 
Fig. 10: Comparison between computed and measured temperatures for approximate step-change in air temperature 

(𝑹𝒆𝒙 = 𝟐. 𝟕𝟒 × 𝟏𝟎𝟓 𝐚𝐧𝐝 𝒙 = 𝟏𝟒𝟎 𝐦𝐦) 

 

Fig. 12 shows good agreement between the variation of  𝑁𝑢𝑥with 𝑅𝑒𝑥 determined from the experiments and 

the correlation calculated from Eq. (4.3). All data points shown in the figure were acquired from approximate 

step-change experiments, and 𝑁 = 3000 was used for the analysis of each case. In most cases, the correlation 

was within the  95 % confidence intervals obtained from the MLE.  (Five slow transient experiments were also 

conducted, and they all showed good agreement with the correlation.)  
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As air temperature data is not required by the MLE model to compute 𝑁𝑢𝑥 and 𝜃𝑎𝑑, the model should also be 

applicable to the three-temperature problems discussed in Section 1.  

 

 
Fig. 11: Comparison between computed and measured temperatures for slow transient in air temperature (𝑹𝒆𝒙 =

𝟐. 𝟕𝟔 × 𝟏𝟎𝟓 𝐚𝐧𝐝 𝒙 = 𝟏𝟒𝟎 𝐦𝐦) 

 
Fig. 12: Variation of 𝑵𝒖𝒙 and CI with 𝑹𝒆𝒙 at three locations compared with empirical correlation (Eq. (4.3)) 

5. Conclusions 

The big advantage of Maximum Likelihood Estimation, MLE, is that it can estimate the optimum values of ℎ 

and 𝑇𝑎𝑑  , and their confidence intervals, from the numerical solution of the 1D Fourier’s equation for any transient 

conditions. Importantly, this includes slow transients where the assumption of a semi-infinite-solid (which is 

assumed in most solutions) is invalid. If the boundary condition of the back face is known, or assumed, the 

numerical solution does not require the air temperature and needs only the surface-temperature history of the test 

piece. 

Numerical simulations were used to demonstrate how MLE can be used to determine values of 𝐵𝑖 and 𝜃𝑎𝑑 (the 

nondimensional versions of ℎ and 𝑇𝑎𝑑 ) from transient surface-temperature measurements, and ‘experimental’ 

temperatures of a test piece were simulated by adding noise to the ‘true’ temperatures. The true temperatures were 

computed from the direct solution of Fourier’s equation with specified values of 𝐵𝑖 and 𝜃𝑎𝑑, and the back face of 

the test piece was assumed to be adiabatic. For the MLE, it was assumed that the transient variation of 𝜃𝑎𝑑 could 

be represented by a two-term exponential series, with unknown amplitudes and time-constants, and Fourier’s 

equation was used to compute values of 𝐵𝑖 and 𝜃𝑎𝑑 from the noisy data. For different thermal transients (including 

step-change and slow-transient cases), the computed values were shown to be in good agreement with the true 

values.  

For the real experiments, a novel infra-red (IR) sensor, capable of measuring transient surface temperatures with 

an uncertainty of ±0.2 ℃, was used in  a purpose-built wind tunnel. A mesh heater was used to create a sudden 
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increase in the air temperature, 𝑇∞, and the IR sensor was used to measure the transient surface temperatures on 

a flat wall of the wind tunnel. Transient values of 𝑇∞ were measured with a fast-response thermocouple with an 

uncertainty of ±0.1 ℃, and the steady air velocity was measured by a pitot tube with an uncertainty of ±0.7 m/s. 

The boundary-layer flow over the wall was shown to be turbulent, and the transient values of 𝑇𝑎𝑑  were determined 

from the measured mainstream temperatures and velocities. For the boundary conditions for Fourier’s equation, 

the measured surface temperatures were used for the front surface of the wall and a free-convection heat transfer 

coefficient was used for the back surface. Numerical solutions of Fourier’s equation, obtained using MLE, gave 

values of the Nusselt numbers and adiabatic surface temperatures that were in good agreement with an empirical 

correlation for turbulent flow over a flat plate. 

Suggestions were made about the length of time and number of data points needed to achieve accurate results, 

but it is recommended that experimenters should become sufficiently familiar with the use of MLE to be confident 

in its application to their particular experiments. The method applied here to boundary-layer flow with one stream 

of fluid could also be applied to ‘three-temperature problems’, like film cooling, which involve two streams of 

fluid. The advantage of using MLE for three-temperature problems is that both ℎ and 𝑇𝑎𝑑  can be determined 

accurately from a single experiment. 
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Appendix: Maximum Likelihood Estimation (MLE) 
A1: Determination of empirical constants 

MLE is a statistical method for estimating the value of empirical parameters from a given data set. Silvey (1975) 

and Davison (2003) give a detailed introduction to this method, and Zhou et al. (2013) used MLE to estimate the 

parameters, and their confidence intervals, in an orifice model for the prediction of ingress through turbine rim 

seals. In this paper, MLE is used to estimate values of  𝐵𝑖 and 𝜃𝑎𝑑 from measurements of the nondimensional 

surface temperatures 𝜃𝑠. 

First, a likelihood function, P, is developed: the measured nondimensional wall temperature, 𝜃𝑠, is assumed to 

be normally distributed, with a standard deviation 𝜎, around the true wall temperature, 𝜃𝑤. The determination of 

𝜃𝑤 depends on the two unknown parameters, 𝐵𝑖 and 𝜃𝑎𝑑, so that 𝜃𝑠~𝒩(𝜃𝑤(𝐵𝑖, 𝜃𝑎𝑑), 𝜎2), where 𝒩 denotes a 

normal distribution and 𝜃𝑤(𝐵𝑖, 𝑇𝑎𝑑) denotes that 𝜃𝑤 is a function of  𝐵𝑖 𝑎𝑛𝑑 𝜃𝑎𝑑 . The likelihood function can 

therefore be expressed as 

 

𝑃 =
1

(2𝜋𝜎2)
𝑁
2

exp(− ∑
(𝜃𝑠,𝑖 − 𝜃𝑤,𝑖(𝐵𝑖, 𝜃𝑎𝑑))

2

2𝜎2

𝑁

𝑖=1

) (A.1) 

where 𝑁 is the number of data points.  

Instead of maximising P to find the most likely values of 𝜎, Bi and 𝜃𝑎𝑑, it is more convenient to minimize l , 

the negative logarithm of 𝑃, where 

 

𝑙 =
𝑁

2
ln(2𝜋) + 𝑁ln(𝜎) +

1

2𝜎2 ∑(𝜃𝑠,𝑖 − 𝜃𝑤,𝑖)
2

𝑁

𝑖=1

 (A.2) 

 

The minimisation is achieved using Newton’s method. 

As 𝐵𝑖  depends mainly on the fluid dynamics, it is assumed to be constant in the transient heat transfer 

experiments. For a slow transient, where the air temperature changes with time,  𝜃𝑎𝑑 is time-dependent, and it is 

assumed that it tends to its steady-state value in an exponential manner. For the experiments discussed in this 

paper, a two-term exponential series was found to give acceptable results, hence, 
 

𝜃𝑎𝑑 = 𝐶1 (1 − exp (−
𝐹𝑜

𝐹𝑜𝜏1

) )

+ 𝐶2 (1 − exp (−
𝐹𝑜

𝐹𝑜𝜏2

)) 

(A.3) 

MLE is then used to determine the four constants 𝐶1, 𝐶2, 𝐹𝑜𝜏1
, 𝐹𝑜𝜏2

 together with the values of 𝐵𝑖 and 𝜎.  

 

A2: Calculation of confidence intervals 

Let 𝝓  denote a generic parameter vector (for example, [𝜎, 𝐵𝑖, 𝐶1, 𝐹𝑜𝜏1
, 𝐶2, 𝐹𝑜𝜏2

] ), and let 𝝓𝒐  denote the 

parameter vector estimated from MLE. From Davison (2003), it can be shown that, for large 𝑁,  

 

𝝓 ~ 𝒩(𝝓𝒐, (𝜕2 𝑙)/(𝜕𝝓𝜕𝝓𝑇  )−1) (A.4) 

 

(𝜕2 𝑙)/(𝜕𝝓𝜕𝝓𝑇 )−1 , which is the covariance matrix of the parameters, can be used to construct the confidence 

intervals for components of 𝝓𝒐. Let 𝜎𝑘 denote the 𝑘𝑡ℎ square root of the leading diagonal element of the matrix, 

then the corresponding 95 % confidence interval is 𝜙𝑜,𝑘 ± 1.96 𝜎𝑘. 

(The MLE for this paper was coded in MATLAB language, and the negative likelihood function, 𝑙 , was 

minimized using  the ‘lsqnonlin’ function to obtain the parameters as well as its hessian matrix, 𝜕2 𝑙/(𝜕𝝓𝜕𝝓𝑇). 

The inverse of the hessian matrix was used to calculate the confidence intervals.) 


