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Abstract—In the near future, with more distributed generators 

connected and new demands arising from the electrification of 

heat and transport in the distribution networks, infrastructure 

will become ever more stressed. However, building costly new 

circuits to accommodate generation and demand growth is 

time-consuming and environmentally unfriendly. Therefore, 

active network management (ANM) has been promoted in many 

countries, aiming to relieve network pressure. Previous research 

in ANM was focused on distribution areas with significant 

renewable penetration, where ANM reduced network pressure 

through significantly enhanced generation curtailment strategies 

rather than adopting traditional asset investment.   

This paper proposes the use of electric vehicles (EVs) as 

responsive demand to complement network stress relief that was 

purely based on generation curtailment. This is achieved by 

allowing EVs to absorb excessive renewable generation when they 

cause network pressure, and it thus can provide additional 

measures to generation curtailment strategies. The approach is 

illustrated on a practical extra-high voltage distribution system. 

The analyses clearly demonstrate the combined management of 

demand and generation is superior to previous sole generation 

management. The combined management strategy can achieve 

7.9% improvement in utilization of renewable energy, and 

subsequently increase the net investment profit by £566k.  

 

Index Terms—active network management, demand side 

management, electric vehicle, network pressure, renewable 

energy generation.  

 

I. INTRODUCTION 

HE UK has signed up to the EU Renewable Energy 

Directive, which includes a UK target of 15% energy from 

renewables by 2020. The target demands a seven-fold increase 

in energy consumptions from renewables from 2008 level [1]. 

Significant of renewable energy generators are expected to be 

connected to the existing distribution network.  The distribution 

networks are traditionally designed to distribute power from 

grid supply points to end customers. They have very limited 

capacity to accommodate significant renewables. This can lead 

to severe network pressure and significant energy losses during 
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generation peak times, particularly for areas that are dominated 

by renewable generation. The traditional way to provide the 

extra network capacity is to reinforce the capacity of existing 

circuits or to construct new circuits, which is expensive, 

time-consuming, and environmentally unfriendly.  

Active network management (ANM) [2] has emerged as a 

cheaper alternative to the traditional network investment to 

accommodate growing generation and demand. Through better 

utilization of the existing network capacity, ANM can strike the 

right trade-offs between building new assets and enhancing 

system operational performance [3-10]. In generation 

dominated area, i.e. network pressure caused by significant 

renewable development, ANM, like active generator output 

curtailment strategy, is more economic than network 

reinforcement investment when accommodating growing 

distributed generators (DGs) [11]. Several active control 

methods have been presented in [4, 12-14]. A multi-period AC 

optimal power flow technique is proposed to maximize wind 

power capacity in [4]. Active power flow management is 

applied in [12], based on logic control for trimming and 

tripping of regulated non-firm generation to control power 

flow. Paper [13] uses artificial intelligence technique based 

constraint programming to automatically manage DG real 

power outputs in medium voltage distribution networks. An 

autonomous regional active network management system is 

introduced in [14] to reduce network pressure through using 

enhanced generation curtailment strategies. However, previous 

efforts in these papers only investigate the value of ANM in 

terms of economic generation curtailment, but they do not 

consider the benefits from demand side management (DSM) 

particularly from flexible demand, like electrical vehicles 

(EVs).   

DSM is implemented to dynamically balance the demand 

between peak times and load curve valleys, thus reducing 

network planning and operation cost [15-17]. EVs, which are 

regarded as energy storage, can smooth the intermittency of 

renewable energy resources, such as wind power. If EV 

charging can be controlled to coincide with lull periods in 

demand, this would not only avoid exacerbating peak loads but 

also accommodate excessive wind power. The potential 

benefits of “wind-EV” complementation are discussed in [18, 

19]. According to [20], DSM programs can be classified into 

price-based [21, 22] and incentive-based [23-25]. Price 
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mechanisms in the form of time-of-use (TOS) electricity tariffs 

are employed in [21] to encourage commuters to recharge EVs 

during off-peak hours. Paper [22] shows a novel method to  

plane EV charging, which is achieved by electricity price first 

and then be constrained with electricity grid constraints, both 

voltage and power. A DSM strategy that takes into account 

customers’ preferences, comfort levels, and load priorities is 

proposed in [24] to accommodate EV charging while keeping 

the peak demand unchanged. Paper [25]establishes a single EV 

charging demand model, and then employs queuing theory to 

describe the behavior of multiple EVs.  

This paper applies DSM achieved through smart charging of 

EVs on the existing ANM. The proposed control algorithm 

focuses on the technical aspects of incentive-based DSM. The 

optimal EV response across the entire network is determined in 

time sequence in order to alleviate network pressure points. The 

demonstration results show that when DSM is considered, the 

network pressure can be alleviated before generation 

curtailment.  A substantial reduction of up to 7.9% in renewable 

energy curtailment can be realized. …….uncertainty energy 

prices 

This paper has the following four key contributions. 

1) DSM with EV utilization in time sequence is applied on 

the existing ANM; ….. 

2) It determines the impact of different time window scale 

for intelligent EV charging on distribution  network operation 

benefits and costs;  

3) It designs alternative planning strategies for distribution 

systems where both intelligent EV charging and economic 

generation curtailment are exercised for the largest profits. 

The paper is organized as follows. Section II introduces a 

model of existing ANM without DSM. Section III describes the 

improved ANM with DSM. Section IV discusses the case study 

of 33kV Aberystwyth network. Section V assesses the 

cost/benefit of the combined management of demand and 

generation in distribution network and its influence on network 

planning. Finally, the conclusion is drawn in Section VI. 

II. CONSTRAINT MANAGEMENT OF EXISTING ANM WITHOUT 

DSM 

Traditional constraint management for network pressure in 

distribution network follows the last-on-first-off (LOFO) rule 

[26], where the last-on distributed generator (DG) will be the 

first to be tripped off or curtailed once line overloading is 

detected. However, sometimes, the last-on DG may not 

contribute to remove the overloading, which results in 

unnecessary wasted energy. To overcome the disadvantage, 

ANM has been developed. Within various ANMs, a project 

called autonomous regional active network management 

system (AuRA-NMS) was deployed in the UK in 2006 [27, 28]. 

It allows real-time states to be used to select the most sensitive 

bus-bar to relieve network pressure, which could eliminate 

stress with the least amount of generation curtailment or load 

shedding. The optimal decision of existing AuRA-NMS is 

formulated as the following linear programming problem [27]: 

Objective: 

 
Subject to: 

 

 

 

where at the ith bus-bar, αi is coefficient of generation 

curtailment, βi is coefficient of load shedding, Pgi is power 

generation, Pdi is the load demand, ΔPgi is generation 

curtailment, ΔPdi is load shedding, is the lower limit 

of generation output, is the upper limit of generation 

output, is the maximum power flow of the lth line and Sli is 

an element in the sensitivity matrix S of line flow to nodal 

power injection.  NB, NG, and ND are the sets of branch, 

generation, and load demand, respectively. 

Power transfer distribution factor (PTDF) is a sensitivity 

matrix of line active power flow with respect to nodal power 

injection. When an overloaded state is detected, the most 

overloaded line lm will be found first. Then PTDF is introduced 

as a reference matrix to select the most sensitive bus-bar, which 

has the largest impact on line lm. Based on the PTDF, the 

generation curtailment ΔPgi, which can be used to quantify the 

operational benefit of AuRA-NMS constraint management, is 

derived as 

 
where si is the slack bus, is the power flow on line lm, and 

 is the line rating on line lm. It is worth noting that the 

operational benefit in the existing AuRA-NMS is obtained only 

through generation curtailment and neglects the potential 

operational benefit from the demand side. 

III. PROPOSED CONTROL ALGORITHM FOR ANM WITH DSM 

To improve the utilization of renewable energy and increase 

net investment benefit, in our proposed control algorithm, EV 

charging strategy is exemplified as DSM. This approach is 

taken to evaluate potential operational benefit from the demand 

side. This section is separated into two parts. After indicating 

constraints for intelligent EV charging in section A, the 

operation of DSM (intelligent EV charging) is explained in 

section B. 

A. Constraints for intelligent EV charging 

In order to calculate the lower/upper limits for EV charging, 

two conditions are assumed in the proposed algorithm:  

1. Total electricity consumption before and after DSM on 

each node remains unchanged. 

2. EV load shifting capability is predefined, limited by EV 

battery capacity, assumed travel behavior, etc. 
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The first assumption can be mathematically represented as 

 
where  is the new load demand at bus i after load shifting. 

The predefined EV load shifting capability in the second 

assumption can be described as 

 

where at the ith bus-bar and in tth sequence,  is the required 

reductive/incremental amount of EV load demand to eliminate 

network pressure,  is the flexible amount of EV demand, 

and LTDF (load transfer distribution factor) is a sensitivity 

matrix of line active power flow with respect to nodal demand. 

Since load is regarded as negative generation, LTDF can be 

derived from PTDF. The lower/upper limits of , denoted 

as [Ct,min Ct,max], are considered over a 24-hour period and are 

determined by three factors [22, 23, 29, 30]:  

1. Number of EVs. 

2. EV battery characteristics.  

3. Road trip limitations. 

 

1)  Number of EVs 

The number of EVs on a specific bus-bar is calculated 

according to EV penetration rate and the corresponding 

customer number. EV penetration rate is assumed to be 0.675 

per customer from year 2030 to 2050 [31]. Customer number 

on the ith bus-bar (CNi) can be expressed as 

 

where is the annual load demand,  is the percentage of 

domestic customers [32], and  is the average domestic 

electricity consumption [32]. Numbers of EVs on 12 different 

bus-bars are shown in detail in Table 1. 

 
TABLE 1 

NODAL EV OWNERSHIP IN THE NETWORK 

Bus Bar 

Yearly 

Load 

Demand 

(MWh) 

Domestic 

percentage 

Average 

Domestic 

consumption 

(KWh) 

Customer 

Num. 

EV 

Num. 

Bow street 26011 46.61% 5652 2145 1448 

Machynlleth1 17109 43.39% 4946 1501 1013 

University 

College Wales 
29496 46.61% 5652 2432 1642 

Aberdovey 15775 46.92% 5134 1442 973 

Tywyn 23929 46.92% 5134 2187 1476 

Fairbourne 14816 46.92% 5134 1354 914 

North Road 30644 32.60% 3952 2528 1706 

Aberystwyth 29926 46.61% 5652 2468 1666 

Parc Y Llyn 35785 48.95% 4361 4017 2711 

Llanilar 12792 46.61% 5652 1055 712 

Rhydlydan 5621 48.95% 4361 631 426 

Rhydlydan ST1 3385 48.95% 4361 380 257 

2) EV battery characteristics 

Typical EV battery capacity ( ) in the UK is Nissan Leaf 

characterized by 24kWh. To avoid damage and premature 

aging, there are limitations on the battery state-of-energy [22] 

as shown below: 

 

where  is the state-of-energy of vehicle k at timeslot t. The 

minimum ( ) and maximum ( ) coefficients of the battery 

capacity are set to be 0.2 and 0.9, respectively. 

3) Road trip limitations 

The use of an EV at each timeslot within 24 hours can be 

obtained from [29] as shown in Fig. 1. The average electricity 

consumption of an EV in use is 2.1 kW [23]. When an EV is 

parked at a charge station, the vehicle is assumed to charge 

immediately at the maximum charging rate of 4 kW. Since the 

operation of ANM is executed on each bus-bar rather than each 

customer, this paper considers total EVs on each bus-bar 

instead of individual EV separately.  

 

 
Fig. 1.  Percentage of trips by EV at each hour 

To guarantee sufficient energy for the next hour trip, the 

battery state-of-energy St of an EV should fall within the 

minimum and maximum energy range. For a large number of 

EVs (N) on a bus-bar, the total state-of-energy of batteries 

varies in the range of [St,min, St,max]. The upper (Ct,max) and lower 

(Ct,min) limits of EV charging at timeslot t can be expressed as: 

 

 

 

 

                                                                                

 

where ( ) is the minimum (maximum) 

state-of-energy at timeslot t-1, is total electricity 

consumption of all EVs on the bus-bar over the next timeslot 

t+1 due to driving,  is the maximum charging rate per 

vehicle when it is stopped,  is the number of stopped 

EVs at timeslot t,  ( ) is the min (max) 

energy-of-state at the end of 1st hour, and  is the driving 

electricity consumption in the 2nd hour. 

In order to derive the lower/upper limits of EV charging 

(Ct,min and Ct,max  some initial conditions should be clarified for 

the energy-of-state  as listed in (14) and (15). The unknown 
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and  in (11) and (12) can then be derived from each other 

according to the recursive relationship in (13).  

B. Operation of EV charging strategy 

In the proposed control algorithm, load demand and 

generation profiles are updated every hour. The intelligent EV 

charging follows the time-window schedule. M-time-window 

means that in time sequence t, load shifting can be made in the 

following M-1 hours, i.e. from t+1 to t+M-1. When no network 

stress is detected in t, the check system will move on to 

sequence t+1 and the dispatch of EV charging in t keeps 

unchanged. Otherwise, intelligent EV charging starts to work 

before the check system moves on to the next sequence.  

 

 
Fig. 2.  Schematic illustration of 6-hour time-window 

 

In proposed ANM with DSM, when network pressure is 

detected, the most overloaded line (lm) will be found in the 

same way as that in existing ANM without DSM. According to 

LTDF, the most sensitive node with maximum absolute LTDF 

value will be picked out. The value of LTDF could be either 

negative or positive for increasing or decreasing load demand, 

respectively. According to (8) and by using LTDF, the ideal 

load shifting quantification  can be calculated to eliminate 

network pressure. The next step is to find a proper timeslot in 

the time-window scale to exchange . For example, when 

the time-window scale is assumed to be 6 hours, the best 

timeslot is chosen within the shadow grids as shown in Fig. 2. 

By ranking EV flexibility at these timeslots, where EV 

flexibility is the difference between original EV charging 

amount and EV charging boundary (Ct,max/Ct,min), the most 

suitable timeslot can be chosen. If timeslot t+3 has the 

maximum EV flexibility, the exchange of  should be done 

between timeslot t and timeslot t+3 in Fig. 2. If the network 

pressure cannot be totally eliminated, the program will look 

into the second most sensitive node to make further load 

shifting. The loop will carry on until there is no available EV 

left for load shifting. After that, generation curtailment is 

executed as mentioned in section II to eliminate the remaining 

network pressure. The corresponding flowchart for proposed 

ANM constraint management with DSM is shown in Fig. 3. 

 

Overloading exist?

Find the most effective node based on LTDF and 

determine how much its demand ( P    ) need to 

change to relief overloading

Check the availability of flexible EV on the 

corresponding node in the following M hours and pick 

out the most suitable timeslot to deal with  P    

Forming PTDF matrix

Input generation and load profile by 

sequence and calculate the DC line flow

Find the most overloaded line lm

DG curtailing or load shedding

Output 
 

Fig. 3.  Flowchart of ANM constraint management with DSM 

IV. CASE STUDY OF ANM WITH DSM  

To analyze the benefit of proposed ANM with DSM, a 

47-node network is studied. In section A, a practical test system 

of ANM with DSM is introduced and its load profile is forecast. 

In section B, the corresponding simulation results are 

discussed.   

A.  A practical test system of ANM with DSM and EV demand 

forecast 

The test system, Aberystwyth 33kV network, is a practical 

132/33kV distribution network in the UK [27] and its 

simplified single line topology is shown in Fig. 4. For the test 

system, the hourly 33kV load demand and DG output are 

available in year 2006, where there are 8760 operating states in 

total. The load profile in year 2006 mainly contains classical 

loads, namely domestic, commercial, and industrial electricity 

consumption. Load demand in the Aberystwyth area is not 

expected to increase in the short and medium term. Hence, all 

future classical loads are assumed invariant from 2006 to 2029. 

When more EVs and heat pumps are connected, a large amount 

of flexible load demand will be added to the classical loads. In 

order to use the data of year 2006-2050 to simulate the test 

system, the forecast of load demands of 2030-2050 are 

required.  
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Fig. 4.  Single diagram of the 132/33kV network 

 

New added EV demand on each bus-bar can be estimated 

analytically based on the customer number ratio in that area, 

which is the ratio of the customer number (CNi) to the total 

population in the UK [33]. With demand profiles (database in 

DECC summary) for the whole UK and customer ratio of each 

bus-bar, we can allocate the EV load demand of the whole 

country to the test system.  

B. Time-series simulation of the test system  

Power flow calculations are carried out for the 8760 

operating states in sequence. After simulation, the generation 

curtailment results are counted. It is assumed that the duration 

of each generation curtailment is one hour. The total generation 

curtailments are identified in the whole year. Overloading 

mainly occurs on the power flow of line 5015-5017, 5010-5012, 

and 5018-5017, because of the new DG integration. When line 

overloading occurs in some operating states, for the year 2030, 

ANM without DSM needs to curtail renewable energy by 

1790.74 MWh. When DSM is considered, however, the 

generation curtailment reduces dramatically as shown in Fig. 5. 

The reduction reaches up to 7.9% and its average value is 

around 7.6%. In Fig. 5, two phenomena are worth noting. First, 

in most situations, the generation curtailment is found to 

decrease when time-window scale increases. The 24-hour 

time-window scale has the least generation curtailment. Thus, 

we argue that larger time-window scale can give better 

perspective of the network condition to help make a smarter 

load shifting decision. Second, small fluctuations appear in the 

curve. ANM with DSM is used to minimize the generation 

curtailment in one particular hour within a fixed time-window 

scale. The optimization simulation is done in sequence. The 

operation in earlier hours may increase the power flow in later 

hours and make network congestion in later hours more severe. 

Therefore, the increased generation curtailment in later hours 

may be bigger than the saved generation curtailment in earlier 

hours, which makes the total annual generation curtailment 

more in the end and leads to the curve fluctuation.  
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Fig. 5.  Generation curtailment of ANM with DSM under different 

time-window scales 
 

In ANM without DSM, the most serious congestion happens 

at 10:00 a.m. on the 340th day of the year 2030. Thus, data on 

this day is chosen to analyze the change in load curve due to 

DSM. ANM with DSM goes through all bus-bars to do load 

shifting according to their LTDF ranking before generation 

curtailment. Since one node load shifting is limited and always 

not enough to eliminate line overloading, we analyze the load 

shifting of the entire network as shown in Fig. 6. 
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Fig. 6.  EV re-dispatch on peak generation curtailment day 

 

The generation curtailments of ANM with and without DSM 

are displayed in Table 2. Without DSM, the total generation 

curtailment of the 340th day is 28.7 MWh. The value could be 

reduced by 12% (namely 3.5 MWh) with DSM. In Fig. 6, the 

difference between the original load curve (blue) and classical 

load curve (red) reveals the original EV charging, and the 

difference between classical load curve (red) and load curve 

after DSM (green) is re-dispatch of EV charging in 24-hour 

period. In the first 5 hours (from 0:00 to 5:00), the EV demand 

is increased to reduce the generation curtailment. The 

increasing EV demand mainly comes from load shifting 

accumulated from the previous day or the later hours. In the 

following 10 hours (from 5:00 to 15:00), the load curve after 

DSM matches the original load curve in Fig. 6. However, one 

should note that this does not mean there is no load shifting on 
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individual nodes in Fig. 6 and one can see that the curtailment 

values still have changes in these hours in Table 2. From the 

16th hour on (from 15:00 to 24:00), compared with the original 

load curve, the load curve after DSM decreases dramatically, 

which is due to the slight line congestion detected in these 

hours. The shaved EV demand is moved to the timeslots that 

need larger load demand to alleviate network pressure. 

Although the generation curtailment has a small increase at 

22:00 in Table 2, the total curtailment of the whole 340th day is 

reduced. 

 
TABLE 2  

GENERATION CURTAILMENT COMPARISON WITH AND WITHOUT DSM 

Time Without DSM (MWh) After DSM (MWh) 

1:00 1.35 0.64 

2:00 0.38 0.00 

3:00 0.30 0.00 
4:00 0.00 0.00 

5:00 2.57 1.98 

6:00 0.75 0.75 
7:00 0.98 0.98 

8:00 2.47 1.98 

9:00 4.31 3.86 
10:00 4.46 4.07 

11:00 2.27 1.90 

12:00 4.31 3.98 
13:00 1.97 1.67 

14:00 1.69 1.73 

15:00 0.88 1.18 
16:00 0.00 0.00 

17:00 0.00 0.00 

18:00 0.00 0.00 
19:00 0.00 0.00 

20:00 0.00 0.00 

21:00 0.00 0.00 
22:00 0.01 0.44 

23:00 0.00 0.00 

24:00 0.00 0.00 

Total 28.69 25.16 

V. COST/BENEFIT ASSESSMENT OF ANM WITH DSM AND 

NETWORK PLANNING 

In this section, the impact of DSM on the optimal trade-off 

between operational benefit and network investment cost is 

discussed. The alternative planning strategies for smart 

distribution system are also recommended. 

A. Wind farm repowering and load profile forecast 

Considering the life expectancy of existing wind-farms, the 

year they were commissioned, the potential for increasing land 

use, and the potential for increasing turbine size, the expansion 

size and time of repowering wind farms are investigated in [26]. 

Since the repowering in 2018 has already reached the 

maximum wind blade size level, the wind turbines cannot be 

expanded any more. Therefore, the wind generation profile will 

stay the same as that of 2018. The load profile from 2011 to 

2050 was forecast in section IV. 

B. Benefit and cost category 

For each investment option, the operational benefit 

considered is from the annual generation curtailment reduction 

as shown: 

 

where in the year y,  is the operational benefit, is the 

electricity price, and is the generation curtailment 

reduction. 

The network investment cost considered in network planning 

mainly includes primary asset investment, ANM, and DSM as 

shown: 

 
where in the year y,  is the network investment cost,  is 

the cost of asset investment,  is cost of investing ANM, 

and is the cost from DSM. 

For the primary asset investment, the time to invest new lines 

in network is determined by the year the wind farm is upgraded 

and the EV demand connected. The detailed information is 

listed in Table 3 [26]. For existing ANM without considering 

DSM, its cost is £700k for the test system and its lifetime is 20 

years [27]. In order to test the feasibility of the constraint 

programming method for power flow management in ANM, a 

software prototype was recently, developed to run on 

commercially available substation computing equipment [11]. 

Hence, the cost of ANM consists of hardware and software. For 

DSM, its cost estimation, however, varies significantly 

between countries and even between networks in one country. 

Therefore, it is difficult to determine the specific cost of DSM. 

However, one should note that since existing ANM already has 

the ability of remote measurement and monitoring, which can 

remote monitor the EV consumption, DSM can be integrated 

into the software in ANM. Therefore, in our proposed ANM 

with DSM, the cost of integrating DSM is minimized.  

 
TABLE 3 

TIME AND COST OF PRIMARY ASSET INVESTMENT 

Number Right of Way Year 
Cost 

(£m) 

Present Value 

(£m) 

Lifetime 

(years) 

Asset 1 
5015-5017 

5017-5018 
2013 1.33 1.14 40 

Asset 2 
5010-5012 

5012-5013 
2018 3.13 1.94 40 

Asset 3 5017-5018 2030 1.25 0.33 40 

 

After the operational benefit and investment cost are 

obtained, the internal rate of return (IRR) is used to compare the 

profitability of each planning strategy. The higher an option's 

IRR, the more desirable it is to be undertaken. It is calculated by 

setting the option’s net present value (NPV) [34] to be zero as:  

 

where y0 is the year 2011. 

C. Investment options 

The exhaustive list of investment options in Table 4 reflect 

four potential planning strategies, listed below, that distribution 

network operators (DNOs) might adopt in the light of 

increasing renewable penetration and EV demand.  

1) Invest only in network primary assets. 

2) Invest only in the ANM. 

3) Invest both in network assets and ANM. 

http://en.wikipedia.org/wiki/Profit_%28economics%29
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TABLE 4  

EXHAUSTIVE INVESTMENT OPTIONS 

Plan 

No. 
Investment detail 

Plan 

No. 
Investment detail 

1 2 lines in 2013 9 ANM in 2011& 2031+2 lines in 2013 

2 2 lines in 2018 10 ANM in 2011& 2031+2 lines in 2018 

3 1 line in 2030 11 ANM in 2011& 2031+1 line in 2030 

4 
2 lines in 2013+2 lines in 

2018 
12 

ANM in 2011& 2031+2 lines in 

2013+2 lines in 2018 

5 
2 lines in 2013+1 line in 

2030 
13 

ANM in 2011& 2031+2 lines in 

2013+1 line in 2030 

6 
2 lines in 2018+1 line in 

2030 
14 

ANM in 2011& 2031+2 lines in 

2018+1 line in 2030 

7 
2 lines in 2013+2 lines in 

2018+1 line in 2030 
15 

ANM in 2011& 2031+2 lines in 

2013+2 lines in 2018+1 line in 2030 

8  ANM in 2011& 2031   

D. Network planning considering electricity price uncertainty 

From year 2010 to 2050, energy price will fluctuate as well 

as the electricity price. Based on two key global drivers (the 

speed of global economic recovery and the extent of globally 

coordinated environmental action), Ofgem’s Project Discovery 

- Energy Market Scenarios projects electricity price from year 

2010 to 2025 in four different scenarios, namely GREEN 

TRANSITION, SLOW GROWTH, GREEN STIMULUS, and 

DASH FOR ENERGY [35]. To investigate the impact of 

electricity price uncertainty, we adopt the wholesale electricity 

price from year 2010 to 2025 in [35] and assume the wholesale 

electricity price from year 2026 to 2050 will be same with year 

2025.  

By applying electricity price in (16-18), the corresponding 

IRR of each investment option is calculated. Fig. 7 shows the 

IRRs in ANM without DMS. In Fig. 7, the highest IRRs are 

obtained in option 8 for all scenarios (26.34% in SLOW 

GROWTH, 26.18% in GREEN TRANSITION, 29.77% in 

DASH FOR ENERGY, and 24.56% in GREEN STIMULUS). 

Option 11 is comparable to the most profitable option 8. Fig. 8 

shows the IRRs in proposed ANM with DSM. The curve 

tendency in Fig. 8 is similar to that in Fig. 7. Option 8 still gets 

the highest profit in four scenarios. However, its largest IRR 

reaches 26.36%, 26.19%, 29.79% and 24.58% in scenario 

SLOW GROWTH, GREEN TRANSITION, DASH FOR 

ENERGY and GREEN STIMULUS, respectively. Fig. 7 and 

Fig. 8 give the recommendations in distribution network 

planning. However, in these two figures, it is difficult to see the 

increased benefit from applying DSM.  
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Fig. 7.  Options’ IRRs in ANM without DSM 
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Fig. 8.  Options’ IRRs in proposed ANM with DSM 

 

Fig. 9 shows the increased operational benefit from adding 

DSM to ANM. For each investment option, the increased 

benefit is calculated by comparing NPVs in ANM with and 

without DSM. In order to obtain NPVs, the IRR in (18) is set to 

be 6.9% [36] for all investment options. In Fig. 9, options 8 to 

15 show increased benefit due to DSM, whereas options 1 to 7 

show no increased benefit since they are only line investment. 

Option 11 (AuRA in 2011& 2031+1 line in 2030 in Table 4) 

gets the largest increased benefit from DSM (£530k in SLOW 

GROWTH，£478k in GREEN TRANSITION, £566k in DASH 

FOR ENERGY, and £463k in GREEN STIMULUS). Under 

different scenarios, the increased benefit in same investment 

option varies a lot, which implies that the electricity price 

uncertainty has a strong impact on the benefit and should not be 

neglected in the benefit assessment.  
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Fig. 9.  Increased benefit from DSM  
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VI. CONCLUSION 

This paper applies DSM to ANM to relieve network pressure 

caused by increasing DG connection in distribution networks. 

The DSM strategy is achieved through intelligent EV charging, 

which is realized determined based on network power flow 

condition in time sequence and limited by time-window scale.  

A practical 33kV network is exemplified as test system for 

ANM with DSM to assess the costs/benefits over one year. It is 

found that with intelligent EV charging, ANM can further 

reduce generation curtailment, i.e. more renewable energy 

could be utilized in the network. Results show that up to 7.9% 

of generation curtailment could be saved compared with the 

previous ANM. Moreover, it is also found that larger 

time-window scales always produce better performance, 

resulting in more generation curtailment reduction. By 

analysing four different electricity price strategies, the 

increased benefits from DSM are found to be strongly 

dependent on electricity price and its uncertainty, which is thus 

worth noting in optimal network asset investment. In general, 

the new ANM with DSM can provide a viable and promising 

enhancement to previous ANM, particularly for networks with 

high penetrations of renewable generation. 

VII. DISCUSSION 

This paper proposes a way to apply DSM on the existing 

ANM to reduce generation curtailment. The results positively 

approve that combined management of generation and demand 

can achieve 7.9% improvement in utilization of renewable 

energy, and subsequently increases the network investment 

profit by £566k.  

Paper [12] shows that the scheme has the potential to 

increase the capacity of generation connected by upwards of 

three times the FG connection capacity (i.e. from a FG capacity 

of 26MW to a total connected capacity of 74MW upwards). 

Paper [4]  indicates that power curtailment proved to have a 

significant impact on connecting larger volumes of DG, a 5% 

limit of energy curtailment increases by 30% the wind power 

capacity. Paper [14] shows the reduction in the level of 

generation curtailment using AuRA-NMS in term of different 

additional DG capacity. The generation curtailment reduction 

can reach 79.6% when the new DG capacity is set to be 40MW. 

But this paper does not investigate the role that DSM can play 

in reducing generation curtailment.   

It should be noted that the methods devised in this paper and 

reference are for different objectives with various constraints, 

and testified on different systems. It is impossible to set a 

benchmark to measure the benefits they can produce.  The work 

here is improvement over the existing ANM to consider the 

impact from EV charging. The results in this paper demonstrate 

that the new method can achieve fairly high benefits on top of 

the existing work [14]. 
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