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Abstract 

Revision total knee replacement is a challenging surgical procedure typically 

associated with significant loss of bone stock in the proximal tibia. To increase the 

fixation stability, extended stems are frequently used for the tibial component in 

revision surgery. The design of the tibial stem influences the load transfer from 

tibial component to the surrounding bone and is cited as a possible cause for the 

clinically reported pain in the location of the stem-end. This study aimed to analyse 

the strain distribution of a fully cemented revision tibial component with a validated 

finite element model. The model was developed from a scanned composite tibia 

(Sawbones), with an implanted, fully cemented stemmed tibial component aligned 



to the mechanical axis of the tibia. Loading was applied to the tibial component 

with mediolateral compartment load distributions of 60:40 and 80:20. Three strain 

gauged composite tibias with implanted tibial components of the same design 

using the same loading distribution were tested to obtain experimental strains at 

five locations in the proximal tibia. The finite element model developed was 

validated against strain measurements obtained in the experimental study. The 

strains displayed similar patterns (R2=0.988) and magnitudes with those predicted 

from the finite element model. The displacement of the stem-end from the natural 

mechanical axis in the finite element model demonstrated increased strains in the 

stem-end region with a close proximity of the distal stem with the cortical bone.  

The simulation of a mediolateral compartment load of 80:20 developed peak 

cortical strain values on the posterior-medial side beneath the stem. This may 

possibly be related to the clinically reported pain at the stem-end. Furthermore, 

stem positioning in close proximity or contact with the posterior cortical bone is a 

contributory factor for an increase in distal strain. 
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Introduction 

Total knee replacement (TKR) is a common and generally successful procedure with over 80,000 

surgeries being carried out each year in the United Kingdom.1 Statistics from national joint registries 

or clinical studies show that increasing numbers of young and more active patients are currently 

being considered for surgery, and this is potentially leading to a rise in revision TKR.1,2 A 

challenging aspect in revision TKR is the significant bone loss associated with bone resections 



from primary TKR, implant removal, fracture, infection, stress shielding and osteolysis.3,4 To 

increase the stability and improve fixation of the tibial component, extended stems are commonly 

used in revision surgery. A frequently reported complication is pain in the area of the stem-end 

attributed to the increased load transfer and stress concentration in the surrounding bone. Clinical 

studies show that pain at the stem-end in the tibia is mainly associated with the hybrid fixation 

technique with a cemented tibial tray and a press-fit stem.5-7 However, a small number of cases of 

pain have also been reported with fully cemented implants.6 To reduce the risk of pain, slotted 

press-fit stems have been used to reduce stress concentration at the stem end.6,8 In addition, a 

concept stem with a polyethylene tip has demonstrated an improved stress distribution by reducing 

the stiffness of the material at the stem tip.9 Completo et al.,10 in an experimental study of the 

polyethylene tip, linked a malaligned knee with an abnormal condylar load distribution as a possible 

contributory factor to stem-end pain. 

 To predict the biomechanical behaviour of new implant designs that are challenging to measure 

experimentally, the computational finite element method is commonly used. To validate these 

computational models, it is essential to compare the results with experimental data to demonstrate 

that the FE model provides a realistic representation.11 The variability of cadaveric bone is 

problematic for the reliability and repeatability in in vitro experimental studies of load transfer in the 

tibia in TKR. Therefore, standardised synthetic composite bone models are commonly used with 

structural properties that have been proven to represent the mechanical properties of cadaveric 

bone.12  

The aim of this study was to develop a validated FE Model for a fully cemented tibial component to 

facilitate the evaluation of strain concentrations at the stem-end. 

Materials and Methods 

Experiments 

Three experimental test specimens using fourth-generation composite tibias (medium left, 3401, 

Sawbones®, Vashon, WA, USA) were used in the study. These were implanted according to 

surgical procedure with a fully cemented tibial component of the Triathlon TS Knee System 



(Stryker, Kalamazoo, MI, USA) with a Co-Cr universal baseplate (size 4). Due to only one Triathlon 

Co-Cr stem being available, additional stems manufactured in stainless steel with the same 

geometry were used in the study (100 mm stem length and 12 mm diameter) (see Figure 1).  

[Insert Figure 1.] 

Figure 1: Manufactured cemented stem (a) used experimentally and original Triathlon TS stem (b).  

A standardised procedure was used to resect the tibial plateau at 11 mm measured from the highest 

point of the tibial plateau. The distal ends of the composite tibias were removed by cutting at a 

location 210 mm from the proximal resection plane and fixed in aluminium pots with a low melting 

point alloy (MCP70; Mining & Chemical Products, Wellingborough, UK) to allow for mounting the 

test specimens in the testing machine. Three-element ‘rectangular’ strain gauge rosettes  (1-RY91-

6/350, HBM, Darmstadt, Germany) were positioned based on a previous digital image correlation 

study to asses areas of interest and past published research.13 The strain gauges were placed at 

three posterior locations; 38 , 88 and 143 mm from the most proximal point of the tibia and one on 

the medial and the other on the lateral surface of the tibia at 45 mm from the proximal point (see 

Figure 2). A load of 500 N was applied through the femoral component and polyethylene insert 

using a hydraulic test machine (HBT 25-200; Zwick Roell, Ulm, Germany) with a 60:40 mediolateral 

compartment load distribution typical to that of a normal knee.14 The specimens were positioned 

on the rig using a series of location and alignment jigs. In addition, the test rig allowed adjustment 

in the coronal plane to set the mediolateral ratio and a degree of freedom axially in the traverse 

plane. The applied load of 500 N is less than the typical physiological loads experienced in the 

knee (see Figure 3). It was selected because of limitations in the Tekscan Flexiforce sensors (A201; 

Tekscan, Inc., South Boston, MA, USA) used in the experimental study to regulate the 

compartmental load share.13 Since the aim of this study was to validate the finite element analysis 

(FEA) model, as long as the loading conditions were replicated in the two approaches, the fact that 

this load was less than normal physiological loads was considered acceptable. 

 [Insert Figure 2.] 



Figure 2: Comparison of strain gauge locations: (a) reference central notch intact tibia, (b) 

experimental sample, (c) posterior view with global axis system, (d-e) lateral-medial view with 

localized 1 mm surface mesh. 

[Insert Figure 3.] 

Figure 3: Set up of experimental strain gauge study. 

 

 

Finite element analysis 

The bone geometry for the FEA was developed from (CT) scans of a fourth-generation composite 

tibia. The surface model contained two material layers: cortical bone and cancellous bone with an 

intramedullary canal. Computer-aided design (CAD) software, Catia V5 (Dassault Systemes, 

Velizy, France) was used to separate the surface layers and patch the distal connection point.  

Boolean operations created a multi-body part to replicate the geometry of the composite tibia. A 

Triathlon TS tibial component was measured with a Vernier calliper and the basic geometry 

reconstructed as a CAD model. A 1 mm thick cement mantle was used to model the fixation of the 

tibial component (tray and stem) and the intramedullary canal below the stem tip was filled with 

cement replicating the experimental specimens. To develop the required tibial component position, 

the stem was aligned to the mechanical axis of the tibia taking account of the reported range of 7° 

posterior slope.15,16 

The initial analysis was performed with the knee system built in 3° posterior slope positioning the 

stem centred in the cancellous bone and perpendicular to the canal axis in the coronal plane (see 

Figure 4). In addition, the posterior slope was modified in 1° steps (from 1° to 6°) and two models 

created with a medial/lateral stem offset of 1.8 mm to the canal axis simulating multiple stem-end 

positions.  

 

[Insert Figure 4.] 



Figure 4: Tibial component installation and alignment of stem-end to the intramedullary canal 

axis. 

Young’s modulus for cortical and cancellous synthetic material, 16.7 GPa and 0.155 GPa, 

respectively, were obtained from manufacturers’ material data sheets.17 The Young’s Modulus for 

cement and the Co-Cr implant, 2.28 GPa and 210 GPa, respectively, were selected from previous 

FEA studies on revision TKR.9,18 All materials were assumed to have a Poission’s ratio of 0.3, to 

be isotropic and with linear elastic behaviour. The FEA software Ansys Workbench 15.0 (Ansys, 

PA, USA) was used for the analysis and to generate the mesh for all components, formed out of 

10-node quadratic tetrahedral elements adequate for complex bone geometries.19 The element 

sizes were based on the maximum feasible for the curvature and sharp angles of the model 

geometry in the classical environment (Ansys Parametric Design Language (APDL)) with 3 mm 

elements for the cortical body, 2 mm for the cancellous and implant body, 1 mm for the cement 

mantle and a surface mesh of 1 mm at the strain gauge locations, leading to 295,006 elements and 

478,220 nodes distributed over the complete FE model (see Figure 5). 

 

[Insert Figure 5.] 

Figure 5: Anterior-posterior sectional view showing the mesh applied to the four bodies. 

 

For the boundary conditions, a bonded contact was assumed for all surface connections and a 

fixed support was created at the distal cut. A load of 500 N was applied directly to the tibial tray 

with a 15 mm diameter contact patch in a central location of each compartment. Two scenarios 

were compared simulating a distribution of 60:40 and 80:20 mediolateral.8,9,14 The three-element 

strain gauge rosettes used for the experimental analysis were idealised as 6x6 mm square and 

projected with a depth of 0.001 mm on the cortex of the tibia. A local axis system was created at 

each gauge surface to measure the normal strain in the y-axis as illustrated in Figure 6. 

 

[Insert Figure 6.] 



Figure 6: Measurement area (6x6 mm) with local axis system at strain gauge location P143 (Figure 

2) in the stem-end region. 

Results 

Model validation 

In the experimental study, a load of 500 N with a mediolateral compartmental load distribution of 

60:40 was applied to three bone samples. The normal strains in the vertical direction (y-axis) at 

each gauge location were measured with three repeats. The mean value at each location was 

determined along with the standard deviations. The FEA results were measured over a 6x6 mm 

area and the mean value was determined for the five locations (see Table 1). The strains in both 

analyses demonstrate a similar pattern with an increase from proximal to distal region of the tibia. 

The regression line of the five vertical strain values had a slope of 1.34, a coefficient of 

determination of 0.988 and a root mean square error (RMSE%) of 2.5% (see Figure 7). The 

simulation of a malaligned knee with a load distribution of 80:20 displays a shift of proximal strain 

medially with tensile strain measured at the lateral strain gauge and an small compressive strain 

increase of -11 με (5%) at the distal locations P143 compared to the FEA results with a 60:40 load 

distribution. 

[Insert Figure 7.] 

Figure 7: Linear regression between predicted FEA and experimental strains. 

 

Exper. 
results      

(3 repeats) 

  Force 
Microstrain  

L45 P38 M45 P88 P143 

Mean value 500 N 60:40 M:L -43 -71 -37 -110 -279 

SD   4 5 7 2 15 

FEA 
results    

Mean value  
500 N 60:40 M:L -24 -44 -34 -90 -204 

500 N 80:20 M:L 17 -31 -73 -88 -215 

 



Table 1: Comparison of experimental and FEA normal strain results measured from the vertical 

grid and the local y-axis with the 3° posterior sloped model. 

Contour plots of the normal strain to the global y-axis (see Figure 2) of both load scenarios illustrate 

the effect of proximal strain shielding from the Co-Cr implant and the load transfer to the region of 

the stem-end (see Figure 8). The peak compressive strain in the cortical bone develops around 30 

mm beneath the stem-end with a posterior-medial orientation. In addition, with an 80:20 load 

distribution (Figure 8b) the peak cortical strain increases by 67% from -300 με (a) to -500 με (b) 

with a further overall shift to the posterior-medial side. 

[Insert Figure 8.] 

Figure 8: Posterior view of the normal strain to the global y-axis (Figure 2) with a medial-lateral 

load distribution of (a) 60:40 (b) 80:20 

Stem-end positions 

The analysis with a mediolateral load distribution of 60:40 of different stem-end positions with the 

modification of the posterior slope angle creates three types of implant-cement to bone interfaces: 

1° slope with posterior contact of cement to cortical bone, 2° and 3° slope with no contact to cortical 

bone and 4° to 6° slope with anterior-medial contact to cortical bone. The strains were measured 

at the identical cortex locations with a posterior angle from 1° to 6° and medial and lateral offset of 

1.8 mm as illustrated in Table 2. At the location P143, the strains increase with a closer posterior 

stem location and have its largest increase of 45 με with contact of cement to cortical bone. The 

proximal strains (L45, P38, M45 and P88) are the highest with a posterior slope of 2° and 3° where 

the implant is fully surrounded by a cancellous bone layer and demonstrates an abrupt decrease 

with cement-cortical bone contact. This is again shown with the medial (with contact) and lateral 

offset stem. The normal strain distribution for the four main simulated stem positons are illustrated 

in Figure 9. A strain concentration develops beneath the stem tip with values up to -1100 με (see 

Figure 10). The peak compressive strain on the cortex develops with a posterior implant-cement 

contact to the cortical bone with a magnitude of -340 με. The centred stem with a 3° posterior slope 

(Figure 9f) has a cortex strain of -300 με.  A further reduction to -280 με (Figure 9g) was observed 



with the stem in close proximity to the anterior cortical bone. Furthermore, the medial and lateral 

1.8 mm offset positioned stem did not show any major change in strain distribution. 

 

 

Posterior 
slope 

Min. distance (x) 
cement to 

cortical  (mm) 

Offset (x) stem 
end to shaft axis 

(mm) 

Mean microstrain (local y-axis) 

L45 P38 M45 P88 P143 

1° -0.6 3.2 -13 -29 -25 -61 -282 

2° 1.4 1.9 -25 -42 -33 -92 -237 

3° 3.2 -2.5 -24 -44 -34 -90 -204 

4° 1.3 (am -0.5)  -4.3 -18 -35 -30 -74 -173 

5° -0.6 -6.3 -15 -31 -28 -66 -144 

6° -2.6 -8.4 -13 -29 -27 -60 -114 

3°  0.2 (lateral) 1.8 (lateral) -18 -42 -35 -89 -202 

3°  -0.5 (medial) 1.8 (medial) -21 -33 -23 -72 -203 

        

Table 2: Predicted strain results and stem-end positions for the modified angular resection surface 

and parallel medial/lateral offset.  

 

[Insert Figure 9.] 

Figure 9: Normal strain distribution (global y-axis) at the stem-end area: sagittal cut, posterior view, 

(a,e) 1° posterior slope, (b,f) 3° posterior slope, (c,g)  6° posterior slope; frontal cut, posterior view, 

(d,h)  medial 1.8 mm offset stem. 

Discussion 

The aim of this study was to develop a FE model of a synthetic tibia implanted with a tibial 

component used in revision TKR and the evaluation of the load transfer to the area of the stem-

end. The comparison of experimental and computational strain results demonstrated a good 

correlation that validates the FE model. Although the overall lower FEA values with a regression 

slope of 1.34 is higher than in previous studies,11,18,20  it is likely to be a result of developing a model 

representing an ideal implantation condition with fully bonded body contact pairs and an ideal 

material structure. The slightly lower elastic modulus of the manufactured stems used 



experimentally and the value of 210 GPa used in the FE model had a limited effect on the overall 

magnitude of strain. Furthermore, the simplified stem geometry in the FE model with exclusion of 

the fluted surface has no implication with a fully bonded simulation. 

The simulation of a malaligned knee with a load distribution of 80:20 demonstrates that an 

increased bending moment applied to the implanted tibial component produces a concentration of 

strain in the distal stem region in the tibia. This finding supports the thesis that pain at the stem-

end may be associated with a malaligned knee.10 Skeletal pain has been cited to originate on the 

sensitive periosteum, a layer on the cortex of the tibia, and nerve stimulation associated with 

dimensional deviations.10,21,22 Therefore, this study was focused on the strain development on the 

outer surface of the cortical bone. The 67% increase of strain in the stem-end area demonstrates 

the importance of recreating the natural knee alignment in TKR. Although pain at the stem-end is 

mainly reported with long cementless stems, some complications with fully cemented stems have 

been documented in clinical studies.6,7 This is possibly a result of a more challenging surgical 

procedure to achieve a well-aligned knee with the use of press-fit stems.23 

[Insert Figure 10.] 

Figure 10: Detailed views of regions with peak strain (Figure 9): local strain concentration beneath 

the stem tip (a) and maximal cortex strain (b). 

 

The investigation on the influence of stem-end orientation with respect to the natural mechanical 

axis of the bone demonstrated that the highest reduction of strain in the stem-end region occurred 

with an implantation anterior to the natural axis with a 4° to 5° posterior slope of the resection 

surface. However, a further anterior stem orientation (see Figure 9g) increases torsion with a shift 

of tensile strains to the posterior cortical bone. The ideal positioning of the stem-end in this case is 

in a range from natural bone axis (2° slope) towards an anterior position without cortical contact (3° 

slope) to develop a small increase in proximal strain and therefore reduce stress shielding. This 

effect of this extent may not be possible with the current 12 mm diameter fully cemented stem in 

the FEA considering the relatively thin cement thickness without cement penetration into the 



cancellous bone. A contributing factor to reduce the risk of stem-end pain by avoiding close 

implantation of the stem-end to the posterior cortical bone increasing the strain acting on the 

thinnest cortical layer. The malalignment of the stem-end in the intramedullary canal in the 

millimetre range proved to have an influence on the load transfer to the distal tibial bone. The 

implant installation without precise analysis of the experimental samples is a limitation for the 

validation of the FE model, although it may support the use of computer-assisted surgery tools to 

produce stem alignment close to the intramedullary canal and implant design selection for the 

variance of bone geometry.24, 25 

This study had further limitations: for instance, simplified measurements and CAD reconstruction 

of the implant and cement geometry. Furthermore, a frictional contact was not introduced simulating 

micromotion between implant and cement a feature that demonstrated improved results mainly with 

a press-fit stem in Completo et al.’s20 FEA study. Finally, the simulation of only one loading contact 

position and the exclusion of the supporting soft tissue represents an over simplification in the 

analysis of the major forces acting on the knee. 

Conclusion 

In this study, the development and validation of a FE model of a revision TKR has been presented. 

The redistribution of the load to the medial side of the tibial plateau associated with a malaligned 

knee or with abnormal compartment loading created peak strain values beneath the stem-end. In 

addition, the analysis demonstrated a reduction of strain if the stem-end of the implant was aligned 

with the natural mechanical axis of the tibia and a small increase of proximal strains reducing stress 

shielding. Furthermore, the simulation of multiple stem-end orientations revealed that posterior 

contact or close proximity of the distal stem to the cortical bone may be a contributory factors of 

the clinically reported stem-end pain  
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Figure 1: Comparison of manufactured cemented stem (a) and original Triathlon TS stem (b).  

 

Figure 2: Comparison of strain gauge locations: (a) reference central notch intact tibia, (b) 

experimental sample, (c) posterior view with global axis system, (d-e) lateral-medial view with 

localized 1 mm surface mesh. 



 
 

Figure 3: Set up of experimental strain gauge study. 

 



 

Figure 4: Tibial component installation and alignment of stem-end to the intramedullary canal 

axis. 

 

Figure 5: Anterior-posterior sectional view showing the mesh applied to the four bodies. 



 

Figure 6: Measurement area (6x6 mm) with local axis system at strain gauge location P143 (Figure 

2) in the stem-end region. 

 

Figure 7: Linear regression between predicted FEA and experimental strains. 



 

Figure 8: Posterior view of the normal strain to the global y-axis (Figure 2) with a medial-lateral 

load distribution of (a) 60:40 (b) 80:20 



 

Figure 9:  Normal strain distribution (global y-axis) at the stem-end area:  sagittal cut, posterior 
view, (a,e) 1° posterior slope, (b,f) 3° posterior slope, (c,g)  6° posterior slope; frontal cut, posterior 
view, (d,h)  medial 1.8 mm offset stem. 



 

Figure 10: Detailed views of regions with peak strain (Figure 9): local strain concentration 

beneath the stem tip (a) and maximal cortex strain (b). 

 

 


