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Abstract

Many synoptic surveys are observing large parts of the sky multiple times. The re-
sulting time series of light measurements, called lightcurves, provide a wonderful window
to the dynamic nature of the Universe. However, there are many significant challenges
in analyzing these lightcurves. We describe a modeling-based approach using Gaussian
process regression for generating critical measures for the classification of such lightcurves.
This method has key advantages over other popular nonparametric regression methods
in its ability to deal with censoring, a mixture of sparsely and densely sampled curves,
the presence of annual gaps caused by objects not being visible throughout the year from
a given position on Earth and known but variable measurement errors. We demonstrate
that our approach performs better by showing it has a higher correct classification rate
than past methods popular in astronomy. Finally, we provide future directions for use in
sky-surveys that are getting even bigger by the day.

Keywords: Classification, Feature Selection, Gaussian Process Regression, Irregular
Sampling, Missing Data.

1 Introduction

In the last few decades we have seen advances in imaging technology, and the storage, transfer
and processing of data. As a result, astronomy has moved from taking static, sporadic snapshots
of the sky to obtaining high-cadence, deep and large images, almost akin to making digital
movies of the sky. This, in turn, has resulted in opening up the field of studying the dynamic
nature of the Universe, in particular, the cataloging of different types of objects, both within our
Galaxy, and all the way to the early Universe. Cataloging goes well beyond stamp-collecting,
since it reveals the time scales over which various phenomena occur, directly relating to the
physical processes behind the brightness changes in astronomical objects, and allowing us to
connect the different families of objects in various ways. A bonus is also the ability to look for
connections missing so far, as well as fringe members of different classes.

1



Much of characterizion or classification for cataloging is done, or at least begins, through the
study of variability of objects. Most astronomical objects, be they stars or planets or galaxies,
or any of their subclasses, vary in brightness either intrinsically through some physical process
such as explosion, merging or infall of matter, or through an extrinsic process such as eclipse
or rotation. For a small fraction of objects the variation can happen over a fraction of a second
to hundreds of days depending on the phenomenon. For a majority of objects, the changes
are much slower and smaller as the objects evolve through the proverbial astronomical time-
scales. We can observe large parts of the sky multiple times at different wavelengths, yet these
observations are far from continuous, all-sky, or panchromatic. For each part of the sky, and in
particular for each object in the part of the sky we image, we get a time-series of flux. While
all objects vary to an extent, for a vast majority of objects, the variations are non-discernible
during the rather sparse sequence (tens to hundreds of epochs) of short exposures (less than
a minute) that we have, and over the time-scales over which observations occur (a few years).
That is precisely the reason, for instance, that when we glance at the night sky we do not find
stars suddenly changing their brightness.

This leads to most astronomical objects seeming non-variable. When we can discern the
variability, e.g. a periodic variation, or a stochastic variation, or even a single sudden jump in
brightness, the object could then be called a variable. (Due to the somewhat different meanings
of the word “variable” in the two fields, we refer to variables in statistics and variables in
astronomy.) This functional definition would of course change based on many factors, such as,
total interval of observation, type of phenomena involved, etc. An extreme case of a variable
object is a transient - the brightness of which varies by several standard deviations in a short
time, of the order of seconds to minutes. It is the study of these types of objects that has really
become possible due to wide-field surveys that contain many repeated observations.

In order to understand and classify transients, it is important to understand variability at
all levels, including mostly non-variable astronomical sources. Past attempts have included
analyses for denser lightcurves from Kepler, as in [1, 2] or using brighter objects as in [3]
and general frameworks based on such approaches as in [4, 5] as well as [6, 7, 8, 9]. It is
important to design measures that can isolate specific classes but which are also derivable
based on the available cadence of observations. Our aim is to present new measures based on
object lightcurves which help in better discriminating between variables and non-variables, and
among the different transient types. See [10] for an application to larger datasets and [11] for
use on specific classes.

Here we use data from the Catalina Real-time Transient Survey (CRTS) ([12]) which is based
on the Catalina Sky Survey (CSS). CSS has been designed to look for near-Earth asteroids.
One way to look for asteroids is by looking for the motion of the asteroids with the backdrop
of mostly non-moving stars in the night sky. The cadence used for this is four images taken
10-minutes apart. Thus, the CSS lightcurves have four points obtained within 30 minutes. The
next such set could be the next night, the next week or even a month later. The sparse and non-
uniform nature of the lightcurves presents classification challenges and also allows development
of new statistical techniques. The data comes from three sites: (1) Mt. Lemon (MLS) - this
site covers mainly a narrow region of the sky near the ecliptic, (2) Siding Spring (SSS) - this
site covers the Southern hemisphere, and (3) Mt. Catalina - this covers the widest area in the
Northern hemisphere and also covers part of the Southern hemisphere. About 75% of the sky
is covered by CRTS, with parts near the poles and near the plane of our Galaxy excluded.
CRTS concerns itself with real-time detection of brightness variations based on the catalog
of astronomical sources. Here we have used data from just the Mt. Catalina telescope, and
excluded data from MLS or SSS in the current study, but all methods are equally applicable
to them as well. Despite the relative sparsity of the CRTS lightcurves, a strength of the survey
is its longevity - we have data where the epochs are spread over 10 years and hence there are
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parts of the sky with several hundred observations, making CRTS one of the richest synoptic
datasets.

A small section of about one year of light curve observation is shown in Figure 1. The
magnitude is the negative logarithm of flux so in keeping with standard practice, we plot the
magnitudes on a reversed scale because smaller magnitudes represent brighter objects. There
are six time periods where observations are shown in the figure. There are two times where
multiple observations were recorded within the typical “four observations in 30-minutes” CSS
sequence, two times when only one reliable observation was made and two other times (marked
with a cross) when the usual four observations were made, but there was no reliable detection
because the object was insufficiently bright at that time. The magnitudes vary substantially
indicating a transient of some type to be determined.
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Figure 1: Fragment of a lightcurve. The solid dots represent recorded observations and are
plotted with error bars. The two crosses represent times when an observation was attempted
but only an upper limit on the magnitude can be specified.

Our method develops informative measures that can represent critical features of the dif-
ferent types of lightcurves, much like descriptors for an imaging analysis. We require these
measures to overcome the irregularities, such as censoring, presence of gaps in observations
and irregular sampling of different density. This allows a massive and essential reduction of
the data as classification methods cannot be directly applied to the data in the raw lightcurve
form. The measures can be computed rapidly and in parallel for classification purposes. The
measures can also be used for clustering but this is not explored here.

Our strategies in deriving these critical measures are 1) selecting a collection of relatively bal-
anced, representative lightcurves of various types and scales (§2); 2) exploring the signatures
of these lightcurves (also in §2); 3) developing a Gaussian process regression model for the
lightcurves with appropriate priors using astronomical information and an empirical Bayesian
approach (§3); and then 4) deriving new measures representing characteristics of the lightcurves
using the posterior mean regression curve and residuals. These model-based measures comple-
ment existing measures. To examine the power of the new measures in classifying lightcurves in
comparison to existing measures, five popular classification procedures are used in five schemes
of classification problem in §4: Linear Discriminant Analysis, Decision Trees, Support Vector
Machines, Neural Networks, and Random Forests. The results show that our measures per-
form better than the existing measures. A discussion for why our approach works better is
given in §5. Although our modeling approach has been used for an astronomy application, the
method could be valuable for other applications involving the classification of sparse, irregularly
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Transients Bright variable
AGN Blazar CV Flare SNe CV Downes RR-Lyrae non-variable
140 124 461 66 536 376 292 1971

Table 1: Number of lightcurves for variable, specifically transient and non-variable objects.

sampled time series with missing data.

2 Data

We have selected a sample of lightcurves with which to illustrate our methods. The standard
measures available for each object are Right Acension (RA) and Declination (Dec) which provide
the position of the object on the sky, Epoch as Julian Date, magnitude (negative logarithm of
flux), and an error estimate on the magnitude. The total number of lightcurves considered is
3720. The selection is described below and summarized in Table 1.

We started with just the transients detected by CRTS in real-time over about five years.
These include Active Galactic Nuclei (AGNs), Blazars, Cataclysmic Variables (CV), Flare stars
and Supernovae (SNe), representing five very different types of lightcurves (e.g. [13]). We also
included a set of 15 random locations on the sky covered by the survey and objects within 3’ of
these locations. These objects are assumed to be non-variables because any variables in there
would have been detected earlier. The transients tend to be fainter than typical objects (by
definition - it is easier to catch objects that are not normally seen but brighten and become
visible for a short duration). In order to offset that, two classes of brighter variable objects
were included — CVs from the Downes set ([14]) and RR Lyrae which are periodic variables
with a period of ∼1 day. For the purposes of this article, we have one class called non-variable
and seven classes which we call variable: AGN, Blazars, CV, Flares, SNe, CV Downes, and
RR Lyrae with first five also being transient. Note that among the labelled types we have
considered here, only the RR Lyrae are periodic. There are methods for distinguishing periodic
objects from non-periodic ones but these are not addressed in this article.

Real-world data is much more assymetric and unbalanced than what we have considered
here. If we used a simple random sample, there would be very few transients. Training on
samples with enough representatives for all classes would be an immense task. We include
sufficient non-variables to ensure that the dominant class is represented but not excessively so.
In CRTS, the latest catalogs are compared with individual as well as combined catalogs from
the archives. The objects that have changed in brightness above a certain threshold (well over
a magnitude i.e. approximately a factor of 2.5) are marked as transients. Only a few are found
each night compared to millions of nearly non-variable objects.

The number of observations for each lightcurve varied greatly with a maximum of 641. The
median length was 52. We excluded lightcurves with fewer than five observations as these
cannot reasonably be classified. The earliest date for any of these lightcurves was 53464 Julian
Day (JD) and the latest was 56228, i.e. 5th April 2005 to 28th October 2012. We have used
53464 as our zero-point and referred to all dates as number of days beyond this. Our set spans
2764 days. More recent data is analyzed later.

An examination of the data is helpful in deciding which methods of analysis may be ap-
propriate. In Figure 2, we see four examples of lightcurves. The objects are identified by their
catalogue numbers for reference.

Understanding the pattern of measurement is crucial to proper modeling of these curves.
The AGN example shows some gaps in an otherwise dense sequence of measurements. No
observations were taken during these periods because the orbit of Earth precluded it. In the
SN example, there are no observations outside of a narrow range. Observations were attempted
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Figure 2: Examples of four lightcurves: (i) CSS071216:110407-045134, an AGN (ii)
CSS110405:141104+01115, a Supernova (iii) CSS111103:230309+40060, a Flare and (iv)
301904800767, a non-variable. Note that the range of the vertical axis varies.
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at other times but the object was too faint to be observed with a magnitude less than the
survey astronomical detection limit of around 20.5. In the flare example, we are fortunate
that the spike in brightness was observed as this occurs during a brief period of time. In the
non-variable example, there are quite long periods with no observations but it seems reasonable
to assume that no substantial variations in magnitude occurred during these periods given the
nearly constant values of magnitude.

It would be useful to know exactly when observations were attempted for given objects while
below detection limit. For the purposes of this analysis, we shall assume that all the objects
may be surveyed throughout the period of the study but failures to observe have not been
recorded. It will be clear in §3 how this information could be incorporated into our methods
and that this would improve our results.

3 Methods

The nature of the data and the requirements of object classification impose some constraints
on what methods are practical. The problem could be viewed as one of functional data analysis
(see [15]). However, there are several obstacles to pursuing this approach. The lightcurves
are very irregular, showing differences both in time and in number of observations. There are
methods for processing with such data but there is a more serious obstacle in that there is little
sense in which the curves can be registered or aligned. Excepting the rare case where objects are
close in the sky and measurements are likely to be correlated due to atmospheric conditions,
lightcurves are independent. This prevents us from using the “borrowing of strength” that
registration would allow.

This leads us to another style of analysis based on sample statistics. Judgement is used to
devise statistics that measure various characteristics of the observed curves which we believe
important in distinguishing them. We prefer that these measures be relatively simple so that
they can be applied quickly and automatically for both short and long lightcurves.

About 20 measures are presented in [3] that are mostly derived from previous articles. They
found these various measures to be helpful in distinguishing objects. Since these measures have
been widely tested, at least for brighter and less sparse data, we use these as a baseline for our
analysis. Our objective is to find additional measures that improve the classification accuracy
beyond this set. For ease of reference, we will call this existing set the Richards measures. The
specific Richards measures we have used from Table 5 of [3] are moment-based measures: skew,
kurtosis, std and beyond1std, and magnitude-based measures: amplitude, maxslope, mad,
medbuf, pairslope and rcorbor, and percentile-based measures: fpr20, fpr35, fpr50, fpr80,
peramp and pdfp. We omitted the linear trend measure as this was only large for lightcurves
with few observations so it becomes a substitute for a short curve measure. As it happens,
including it would not make much difference to the results we present later. We coded these
measures from the definitions in [3].

Although the Richards measures encompass a wide variety of measures, they do not use any
concept of modeling the curves. The primary innovation of this paper is to use such modeling
to generate additional measures. For lightcurve i, we posit a true underlying curve fi(t) that
we would see if we could observe the object continuously without error. However, we are able
to observe the object only at times tij for j = 1, . . . ni. Note that the times of measurement
may be almost the same for objects close in the sky but quite different for objects which are
farther apart. We observe only yij for j = 1, . . . ni. We assume

yij = fi(tij) + εij (1)

where the errors εij are normal with mean zero but will be correlated.
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We considered several methods for estimating f but found that Gaussian process regression
was the only satisfactory solution compared to standard non-parametric methods like smoothing
splines, kernel smoothing or locally weighted smoothing for the following reasons:

1. We have censored data - the lightcurve can fall below the detection limit during the range
of observation. Standard methods do not deal with this. They can fit curves where we
have data but they will not produce evaluable fitted curves outside this range.

2. Sometimes we have only a handful of observations but for other curves we may have
hundreds. Simple parametric methods work well with small datasets while larger datasets
require the flexibility of nonparametric methods. But Gaussian process regression works
well for both.

3. We know the variance of the measurement error. This information is easily incorporated
into the Gaussian process regression but it is not obvious how to take advantage of this
information in the standard methods.

3.1 Gaussian Process Regression

See [16] for a general introduction. The introductory article [17] also has some lightcurve
examples. This method requires that we specify a prior for the Gaussian process: f(x) ∼
GP (ψ(x), k(x, x′)). We use the popular squared covariance kernel:

k(x, x′) = σ2
f exp

(
− 1

2l2
(x− x′)2

)
+ σ2

nδ(x− x′) (2)

where δ(x) is 0 when x 6= 0 and 1 when x = 0. Other reasonable choices of kernel are possible
but we found the results were similar (see online appendix for details). One advantage of
the Gaussian process approach is that an explicit solution for the posterior is available that
can be rapidly calculated. We will need to classify large numbers of future lightcurves as the
measurements are collected so we need efficient methods.

There are four components of the prior which must be specified:

1. σ2
f is the signal variance. A very large fraction of objects to be classified in the future will

be non-variables. These non-variables vary in signal but not very much. For this reason,
we set σ2

f to be the median observed variance in the non-variables.

2. σ2
n is the noise variance. Although it is uncommon in other applications, for astronomical

data we are often able to estimate the measurement error. In this example, the measure-
ment error varies a little from case to case. For simplicity, we take the mean observed
value of the measurement variance for σ2

n.

3. l is sometimes called the length-scale. It controls the amount of correlation and therefore
the amount of smoothness in the resulting posterior fit. We use a value of 140 days as seen
in Figure 3. This choice is based on a subjective assessment on how much smoothness
should be expected in these curves. Our classification performance is not very sensitive
to this choice.

4. ψ(x) is the prior mean. This choice is challenging and requires further discussion below.
We take an empirical Bayes approach.

We illustrate the issues in setting the prior mean in Figure 3. What values are expected for
the curve in regions where there are no measurements? One answer is that we might expect
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Figure 3: Gaussian process regression fits to lightcurve data. This is the same four cases as in
Figure 2. The solid line fit derives from a prior mean set at the median magnitude while the
dashed line fit corresponds to a prior set at a magnitude of 20.5.
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about the same magnitude as that seen elsewhere for this object. This suggests setting the
prior to the median magnitude for the object. This choice can be seen in the solid line fits in
Figure 3. This works well enough in three cases but fails for the supernova example because we
do not expect this curve to follow a similar magnitude at other times. If it did, it would have
been seen. So an alternative approach is to set the prior to the detection limit at a magnitude
of 20.5. This gives the dashed line fits as seen in Figure 3. This works well for the supernova
case but is problematic for the other three curves. In regions of no measurement, the fitted
curve is drawn down towards the detection limit. We can counteract this by increasing the
length-scale (i.e. increasing the smoothness in the prior) but this setting tends to attenuate
real effects and still does not work well for relatively sparsely measured curves (such as the
non-variable in this example).

Our solution is to use an adaptive prior. When there is less than one year of observations,
we use the detection limit, otherwise we use the median magnitude. The choice of a year is large
enough that sparse but widely measured curves such as the non-variable example in Figure 3
do not use the detection limit. But the choice is small enough that the detection limit is used
in cases like the SN example. Using the data to select the prior may make our method at
least partly empirical Bayes rather than pure Bayes, but we need to judge the method by its
classification performance which is improved by this choice.

3.2 Curve Measures

Given the posterior mean f̂ , we compute fitted curve measures from f̂i for curve i computed
on an evenly spaced grid of values on the range of observation uj for j = 1, . . . ,m = 300. The
italicized word is the name of the variable for future reference:

• totvar total variation:
∑

j |f̂i(ui,j+1)− f̂i(uij)|/m

• quadvar quadratic variation:
∑

j(f̂i(ui,j+1)− f̂i(uij))2/m

• famp amplitude of fitted function: maxt f̂i −mint f̂i.

• fslope maximum derivative in the fitted curve: maxt |f̂ ′
i |

We also use the maximum in absolute value of the scaled residuals from the fit, called outl, as
a measure.

Another feature of this data is the clustering of times of measurement which can occur in
groups of up to 4 observations that are spaced by ten minutes within a thirty minute period.
The Gaussian process regression is not able to model the variation at this finer scale because
setting the length-scale l to a much smaller value would result in too rough a fit overall. We
need another set of measures to capture the characteristics at this scale of measurement.

We compute the mean within each of these groups of up to four observations as f̆ij and then
compute the following measures:

• lsd : the log of the standard error, σ̆, computed using the residuals from these group mean
fits.

• gtvar : The group total variation
∑

j |f̆(ti,j+1)− f̆(tij)|/ni

• gscore:
∑

j φ((f̆ij − f̄i)/σ̆)/ni where φ is the standard normal density, f̄ is the mean of
the fitted group means.

The last measure is motivated by scoring methods used to judge prediction performance.
There are also some gaps within the Richards measures set of sample curve summary mea-

sures. We add the following:
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• shov : mean of absolute differences of successive observed values:∑
j |yi,j+1 − yij|/ni

• maxdiff : the maximum difference of successive observed values:
maxj |yi,j+1 − yij|

• dscore: the density score:
∑

j φ((yij − f̃i)/sij))/ni where f̃i is the median observed mag-
nitude for curve i and sij is the observed measurement error at tij.

There are other measures that may be informative for the current data we are analyzing
but may not have predictive value in future examples. We have avoided using such measures.
They fall into three categories:

1. Measures based on the number of observations in a lightcurve. Some phenomena, such as
supernovae, are not recurrent and subsequent observations may fall below the observable
limit. Lightcurves in such cases can be quite short but this is known only in retrospect
so this is not usefully predictive. The number of observations does have some impact on
the choice of prior and in scaling some of the measures, but we refrain from using this
number (or anything closely related) as a direct measure for classification purposes.

2. The classification of an object should be invariant to the addition of a constant to the
observed magnitudes. But some biases in the way that our example data was extracted
would cause, say, the mean magnitude, to be an effective discriminator among the types.
This mean magnitude will not be reproducible in future samples so we do not use this
measure or anything related to it.

3. Location in the sky. The method of constructing our example dataset would mean that
location would become useful discriminator. As it happens, location would provide some
usable information for classification as extra-Galactic objects are more likely to appear
away from the Galactic plane but we refrain from using this information here.

There is additional information such as the nearest radio source or the nearest galaxy which
could also be useful in classification but we do not use this here. We experimented with a larger
set of additional measures (as can be seen in the online appendix) but we have presented only
those that appear to have some additional value for classification.

Given this set of measures, we can use any number of classification methods to distin-
guish objects using lightcurves. We demonstrate the use of our measures using five popular
classification methods. We will generally use the default choice of options for the particular im-
plementation in R. Our objective is to show that our measures represent an improvement over
using the Richards measures alone. It is likely that the classification methods could be better
tuned to obtain a better result or that the reader may favor another classification method. But
that is not the point of this article. We are not trying to claim one classification method is
better than another, just that our measures are better.

The methods we have used are:

LDA Standard linear discriminant analysis method as implemented in [18].

TREE Recursive partitioning as implemented in the rpart package by [19].

SVM Support vector machines as implemented in the kernlab package by [20].

NN Neural network as implemented in the nnet package by [18]

RF Random forest ensemble implemented by the randomForest package by [21]
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We log-transformed the measures that have extreme skewness in order to improve classifica-
tion performance. The same transformations were used in all the comparisons below. Without
these transformations, both sets of measures would perform less well in general for methods
LDA, SVM and NN. The partitioning-based methods, TREE and RF, are invariant to monotone
transformations. Explicit details of the implementation can be found in the Appendix.

4 Results

Classification methods usually do not perform as well as expected when applied to new data.
When the same data is used to both fit and evaluate a method, the classification rate is inflated.
To avoid this problem, we randomly split the data into 2/3 for training, that is used to develop
the classification rule, and 1/3 for testing, that is to evaluate how well the rule performs. Since
we are only interested in the relative performance of the classification measures and methods
and because the sample size is relatively large, we present only one random split. In the online
appendix, we repeat the calculations for 100 random splits and the results are not qualitatively
different.

4.1 Classification Performance

We considered four different types of classification problem with bold labels used for future
reference:

All The overall problem of classifying eight types — the non-variables and the seven variable
types.

Variable or not Perhaps the first step in any lightcurve classification process will be to de-
termine which objects are variable.

Variable only Having separated out the non-variables, the next step might be to identify the
type of the variable. For this problem, we delete the non-variables from both the test
and training data.

Hierarchical An alternative approach to classifying all objects directly is to first classify
objects into variable or not variable, then if variable to classify among the seven available
types.

We show the percentages correctly classified in the test set using the Richards measures and
using our measures (which incorporate the Richards measures) in Table 2.

LDA TREE SVM NN RF
All 56.7:76.0 58.6:71.9 66.1:80.2 63.3:79.6 67.3:80.5

Variable or not 74.7:90.4 79.5:88.4 81.0:92.0 75.2:91.6 82.5:91.8
Variable only 54.5:70.1 58.9:65.1 64.4:74.3 60.1:72.3 62.9:74.2

Hierarchical 56.4:76.0 60.4:72.7 64.7:79.9 58.8:78.5 65.6:79.8

Table 2: Percentage correctly classified in the test set using the Richards measures as the first
number of each pair and using our measures in addition to the Richards set as the second
number in the pair.

The standard error for the classification rate is just less than 1% which is helpful in judging
which differences are notable in these table. Table 2 shows that our measures provide a sig-
nificant improvement to the Richards measures alone which might be regarded as the previous
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Actual types
Predicted AGN Blazar CV Downes Flare NV RR-Lyrae SNe

AGN 0:31 0:3 0:0 0:2 0:0 0:2 0:0 0:2
Blazar 0:0 0:27 0:3 0:7 0:0 0:0 0:0 0:0

CV 5:2 26:4 95:93 53:26 4:0 20:4 3:2 27:14
CV Downes 0:1 0:2 0:15 0:58 0:0 0:7 0:5 0:0

Flare 0:0 0:0 0:0 0:3 0:8 0:0 0:0 0:0
NT 31:8 7:0 26:9 73:25 16:15 497:541 47:1 80:16

RR-Lyrae 0:0 1:1 2:0 3:7 0:0 12:0 53:95 3:0
SNe 8:2 5:2 22:25 6:7 4:1 29:4 0:0 82:160

Table 3: Confusion matrix showing numbers classified for the test set using the Richards
measures (first of pair) and our measures (second of pair) with random forest classification
of all eight types. The rows are the predicted types while the columns are the actual types.
NV=non-variable.

state of the art. Of course, adding additional measures can only improve the fit of a model, but
we are using an independent test set so we can be sure the improvement is more than illusory.
There is little to distinguish the hierarchical approach from the one-step method although we
would recommend the hierarchical approach on an unbiased sample of lightcurves because these
would be dominated by non-variables. The percentages are not estimates of how the methods
will perform on unidentified objects because we deliberately overloaded the dataset with vari-
able types for reasons explained in Section 2. True and false positive rates can be calculated
based on assumptions about the frequency of the object types within the Universe.

Table 3 show the numbers of objects classified in the test set into all eight types compared
to their actual types. We present only the random forest results as this was the best performing
method. The most noticeable differences between the two sets of measures is that our method
results in classifications in all eight types while the older set fails to classify any objects into
four of the types. Since the Downes set is just another form of CV, we are not so concerned
about a failure to distinguish these two. We can see that Flares are hard to identify.

Variables constitute less than 1% of the population. Hence, even a null method which
classified randomly based on prior proportions would achieve around 99% accuracy. Certainly
any sensible method will do even better than this and it would take a very large random
sample to distinguish different methods. This explains why we have used a more balanced,
although non-proportional, representation of the eight types to make an effective comparison
of the measures and classification methods. Similar strategies are used in case-control studies.

Because these classification methods will be applied to very large numbers of objects, even
quite low error rates will result in large numbers of misclassified objects, resulting in wasted
resources or missed opportunities. For this reason, the primary classification into variable
against non-variable is particularly important. We can see our proposed measures perform
well in this respect, halving the previous error rate, although there remains further room for
improvement.

4.2 Testing on Fresh Data

We verified the performance of our measures by applying the methodology to two datasets
distinct from the original set used above. One focuses on more recently discovered transients
while the other consists of a very large sample of unclassified objects. We assembled 574
transients that have recently been manually classified, consisting of the types AGN, Blazar,
CV, Flare and SNe. This is a complete set of CSS transients from 2013 where astronomers
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LDA TREE SVM NN RF
Richards 60.8 64.0 72.6 71.1 73.1

Ours+Richards 74.6 67.4 78.0 77.2 79.0

Table 4: Percentage of the new set of five transient types correctly classified.

LDA TREE SVM NN RF
Richards 75.5 79.4 85.3 76.8 85.5

Ours+Richards 97.5 89.2 98.4 98.3 96.8

Table 5: Percentage of 50,000 variables and non-variables correctly classified.

using additional auxiliary data were reasonably confident of the nature of the transient. We
used all the objects of these five types from the original set of data (updating them to include
more recently collected observations to match the lightcurve durations) to train classification
rules. We then applied these rules to a test set formed from the recent set of transients. The
classification rates from this exercise are shown in Table 4. The addition of our set of measures
results in an improved performance over the Richards set alone.

We also assembled a large set of 100,000 lightcurves from CSS. Using the Stetson J (SJ)
measure (a weak classifier defined in [22]), we sampled 50,000 objects from 0 < SJ < 0.01
and labeled these non-variables, and 50,000 more from 0.5 < SJ < 1 which we labeled as
variable. Any labeling based on a single variable will not be entirely reliable so we have chosen
ranges from the extremes of SJ to increase confidence that the labels are correct. See [23] for
background. The lightcurves in CSS are not in general labeled so the use of SJ for this purpose,
which does not appear in our set of measures, is artificial (and unavoidable) but is sufficient for
a comparison of classification performance between sets of measures. Very few of the variables
are likely to be transients and most of them will be of types not already considered earlier. We
randomly divided the data into two equal parts. One half was used to train classification rules
and the other half to test the performance. The classification rates are shown in Table 5 where
we see that the addition of our set of measures to the Richards set greatly improves the rates.

4.3 Feature Selection

The random forest method provides a means of determining the worth of predictors. Suppose
that within a particular node, the proportion classified as type i is given by pi. The Gini index
is defined as 1 −

∑
i p

2
i and can be used as a measure of node impurity. It is minimized when

only one type is seen and maximized when each type is seen in equal proportion. We can see
how much the Gini index averaged across nodes decreases when a measure is removed from the
current set. We remove the measure which leads to the least decrease. We refit the model with
the reduced set and repeat the process until all measures have gone. The classification rate
after each measure is removed is shown in Figure 4 for the problem of classifying all 8 types.
See also [24] for similar procedures.

There is little difference in classification accuracy between the training and test datasets
which is a good indication that we are not over-fitting. We see that this recursive feature
selection process removes most of the older non-model based measures without any noticeable
loss in classification accuracy. Our fitted curve measures quadvar, famp, totvar and fslope are
among the most useful classification variables. Hence we can see that deriving measures based
on our model is a good place to start and not merely a way to supplement existing older
measures. The message from the other three classification problems is similar. We do not
propose that the older measures be discarded as they are generally simple to compute and may
be useful in new situations.
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Figure 4: Recursive feature selection of measures. The classification rates (solid for the training
set and dashed for test set) are shown after the named measure is removed from the model.
The order in which the measures are removed is determined by the least decrease in the Gini
index. Measures from the Richards set have the prefix rm.
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5 Discussion

We have presented two advances. In statistics, we have shown how Gaussian process regression
can be adapted and the corresponding priors developed to deal with data of varying sampling
density, structures and scales. We are able to deconvolute the underlying curves fi and mea-
surement noise εi to distinguish the objects rather than use summary statistics that use samples
yij with mixed up noise and signal. With some further effort we may be able to show that the
measures based on our estimated curves, under some regularity conditions, would be consistent
for the features of the true underlying curves. An approach based on summary statistics can
be biased or inconsistent for these measures. We believe that the modeling is the reason for
our success in classification. In astronomy, we have demonstrated a new method of generating
measures representing features of lightcurves that are significantly better in classifying objects
than previous methods.

There is further scope for improvement in performance by optimising the classification using
routine methods. With more detailed information about when locations were surveyed but no
object observed, we can further refine our priors to obtain superior results. The measures we
have developed are now being used for several purposes. We can apply the method for new
data where the location has only been surveyed for a shorter period of time. The measures
can all be scaled appropriately. We have experimented by taking time-wise subsets of this data
and have found that although the absolute performance drops with shorter curves, the relative
performance over the older set of measures remains. Furthermore, the measures provide the
means to detect objects of unknown type because our measures are sufficiently informative to
identify objects that do not belong to known classes by using cluster analysis. This can in
turn lead to the discovery of newer classes as well as rarer counterparts of known classes of
astronomical objects. CRTS images are available for the entire dataset. When rare or unusual
objects are found these can be compared against the images to ensure that no artifacts or
spurious features have led to the object being an outlier. The whole process can be automated
and human intervention required only at critical junctures like spectroscopic confirmation.
Thus, our technique can scale to much larger datasets including the 500 million lightcurves
that CRTS now has. By adding a richer and more powerful set of measures, we have increased
the potential for interesting discoveries. Some of our measures have already been used in
classifying new lightcurves.
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Appendix

Our data, code and detailed results are available as a supplement to be found at
people.bath.ac.uk/jjf23/modlc
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