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Abstract 

The use of electrospun nanofibres for tissue engineering and regenerative medicine 

applications is a growing trend as they provide improved support for cell proliferation and 

survival due, in part, to their morphology mimicking that of the extracellular matrix. 

Sterilization is a critical step in the fabrication process of implantable biomaterial scaffolds 

for clinical use, but many of the existing methods employed to date can negatively affect 

scaffold properties and performance. Poly(lactic-co-glycolic acid) (PLGA) has been widely 

used as a biodegradable polymer for 3D scaffolds, and can be significantly affected by 

current sterilization techniques. The aim of this study was to investigate pulsed ozone gas 

as an alternative method for sterilizing PLGA nanofibres. The morphology, mechanical 

properties, physicochemical properties, and response of cells to PLGA nanofibre scaffolds 

were assessed following different degrees of ozone gas sterilization. This treatment killed 

Geobacillus stearothermophilus spores, the most common biological indicator used for 

validation of sterilization processes. In addition, the method preserved all of the 

characteristics of non-sterilized PLGA nanofibres at all degrees of sterilization tested. These 

findings suggest that ozone gas can be applied as an alternative method for sterilizing 

electrospun PLGA nanofibre scaffolds without detrimental effects. 
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Introduction 

The use of electrospun nanofibres for tissue engineering is a growing trend; their structure 

mimics the natural fibres present in the extracellular matrix and has been shown to provide 

appropriate cues for cell proliferation, differentiation and survival (1-3). Numerous cell types, 

including mesenchymal stem cells, keratinocytes and hepatocytes, have shown superior cell 

viability on electrospun scaffolds in comparison to other scaffolds types (4,5), and 
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electrospun fibres have been demonstrated to have great potential in engineering a wide 

range of tissues (6-13). What is more, electrospinning is a cost-efficient technique for 

fabrication of micro- or nanofibres, either at laboratory or industrial scale (14), allowing 

efficient scale-up for clinical applications. 

For clinical translation, implantable medical devices must be sterile, i.e. free from 

viable microorganisms (15). According to regulatory bodies for medical products, aseptic 

sterile manufacturing processes can be employed only when terminal sterilization process is 

not feasible (16,17). For electrospun scaffolds, this means that they should ideally be 

sterilized before in vitro cell seeding or, if used as a cell-free device, prior to implantation 

into a patient. As the nanostructural, mechanical, and physicochemical properties of 

electrospun fibres are critical to the cell-scaffold interaction and cell function, it is important 

that these features are unaffected by the sterilization procedure used.  

Biomaterial scaffolds can be sterilized by physical methods (dry or wet heat, and 

irradiation) or chemical treatments, such as hypochlorite solution, aqueous ethanol, 

hydrogen peroxide vapour, and ethylene oxide gas (18,19). A number of these methods 

have been applied to polymer nanofibre scaffolds, resulting in a range of detrimental effects, 

including affecting scaffold morphology, polymer molecular weight, mechanical properties 

or degradation profiles (20-25). Hence, it is important to identify alternative methods of 

sterilization that do not affect the properties of polymer nanofibres. Ozone gas has an 

excellent sterilization capacity against a variety of microorganisms (26), and is attractive due 

to its low cost, use of natural inputs (oxygen), and applicability to thermosensitive materials 

(27). It has been used to treat food, water and sewage, to sterilize water bottles, polymeric 

or stainless steel medical devices, and to decontaminate hospital rooms (28). Although 

ozone is used primarily for disinfection, it has also been employed to intentionally introduce 

oxygen-containing functional groups on the surface of polymer scaffolds to increase 

wettability, an effect which can improve cell-material interactions (29-35). However, to date, 

its ability to efficiently sterilize polymer nanofibres has not been investigated. 



! 4"

Poly(lactic-co-glycolic acid) (PLGA) has been widely used as a biomaterial in recent 

decades (36). Because of its established biocompatibility, adjustable biodegradability and 

mechanical properties (7), it is perhaps the most widely used synthetic polymer for 3D 

scaffolds (37), and has been used to engineer many tissue types, including cartilage, bone, 

liver, nerve, skin, and blood vessels (38). It has also been widely studied as a biomaterial for 

electrospun scaffolds (39-44), but is sensitive to a number of physical and chemical 

sterilants. Therefore, using PLGA as a model polymer, the purpose of this study was to 

investigate the effects of a validated ozone gas sterilization method on electrospun PLGA 

nanofibre scaffolds by comparing scaffold morphology, mechanical properties, 

physicochemical properties, and cell response following different degrees of sterilization. 

 

Materials and Methods 

Materials 

Poly(lactic-co-glycolic acid) (PLGA; Resomer® RG 756S, molecular weight 76-116 kDa) was 

purchased from Boehringer Ingelheim Ltd., UK, and 2,2,2-trifluoroethanol (TFE) from Alfa 

Aesar, UK. Biological indicator Geobacillus stearothermophilus (Attest™ 1262) was supplied 

by 3M, Brazil and the surgical paper by Cipamed Ltd., Brazil. Tryptone Soya Broth (TSB) 

was purchased from Difco Laboratories, UK, Fluid Thioglycollate Medium (FTM) from Oxoid 

Microbiology Products, UK. NIH 3T3 fibroblasts (#93061524) were acquired from Health 

Protection Agency, UK. All other materials were purchased from Sigma Aldrich, UK. 

 

Scaffold fabrication 

PLGA was dissolved to a concentration of 25% (w/v) in TFE by stirring for 24 hours at 20 °C. 

The polymer solution was transferred to a 10 mL glass syringe (Hamilton) and electrospun at 

15 kV (73030P high voltage power supply, Genvolt, UK) through a 20G stainless steel 

needle towards a 15 x 15 cm grounded, aluminium foil-covered collector at a distance of 15 

cm from the tip of the needle. A flow rate of 1.5 mL/h was maintained using a syringe 
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infusion pump (Cole Parmer, UK) and a total of 1 g PLGA deposited per mat. Three 

nanofibre mats were independently fabricated for each sterilization condition, with three 

matched non-sterilized controls per experiment. 

 

Scaffold sterilization  

A validated ozone gas sterilization procedure for medical devices (in accordance with ISO 

14937 (45)) was used to sterilize the electrospun PLGA scaffolds. A prototype sterilization 

chamber (supplied by Ortosintese, São Paulo, Brazil) was used to apply ozone gas through 

the samples in a pulsed form. Each pulse was composed of four stages: vacuum, chamber 

filling, plateau (20 minutes), and vacuum. The humidity inside the chamber was up to 95%, 

with positive internal pressure ranging from 0.4 to 0.8 kgf/cm2 during chamber filling and 

negative internal pressure ranging from -0.8 to -0.4 kgf/cm2 during vacuum. Scaffolds were 

enclosed in surgical paper and exposed to either zero, two, four or eight pulses of 

ozonation. 

 

Sterility assessment 

To confirm that the ozone gas penetrated and sterilized the PLGA nanofibres, spore strips 

of the biological indicator Geobacillus stearothermophilus were wrapped into the scaffolds, 

enclosed in surgical paper and placed inside the sterilization chamber within plastic sleeves. 

Five indicator units were used for each sterilization condition. After two, four or eight pulses 

of ozonation, the biological indicators were incubated for 48 hours at 56 ºC. Subsequently, 

the scaffolds from this experiment were aseptically cut into two pieces, placed in TSB or 

FTM, and incubated at 22.5 ± 2.5 ºC and 32.5 ± 2.5 ºC, respectively, for 14 days.  

 

Field emission scanning electron microscopy (FE-SEM) 

The morphology of sterilized and non-sterilized PLGA nanofibre scaffolds was examined by 

FE-SEM (FESEM6301F, JEOL) at an accelerating voltage of 5 kV. Prior to FE-SEM analysis, 
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specimens were sputter-coated (Quorum Q150T S) with a 10 nm layer of chromium to 

produce a conductive surface. Three samples of each scaffold were analysed, and three 

images were obtained from each sample. Mean fibre diameters were determined by 

randomly selecting 20 fibres from the central area of each picture, and measuring their 

diameters using ImageJ software (National Institutes of Health, Bethesda, MD; 

http://rsb.info.nih.gov/ij/). 

 

Fourier transform-infrared spectroscopy (FTIR) 

Fourier transform infrared spectroscopy (FTIR) was used to assess changes in the surface 

chemistry of the PLGA scaffolds. FTIR spectra were obtained using an FTIR spectrometer 

(PerkinElmer Spectrum 100) with an Attenuated Total Reflectance (ATR) accessory. For 

each sample, 32 scans were performed over a wavelength range of 4,000-500 cm-1 at a 

resolution of 8 cm-1.  

  

Water contact angle 

PLGA nanofibre scaffolds were cut into squares of 1 x 1 cm and placed on glass slides. A 5 

μL droplet of distilled water was carefully deposited onto each specimen and, after 60 

seconds, an image of each droplet was recorded using a USB digital microscope (Veho 

VMS-001). Water contact angles were determined using the drop_analysis plug-in for 

ImageJ (obtained from http://bigwww.epfl.ch/demo/dropanalysis). Three replicates were 

performed for each of the triplicate scaffolds. 

 

Thermal analysis 

Thermogravimetric analysis of the nanofibre scaffolds was conducted using a Q500 

thermogravimetric analyzer (TA Instruments, USA). Samples (approximately 4 mg) were 

placed in platinum pans and heated to 500 °C at a rate of 10 °C/min, under an argon gas 

atmosphere (100 mL/min flow rate). Thermal characteristics of the scaffolds were evaluated 
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using differential scanning calorimetry (DSC) (DSC Q2000, TA Instruments, USA). Samples 

(approximately 1 mg) were placed in covered aluminium pans and heated from 0 to 150 °C 

at a rate of 10 °C/min under an argon gas atmosphere (50 mL/min flow rate), followed by 

cooling to ambient temperature. The glass transition temperature (Tg) was determined from 

the second scan of this cooled sample under the same conditions and temperature range 

(i.e. after thermal treatment). Each of the triplicate scaffolds was tested. 

 

Mechanical properties 

Tensile strength and Young’s Modulus of scaffolds were measured using a Universal 

Testing Instrument (Instron 5965). Samples were cut into 20 mm × 10 mm strips, fixed in 

cardboard frames and a uniaxial force applied at a rate of 2 mm/min using a 100 N load cell 

at room temperature. Three replicates were tested for each of the triplicate scaffolds.  

 

Cell culture 

NIH 3T3 fibroblasts were cultured in Dulbecco’s Modified Eagle’s Medium supplemented 

with foetal bovine serum (10% v/v), penicillin (100 U/mL), streptomycin (100 µg/mL) and 

amphotericin B (250 ng/mL) and maintained at 37 °C with 5% CO2 in a humidified incubator. 

 

Cell morphology on scaffolds 

Nanofibre scaffolds were cut into 9 mm diameter discs, placed in CellCrown inserts 

(Scaffdex Ltd.) within 48-well plates, and incubated in culture medium for 24 hours. 

Subsequently, 50 µL of a 3T3 cell suspension was seeded on each scaffold at a density of 

3,000 cells/disc. Cells were allowed to attach for 20 minutes in this small volume before a 

further 600 µL of medium was carefully added to each well. After either 24 hours or 15 days, 

cells were fixed for 2 hours at 37 °C in a solution of serum-free culture medium containing 

2.5% w/v glutaraldehyde. Cells were then post-fixed in an aqueous solution of osmium 

tetroxide and potassium ferrocyanide (both 1% w/v) for 1 hour at room temperature. 
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Samples were then washed with ultrapure water (Milli-Q, Millipore) and freeze dried. Dried 

samples were sputter coated with gold (150B Sputter Coater, Edwards) and observed by 

FE-SEM (FESEM6301F, JEOL) at an acceleration voltage of 5 kV. 

 

Cell proliferation on scaffolds 

To assess the biocompatibility of the sterilized PLGA scaffolds, cell proliferation over time in 

culture was measured using a resazurin assay of cell metabolic activity. 3T3 fibroblasts 

were seeded on PLGA nanofibres within CellCrown inserts as described above. Cells from 

the same suspension were seeded on tissue culture plastic to act as a positive control, 

while scaffolds in culture medium without cells were used as a negative control. Cell 

proliferation on the scaffolds was measured by a resazurin assay at various time points. An 

aqueous stock solution of 0.15 mg/mL resazurin sodium salt in Dulbecco’s phosphate-

buffered saline (pH 7.4) was prepared and filter-sterilized. At each time point, the culture 

medium was removed from each well and replaced with fresh medium containing resazurin 

solution at a concentration of 10% v/v. Plates were returned to the culture incubator for 2.5 

hours, after which the medium was removed and 100 µL aliquots from each well then 

transferred to a black 96-well microplate. Fresh, resazurin-free medium was added to each 

well of the cell-containing plates and returned to the incubator until the next assay time 

point. The fluorescence of sampled media was measured on a fluorescence plate reader 

(Biotek Synergy HT) with an excitation wavelength of 540 nm and emission wavelength of 

590 nm. The values obtained from negative control scaffolds were subtracted to determine 

the fluorescent signal originating from the cellular activity. Triplicate wells were assessed for 

each of the triplicate scaffolds and the mean ± standard error fluorescence value at each 

time point determined from three independent experiments. 

 

Statistical analysis 
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All experiments were performed three times and data are reported as mean ± standard error 

from of the three independent replicates. One-way analysis of variance, in conjunction with 

Tukey’s post hoc test, was used to analyse differences between groups. A value of p<0.05 

was considered statistically significant. 

 

Results 

Effectiveness of sterilization method  

Spores of Geobacillus stearothermophilus are a commonly used biological indicator and 

were employed in this study to determine the effectiveness of ozone gas treatment as a 

means of sterilizing PLGA nanofibres. Spore strips were wrapped inside PLGA scaffolds 

and, following pulsed ozone exposure, incubated for 48 hours at 56 ºC. Sterilized and non-

sterilized biological indicators showed different outcomes. As shown in Fig. 1, the control, 

non-sterilized indicator turned yellow following incubation, demonstrating bacterial growth. 

All of the sterilized indicators remained purple, confirming that the ozone gas was able to 

penetrate the pores of the nanofibre scaffolds and sterilize the enclosed biological indicator. 

After 14 days of incubation in TSB or FTM, all tubes containing the ozone-sterilized 

scaffolds remained clear, i.e., there was no growth of microorganisms inside the tubes, 

confirming that the nanofibre scaffolds were sterile after two, four, or eight pulses of 

ozonation. 

 

Scaffold morphology  

Any effects of ozone gas sterilization on the morphology of the PLGA nanofibres was 

assessed by FE-SEM. Fig. 2 shows micrographs of non-sterilized and ozone-sterilized 

nanofibres. All fibres were smooth and bead-free, with no observable differences between 

the groups, no signs of damage to any of the scaffolds, and no changes in the mean 

nanofibre diameter (Table 1).  
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Surface characterization 

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) was used 

to explore the surface chemistry of the sterilized and non-sterilized PLGA scaffolds (Fig. 3). 

The spectra show typical peaks of ester carbonyl groups (~1,747 cm-1), attributable to C=O 

stretching, and peaks between 1,200 to 1,050 cm-1, which correspond with C-O-C 

stretching (46). The spectra of the scaffolds treated with two, four, and eight pulses of 

ozone gas were very similar to the spectra of non-sterilized nanofibres, with no visible 

appearance of additional peaks following ozone treatment. The values of water contact 

angle of non-sterilized and sterilized scaffolds are also presented in Table 1. Sterilized 

scaffolds exhibited lower contact angles in comparison to the non-sterilized group. Despite 

slight decreases in contact angles when increasing the number of ozone treatment pulses, 

there were no significant difference between the groups (p>0.05).  

 

Thermal characterization 

The thermogravimetric and DSC curves of the sterilized and non-sterilized PLGA scaffolds 

are shown in Fig. 4, and the thermal properties of the scaffolds are summarized in Table 1. 

The thermogravimetric curves (Fig. 4A) indicate that the thermal decomposition processes 

of all samples were similar and occurred in a single step, ranging from approximately 280 to 

500 °C, with a weight loss of more than 97%. Thermogravimetric analysis of PLGA 

nanofibres has been previously performed and similar results were reported (47). DSC 

curves of PLGA scaffolds showed a weak endothermic event in the range of 50-65 °C (Fig. 

4B). Since no weight loss was seen in thermogravimetric curves in this region, the event can 

be assigned to a typical enthalpic relaxation superimposed on glass transition (Tg) 

characteristic of PLGA materials (48-50), which is evidence of amorphicity. The glass 

transitions temperatures were clearly determined after removing the previous thermal 

history by thermal treatment of the samples (Fig. 4C; Table 1). 
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Mechanical properties  

The values of tensile strength and Young’s Modulus of non-sterilized and sterilized scaffolds 

are shown in Table 1. Ozone gas treatment of up to four pulses did not significantly affect 

the mechanical properties of the scaffolds (p>0.05). However, eight pulses of ozone gas 

resulted in a decrease in the Young’s Modulus of the PLGA scaffolds when compared to the 

non-sterilized group (p<0.05). Both tensile strength and Young´s Modulus of scaffolds 

sterilized by eight pulses were significantly lower when compared to the scaffolds sterilized 

by two pulses (p<0.05 and p<0.01, respectively).  

 

Cell behaviour 

To ascertain the effect of ozone gas sterilization on the biocompatibility of PLGA nanofibre 

scaffolds, 3T3 fibroblasts were seeded as a model cell. Cell morphology was examined by 

FE-SEM, and cell proliferation determined by resazurin reduction assays. FE-SEM images of 

cell morphology on non-treated and ozone-treated PLGA scaffolds at 24 hours and 15 days 

post seeding are presented in Fig. 5 and Fig. 6, respectively. After 24 hours cells had 

adhered and spread well on all scaffolds, with clear evidence of infiltration into scaffold 

pores and intimate interaction of cells with individual nanofibres (Fig. 5). After 15 days, cells 

existed in confluent layers on all scaffolds, and no apparent differences in cell morphology 

were observed on treated or non-treated scaffolds at either time point (Fig. 6).  

To investigate whether ozone sterilization affected cell proliferation on PLGA 

nanofibres, 3T3 fibroblasts growth was studied over a period of 14 days (Fig. 7). Although 

there appeared to be a marginal reduction in proliferation on ozone-treated scaffolds in 

comparison to non-sterilized ones at all time points, these differences were not statistically 

significant. 

 

Discussion 
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A critical step in the fabrication of any implantable medical device is sterilization. Although 

there are many sterilization methods, each device has its own critical parameters that must 

be conserved to maintain its efficacy and safety. A number of approaches have been 

examined for the sterilization of scaffolds for tissue engineering applications. However, most 

result in modification of one or more of a scaffold’s morphological, mechanical or 

physicochemical properties. This study examined pulsed ozone gas sterilization as an 

alternative approach, with the aim of preserving scaffold properties post-sterilization. 

Nanofibrous matrices are particularly susceptible to modification during sterilization, so we 

tested the applicability of this technique against this type of scaffold. PLGA was chosen as 

the scaffold material due to its widespread use in tissue engineering applications and 

consequent potential for clinical translation. Of the possible compositions of PLGA, 75:25 

(lactide:glycolide) was selected as it provided the most comparable scaffold to those used 

in previous investigations into the effects of sterilization techniques on PLGA nanofibres 

(22,24,25,51,52). 

G. stearothermophilus spores are a common indicator used in the validation of 

ozone sterilization methods, and have been shown to be the most resistant indicator to this 

kind of sterilization process (28,53). Importantly, this study demonstrates that when the 

biological indicator was wrapped within PLGA nanofibres and exposed to two, four or eight 

pulses of ozone gas, the spores were killed (Fig. 1), suggesting that this procedure offers 

efficient sterilization even at the lowest number of ozone pulses employed. Subsequent 

culture of ozone-treated nanofibres for 14 days in either Tryptone Soya Broth, commonly 

used to cultivate fungi and aerobic bacteria, or Fluid Thioglycollate Medium, primarily 

intended for the culture of anaerobic bacteria (54), confirmed the lack of viable bacteria or 

fungi in these scaffolds. 

Following successful sterilization of PLGA nanofibres, we investigated whether 

ozone gas treatment affected scaffold morphology, physicochemical, thermal and 

mechanical properties, and cell-material interactions. Scanning electron microscopy (SEM) 
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analysis demonstrated that scaffold morphology was unaffected by ozone gas sterilization 

(Fig. 2), and the nanofibre diameters also remained unchanged (Table 1). These results are 

comparable to exposure of PLGA nanofibres to electron beam (25), gamma (51,52), and UV 

(22,24) irradiation, which have also been shown to have no effect on fibre morphology and 

diameter. Conversely, wet chemical treatments such ethanol, peracetic acid or antimicrobial 

solution, have been shown to significantly decrease PLGA nanofibres diameters (22,51). 

Effects of ozone gas treatment on the surface characteristics of the PLGA nanofibres 

were assessed by FTIR analysis and water contact angle measurement. ATR-FTIR 

spectroscopy showed that, in comparison to untreated controls, no additional functional 

groups were present on the sterilized scaffolds, and peak intensities were unaffected (Fig. 

3). Depending on their chemical structure, polymer exposure to ozone gas has been shown 

to result in the generation of a number of functional groups, such as peroxides, 

hydroperoxides and carboxyls via oxidation mechanisms. While there are no literature 

examples of PLGA modification via ozone treatment, poly-L-lactic acid (PLLA), has been 

functionalized with cell-adhesive species via the groups generated by ozone gas exposure 

(34,35,55). In comparison, the lack of chemical modification observed in this study is most 

likely due to the different ozone treatment methods employed rather than differences in the 

polymers. In this study, the PLGA nanofibre samples were exposed to pulses of ozone at a 

relatively low pressure, with each pulse lasting ~40 minutes. This contrasts with continuous 

ozone flow in PLLA treatment, either in a dried chamber (35) or bubbled through isopropyl 

alcohol in a mixture with oxygen (34,55). Based on our results, pulsed ozone gas appears to 

be a milder method than continuous ozone flow in terms of polymer oxidation, while still 

possessing the ability to kill microbial contaminants. 

Following ATR-FTIR analysis, we investigated the wettability of the PLGA nanofibres 

by measurement of water contact angle. Surface wettability is affected by the chemical 

characteristics of the surface, with hydrophilic surfaces having a greater wettability than 

hydrophobic ones. Indeed, cell scaffolds fabricated from hydrophobic polymers, including 
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PLGA, are often post-treated to confer greater wettability, with the general belief being that 

this improves cell adhesion and growth. Following ozone treatment of PLGA nanofibres, 

although there was a downward trend in the water contact angle with increasing ozone 

pulses, this decrease was not statistically significant (Table 1). As expected from the lack of 

apparent surface chemistry changes visible in ATR-FTIR spectra, this demonstrates that 

ozone gas treatment had no effect on PLGA nanofibre wettability. 

While the gross morphology and surface properties of PLGA nanofibres were 

unaffected by pulsed ozone gas treatment, it was also important to assess whether or not 

the scaffolds’ bulk properties were modified by this procedure. PLGA is an amorphous solid 

undergoing two major transitions, the glass transition (Tg) and enthalpy relaxation, both of 

which can be affected by sterilization procedures, and may result in changes to the 

mechanical properties of the material (56,57). Thermogravimetric analysis and differential 

scanning calorimetry of untreated and ozone-treated PLGA nanofibres demonstrated that all 

samples had very similar thermal profiles (Fig. 4), and the calculated values of both Tg and 

enthalpy relaxation were unaffected by the sterilization process (Table 1; p>0.05). Previous 

studies on the effect of electron beam radiation on PLGA revealed a decrease in molecular 

weight and concomitant decrease in Tg with increasing radiation dose (58,59). A similar 

relationship was observed when PLGA was exposed to gamma irradiation (56). The 

similarities in thermal characteristics between ozone treatments observed in this study 

suggest that there were no deleterious effects of ozone gas exposure on the bulk polymer 

within the scaffolds, i.e. no polymer chain scission. 

These observations are confirmed, at least in part, by the analysis of tensile strength 

and Young’s Modulus, important parameters which can be affected by sterilization, and 

impact on a scaffold’s suitability within a particular biomechanical environment. In the 

present study, ozone gas sterilization preserved the mechanical properties of PLGA 

nanofibres following two and four pulses of ozone gas, with no significant differences 

between treated and non-treated groups (Table 1; p>0.05). However, eight pulses of ozone 
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gas significantly decreased the tensile strength of the nanofibres (p<0.05), although only in 

comparison to two pulses, not the untreated control. Similarly, eight pulses of ozone 

resulted in a significantly reduced Young’s Modulus compared to zero or two pulses (Table 

1; p<0.05). Irradiation-based sterilization methods penetrate polymer matrices and change 

the their bulk properties. For example, the mechanical properties of PLGA nanofibres have 

been shown to be severely compromised by electron beam or UV irradiation (24,25) while, 

conversely, gamma irradiation has been shown to increase the Young’s modulus and 

ultimate tensile strength of PLGA nanofibres, although the rate of in vitro degradation was 

accelerated following this treatment (52). Selim et al, compared PLGA nanofibre sterilization 

by gamma irradiation, ethanol or peracetic acid, and determined that all three methods 

reduced the tensile strength of the scaffolds, with ethanol treatment resulting in an 

especially weak and brittle matrix (51). Ozone gas sterilization is a surface phenomenon, 

with no expected penetration into the bulk structure of the fibres. However, the mechanical 

properties of scaffolds exposed to eight pulses of ozone gas suggest that some bulk 

modification of the polymer structure occurred, which was not detected by the other 

analytical techniques employed in this study. One possibility, although one that was not 

apparent during SEM analysis, is modification of fibre arrangement within the matrices, a 

phenomenon known to affect mechanical properties of nanofibre scaffolds (60,61). 

Nonetheless, while the effects of eight ozone pulses require further investigation, we 

demonstrate that, unlike other sterilization techniques, two and four pulses of ozone gas do 

not alter the morphology, physicochemical and bulk properties of PLGA nanofibres. 

For a sterilization technique to be suitable for use in tissue engineering and 

regenerative medicine applications, the response of cells to the scaffold should ideally not 

be adversely affected. We employed 3T3 fibroblasts as a model cell line to examine 

morphology and proliferation on PLGA nanofibres following ozone sterilization. No apparent 

morphological differences were observed between untreated and ozone-treated scaffolds 

24 hours after seeding (Fig. 5), with all cells well spread and demonstrating significant 
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interaction with the fibres, and infiltration into the matrices. Similarly, after 15 days, there 

were no differences between the appearance of the 3T3 cells on the untreated and ozone 

sterilized PLGA nanofibres (Fig. 6). The cells were confluent on all matrices with evidence of 

significant extracellular matrix deposition, although the SEM processing resulted in artificial 

cracks appearing due to dehydration of the cells and scaffolds. Interestingly, this enabled 

the observation of cells deeper within the scaffolds, with evidence that the fibroblasts had 

infiltrated the 3D structure of the nanofibres to generate a multi-layered structure (Fig. 6E-

H). Proliferation on the nanofibres was assessed by monitoring the reduction of resazurin to 

resorufin over a period of 14 days to determine the relative metabolic activity of cells on the 

different scaffolds (Fig. 7). The increasing fluorescence over time clearly indicated a 

concomitant increase in the number of cells on all scaffolds, with no significant differences 

between untreated and ozone-treated scaffolds, or between the ozone-treated groups 

(p>0.05). Other sterilization treatments have also been shown to result in unaltered cell 

responses to PLGA nanofibre scaffolds. For example, NIH 3T3 proliferation was unaffected 

by electron beam irradiation (25), and short wave UV irradiation had no effect on porcine 

smooth muscle cell proliferation (24). Other studies, although lacking proliferation data, also 

suggest that gamma irradiation does not affect cell response to PLGA nanofibres (51,52), 

while ethanol treatment has been shown to have varied effects. Selim et al demonstrated 

that a co-culture of fibroblasts and keratinocytes was unaffected by ethanol sterilization 

(51), while Braghirolli et al described a reduction in mesenchymal cell adhesion and 

spreading on ethanol-treated PLGA nanofibres (22). These methods, although not affecting 

cell response, do, however, affect other properties of PLGA nanofibres, such as 

morphology, fibre diameter and mechanical properties, as described above. Hence pulsed 

ozone gas treatment, unlike other sterilization techniques, offers the possibility of effective 

scaffold sterilization, while maintaining the as-fabricated design parameters of PLGA 

nanofibre scaffolds. As PLGA is susceptible to modification during sterilization but was 

unaffected by this method, it is likely that ozone gas treatment will be equally efficacious 
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with other polyesters, such as PLLA and polycaprolactone, as well as more resilient 

polymers in other chemical classes, and to other types of scaffold in addition to nanofibres. 

In conclusion, we have demonstrated that pulsed ozone gas is an efficient 

sterilization method for PLGA nanofibre scaffolds, killing G. stearothermophilus, the most 

common biological indicator used for validation of ozone gas sterilization processes. 

Despite PLGA nanofibres being susceptible to modification and degradation during 

sterilization, this method preserved the as-fabricated properties of the scaffolds, including 

efficacy of cell adhesion and growth, a feat which other sterilization methods are unable to 

achieve. As such, pulsed ozone gas sterilization offers an inexpensive and effective means 

of ensuring the safety and performance of tissue engineering scaffolds for clinical 

applications. 
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Figure 1. Fifteen ozone gas-sterilized G. stearothermophilus indicators (purple) compared to 

a non-sterilized one (yellow) after 48 hours incubation at 56 ºC. 

 

Figure 2. FE-SEM micrographs of (A) non-sterilized and sterilized PLGA nanofibre scaffolds 

after (B) 2, (C) 4, and (D) 8 pulses of ozone gas. Scale bars = 5 µm. 
 

 

Table 1. Summary of morphology, surface and bulk properties of non-sterilized and ozone 

gas sterilized PLGA scaffolds (n=3). 

Ozone 
Sterilization 

Fibre 
Diameter 

(nm) 

Contact 
angle         

(°) 

ΔΗrelax 
(J/g)* 

Tg (°C)** Tensile 
Strength                

(MPa) 

Young's 
Modulus 

(MPa) 
None 

2 pulses 
4 pulses 
8 pulses 

670 ± 40 
634 ± 36 
636 ± 51 
664 ± 28 

128.3 ± 1.3 
125.6 ± 0.4 
126.1 ± 0.6 
124.5 ± 0.7 

8.8 ± 0.4 
9.8 ± 0.2 
9.7 ± 0.2 
9.7 ± 0.2 

51.8 ± 0.1 
51.8 ± 0.1 
52.0 ± 0.1 
51.6 ± 0.1 

3.41 ± 0.11 
3.75 ± 0.14 
3.33 ± 0.18 
2.91 ± 0.15 

118 ± 5 
128 ± 6 
114 ± 7 
88 ± 3 

 
* Enthalpy Relaxation (first scan) 
** Glass transition temperature obtained from the second scan 
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Figure 3. ATR-FTIR spectra of electrospun PLGA nanofibres prior to sterilization, and after 

2, 4 or 8 pulses of ozone gas. 
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Figure 4. Thermoanalytical characterisation of non-sterilized and sterilized PLGA scaffolds. 

(A) Thermogravimetric curves obtained in a dynamic argon atmosphere (100 mL/min) and 
heating rate 10 °C/min; (B) DSC curves obtained in a dynamic argon atmosphere (50 
mL/min) and heating rate 10 °C/min; (C) DSC curves with pronounced glass transition 
events obtained in a second scan (thermal treatment) under a dynamic argon atmosphere 
(50 mL/min) and heating rate 10 °C/min. 
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Figure 5. Interaction and spreading of 3T3 fibroblasts on PLGA nanofibre scaffolds 24 

hours after cell seeding: (A, E) non-sterilized mat; (B, F) sterilized by 2 pulses of ozonation; 
(C, G) sterilized by 4 pulses of ozonation; (D, H) sterilized by 8 pulses of ozonation. Scale 
bars = 50 µm (A-D) and 5 µm (E-H). 
 

 

Figure 6. 3T3 fibroblasts on PLGA nanofibre scaffolds 15 days after seeding: (A, E) non-

sterilized mat; (B, F) sterilized by 2 pulses of ozonation; (C, G) sterilized by 4 pulses of 
ozonation; (D, H) sterilized by 8 pulses of ozonation. Scale bars = 100 µm (A-D) and 10 µm 
(E-H). 
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Figure 7. 3T3 fibroblast proliferation on non-sterilized and ozone gas-sterilized PLGA 

nanofibre scaffolds determined by the reduction of resazurin to resorufin. Data represent the 
mean + standard error (n=3). 


