

Citation for published version:
Pegg, E & Gill, H 2016, 'An open source software tool to assign the material properties of bone for ABAQUS
finite element simulations', Journal of Biomechanics, vol. 49, no. 13, pp. 3116-3121.
https://doi.org/10.1016/j.jbiomech.2016.07.037

DOI:
10.1016/j.jbiomech.2016.07.037

Publication date:
2016

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161915571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jbiomech.2016.07.037
https://researchportal.bath.ac.uk/en/publications/an-open-source-software-tool-to-assign-the-material-properties-of-bone-for-abaqus-finite-element-simulations(2166dd7e-a0a9-4e41-a6fe-489c8586651f).html

1

An open source software tool to assign the material properties of bone for 1

ABAQUS finite element simulations 2

Elise C Pegg1*, Harinderjit S Gill1 3

1 Department of Mechanical Engineering, University of Bath, Bath, UK 4

 5

* Corresponding Author: 6

Dr Elise C Pegg 7

Department of Mechanical Engineering 8

University of Bath, Bath 9

BA2 7AY 10

Tel: 01225 383375 11

Email: e.c.pegg@bath.ac.uk 12

 13

Keywords: Material properties; Bone; Finite Element; Python. 14

Word Count: 1,989 15

16

mailto:e.c.pegg@bath.ac.uk

2

Abstract 17

A new software tool to assign the material properties of bone to an ABAQUS finite element mesh was created and compared 18

with Bonemat, a similar tool originally designed to work with Ansys finite element models. Our software tool 19

(py_bonemat_abaqus) was written in Python, which is the chosen scripting language for ABAQUS. The purpose of this study 20

was to compare the software packages in terms of the material assignment calculation and processing speed. Three element 21

types were compared (linear hexahedral (C3D8), linear tetrahedral (C3D4) and quadratic tetrahedral elements (C3D10)), 22

both individually and as part of a mesh. 23

Comparisons were made using a CT scan of a hemi-pelvis as a test case. A small difference, of -0.05 kPa on average, was 24

found between Bonemat version 3.1 (the current version) and our python package. Errors were found in the previous 25

release of Bonemat (version 3.0 downloaded from www.biomedtown.org) during calculation of the quadratic tetrahedron 26

Jacobian, and conversion of the apparent density to modulus when integrating over the Young’s modulus field. These issues 27

caused up to 2 GPa error in the modulus assignment. For these reasons, we recommend users upgrade to the most recent 28

release of Bonemat. 29

Processing speeds were assessed for the three different element types. Our Python package took significantly longer (110 30

s on average) to perform the calculations compared with the Bonemat software (10 s). Nevertheless, the workflow 31

advantages of the package and added functionality makes ‘py_bonemat_abaqus’ a useful tool for ABAQUS users. 32

http://www.biomedtown.org/

3

 33

1 Introduction 34

Bone has heterogeneous material properties, and so in order to create representative finite element models it is essential 35

that the properties are correctly described in order to draw useful results. It is possible to calculate the apparent density of 36

bone from a Computed Tomography (CT) scan. Once the density is known, it can be used to calculate the Young's modulus 37

value, typically using a power equation. Opinion varies as to which mathematical relationships are the most appropriate to 38

use. Helgason et al. have published a comprehensive review on the area (Helgason, Perilli et al., 2008) and it is not the 39

purpose of this study to go into further detail on the subject. 40

What we are concerned with is the practical implementation of such mathematical relationships when using the finite 41

element software ABAQUS (Simulia, Dassault Systèmes, Paris, France). It is possible to make such material assignments for 42

an ABAQUS input file using commercial segmentation software, such as Simpleware (Simpleware Ltd., Exeter, UK) or Mimics 43

(Materialise, Leuven, Belgium), but the cost of such software can be prohibitive. Researchers at the Istituto Ortopedico 44

Rizzoli in Bologna, Italy, have created a software program called Bonemat to help with accurate material assignment for a 45

finite element mesh. Bonemat is publically available and can be freely downloaded, making it a useful research tool. 46

However, it has three main limitations: 47

1. Bonemat will only work on Microsoft Windows, which can be a problem for users of other operating systems. 48

2. Bonemat is not currently compatible with ABAQUS models, so users have to convert their finite element meshes 49

into a compatible format, using an intermediate software such as Hypermesh (Altair Hyperworks, MI, USA) or 50

custom scripting, before material properties can be assigned. 51

3. All model information (aside from the mesh) is lost after material assignment; such as, boundary conditions, 52

element sets, or contact definitions. Redefining the element sets and model parameters can add significant time 53

to a project involving multiple models. 54

The algorithm used by Bonemat to calculate the material properties of bone from a CT scan has evolved over the years. The 55

first iteration (V1) calculated the average Hounsfield Unit (HU) value of all voxels found within an element; these were then 56

converted to the modulus of bone to use for the element material (Zannoni, Mantovani et al., 1999). The second iteration 57

(V2) used trilinear interpolation of the CT scan to more accurately estimate the HU value for each element node, and then 58

4

used numerical integration to compute the HU for the element volume, which was then converted to modulus (Taddei, 59

Pancanti et al., 2004). The third iteration (V3) first converted the CT scan voxels to modulus values, and then performed the 60

linear interpolation and numerical integration to find the modulus for each element volume. Taddei et al. demonstrated 61

V2 and V3 algorithms do result in different finite element model results. Strain calculated from models of a femur processed 62

with V2 and V3 algorithms were compared to strains measured experimentally. V3 results had a higher regression 63

coefficient with the experimentally measured strains (0.79) compared with V2 results (0.69) (Taddei, Schileo et al., 2007). 64

We have created an open-source software which has been written in Python (Python Software Foundation, NH, USA) and 65

aims to address the limitations of Bonemat for ABAQUS users. Python was an obvious choice for the program as it is the 66

scripting language used by ABAQUS; furthermore Python works with all operating systems, so the package is multi-platform. 67

It applies the same calculations as Bonemat, allows the same user options, but the mesh data input format is an ABAQUS 68

input file. Furthermore, the program does not remove or change any model parameters already defined in the input file, 69

such as boundary conditions, element sets, or contact definitions. The program also has the added functionality that it can 70

cope with multiple parts, and can ‘ignore’ parts which are not bone and so do not need material assignment. 71

The aims of this study were to: (1) assess equivalence between material assignment for individual elements using 72

Bonemat3.1 software (current version, Crimi, 2015), Bonemat3.0 software (previous version, Chiarini, 2006) and our Python 73

package ('py_bonemat_abaqus'), (2) assess equivalence for the modulus grouping and element assignment for a whole 74

bone, and (3) compare the speed of the two software packages. 75

2 Methodology 76

Material assignment is applied to a finite element mesh in two stages: (1) the software calculates the modulus for each 77

individual element, then (2) the modulus values for the entire mesh are grouped into bins to reduce computation time for 78

the finite element model. Equivalence was assessed separately for these two stages of the material assignment. First, the 79

numerical integration algorithm was checked on individual elements of controlled mesh quality. Second, modulus values 80

were calculated for a CT scan of a hemi-pelvis using the different software packages; this enabled the grouping algorithms 81

to be compared, and was representative of a typical study case. Lastly, the time taken for each software package to perform 82

the calculations on the hemi-pelvis meshes was assessed. 83

5

2.1 Creation of the 'py_bonemat_abaqus' Python package 84

All scripts were written to be compatible with Python version 2.6 and 2.7 (Python Software Foundation, www.python.org) 85

and were dependent on two other open-source packages: 'numpy' and 'pydicom'. The package can be installed from the 86

Python Package Index using 'pip' or 'easy-install'', or can be downloaded and manually installed using the setup.py script 87

(Pegg, 2015). Once installed, the user can either run the script from the command line, or include the statement 'import 88

py_bonemat_abaqus' in their python scripts, to process their ABAQUS input files. 89

2.2 Numerical integration accuracy and modulus assignment 90

The CT scan used was that of a pelvis downloaded from the VAKHUM database, created as part of a project funded by the 91

European Commission under the Information Society Technologies Programme. The dataset was provided by the 92

Laboratory of Human Anatomy and Embryology, University of Brussles (UBL), Belgium (Jan, 2005). 93

Ten single element input files were created with linear tetrahedral (C3D4), quadratic tetrahedral (C3D10), and linear 94

hexahedral (C3D8) elements, and randomly assigned nodal co-ordinates within the CT scan volume. All elements had a 95

Jacobian determinant greater than 0.2; this limit was recommended by Burkhart et al. for biomechanical studies of bone 96

(Burkhart, Andrews et al., 2013). The parameters used for the equivalence tests are summarised in Table 1, and described 97

schematically in Figure 1. The parameters used to convert HU to apparent density (ρapp) (Equation 1) and from ρapp to elastic 98

modulus (Equation 2) were based on reported values for the pelvis (Anderson, Peters et al., 2005). Numerical integration 99

across both the HU field (V2) and the modulus field (V3) were compared. 100

𝜌𝑎𝑝𝑝 =-0.021075 + 0.000786 HU Equation 1 101

𝐸 = 2.0173 𝜌𝑎𝑝𝑝
2.46 Equation 2 102

The single element meshes were analysed using our ‘py_bonemat_abaqus’ Python package, Bonemat3.0 downloaded from 103

the BiomedTown website (Chiarini, 2006), and Bonemat3.1 from www.bonemat.org (Crimi, 2015). 104

6

2.3 Modulus grouping and assignment of multiple elements 105

The hexahedral finite element mesh of the left hemi-pelvis from the VAKHUM database was used for the material 106

assignment of the bone. The linear and tetrahedral meshes were created from the hexahedral mesh by dividing each 107

hexahedron into five tetrahedral elements. The hexahedral element mesh had 5,929 elements, the linear tetrahedral mesh 108

had 29,645 elements, and the quadratic tetrahedral mesh had 29,645 elements. Each model was analysed using the 109

parameters detailed in Table 1. Results were processed using both the V2 and the V3 algorithms. 110

2.4 Speed comparison 111

Python is an interpreted programming language, and therefore scripts written in Python are typically slower compared with 112

pre-compiled programs. For this reason, it was important to quantify any difference in speed. The time taken to analyse 113

the models described in Section 2.3 using the different software packages was assessed, each model was measured 5 times. 114

Tests were performed on a Windows 7 PC with a 64-bit operating system, with four CPUs, 8 GB of RAM, and an Intel Core 115

i5-3470 processor. 116

3 Results 117

The assigned modulus values for individual elements were very similar between the newest release of Bonemat (Crimi, 118

2015) and our python package (Figures 2a-c). The mean absolute difference was -0.47 kPa (standard deviation: 13.55 kPa, 119

range: -35.00 to 45.28 kPa). Modulus values from the older release of Bonemat were also similar for the linear hexahedral 120

and tetrahedral elements, with a mean absolute difference of -6.00 kPa (standard deviation: 16.67 kPa, range: -49.00 to 121

14.33 kPa). However, for the quadratic tetrahedral elements, the mean absolute difference was -0.19 GPa (standard 122

deviation: 1.43 GPa, range: -3.01 to 1.57 GPa) (Figure 2c). 123

Modulus assignment of the hemi-pelvis mesh (Figure 3) using the py_bonemat_abaqus software had a good agreement 124

with that calculated by the newest release of Bonemat (Figure 4, Table2). The mean absolute difference was -0.05 kPa 125

(range:-19.48 to 10.23 kPa, standard deviation: 0.62 kPa) (Table 2). The difference in modulus assignment was 126

approximately the same for both numerical integration methods (V2 or V3). 127

Conversely, the modulus assignment with the old version of Bonemat had a mean absolute difference 38.62 MPa 128

(range: -2193.52 to 1907.02 MPa) (Figure 5, Table 3). Furthermore, when using the V3 algorithm the error linearly increased 129

7

with modulus, which for the CT dataset investigated in this study introduced a maximum error of 2.19 GPa. Examination of 130

the results revealed that the equation to convert apparent density to modulus was not correctly applied when the 131

integration over modulus was selected in the software, which introduced the systematic error. 132

The Python package took longer to perform the calculations compared to both the releases of Bonemat (Figure 6). The 133

python package took a similar time to run for all element types, and this was between 109 and 126 s. The speed of the old 134

version of Bonemat (3.0) was dependent on the element type, ranging from 78s for a hexahedral mesh, to 102s for a 135

quadratic tetrahedral mesh. The newest version of Bonemat (3.1) was the fastest for all element types; the maximum time 136

taken was 20 s to process the quadratic tetrahedral mesh. 137

4 Discussion 138

The modulus values calculated by our python package closely matched those from the newest release of Bonemat (Crimi, 139

2015), and any differences were likely to be due to rounding effects. The average difference calculated for the whole CT 140

volume was -0.05 kPa, which to put into context is 0.00000002% of the typical modulus of cortical bone (20.7 GPa), and 141

0.00000003% of the modulus of trabecular bone (14.8 GPa) (Rho, Ashman et al., 1993). 142

Bonemat3.0 had an error in the quadratic tetrahedron modulus calculation which resulted in large differences in modulus 143

assignment. It was possible to reproduce erroneous results by modifying the Jacobian calculation; the two different Jacobian 144

equations are provided as supplementary information. When the representative study case of the hemi-pelvis was analysed 145

for quadratic tetrahedral elements, this calculation error was found to introduce an error of up to 2 GPa, which could have 146

a significant impact on study results. A second bug was observed in the old version of Bonemat software for the V3 147

calculation, where the equation to convert apparent density to modulus was not correctly applied and introduced additional 148

errors. These results call into question the accuracy of published studies which have used Bonemat3.0 to assign materials 149

to quadratic tetrahedral elements. We recommend that users update their Bonemat software to the newest version which 150

has addressed these issues. 151

The python package ‘py_bonemat_abaqus’ took 6 to 24 times longer to process the models, depending on the element 152

type, compared to the newest release of Bonemat. This increased run time may be an issue for extremely large models or 153

high resolution CT datasets, however, the research time that will be saved by users not having to convert the file format of 154

8

the mesh, or perform manual edits to the input file to re-assign element sets prior to solving the model, may offset the 155

increased time to assign the material properties. 156

In summary, the ‘py_bonemat_abaqus’ Python package produced equivalent results to Bonemat3.1 (the current release), 157

but not to Bonemat3.0 (the previous version from the BiomedTown website) which contained some calculation errors. The 158

‘py_bonemat_abaqus’ Python package was slower to process the models, but will provide ABAQUS users with a useful 159

method to assign material properties of bone to finite element models, with an easier workflow, fewer limitations, and as 160

it is written in Python, it can be directly incorporated into scripts written to interact with ABAQUS. Through collaboration 161

with the Instituto Ortopedico Rizzoli in Bologna, work is underway to incorporate the ABAQUS input and output parts of the 162

'py_bonemat_abaqus' script into Bonemat. 163

Acknowledgements 164

The methodology and general algorithm for the Python package was based upon the original Bonemat software and we 165

would like to thank the Istituto Ortopedico Rizzoli in Bologna, Italy for their work. Furthermore, the CT scan and finite 166

element mesh used for the testing was from the VAKHUM database, which was kindly provided by the Laboratory of Human 167

Anatomy and Embryology, University of Brussels (ULB) in Belgium and the Istituto Ortopaedico Rizzoli. We would also like 168

to thank the Python Software Foundation, and the Python Package Index, for enabling the source code to be hosted online 169

so other researchers can download and use the ‘py_bonemat_abaqus’ package. 170

Conflict of Interest 171

The authors did not receive payment or services from any third party for any aspect of the submitted work. The authors 172

have received support for research projects which were unrelated to the present study. 173

References 174

Anderson, A. E., Peters, C. L., Tuttle, B. D., Weiss, J. A., 2005. Subject-Specific Finite Element Model of the Pelvis: 175
Development, Validation and Sensitivity Studies. Journal of Biomechanical Engineering 127, 364-373. 176

Burkhart, T. A., Andrews, D. M.,Dunning, C. E., 2013. Finite element modeling mesh quality, energy balance and validation 177
methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 178
46, 1477-1488. 179

Chiarini, A., 2006. Download Bonemat Software. Retrieved 6/8/2015, 2015, from 180
https://www.biomedtown.org/biomed_town/B3C_Building/products/bonemat/download_html/. 181

Crimi, G., 2015. Bonemat. Retrieved 6/8/2015, 2015, from http://www.bonemat.org/downloads.php. 182

9

Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjólfsson, S., Viceconti, M., 2008. Mathematical relationships between 183
bone density and mechanical properties: A literature review. Clinical Biomechanics 23, 135-146. 184

Jan, S. V. S., 2005. The VAKHUM Project: Virtual Animation of the Kinematics of the Human. Theoretical Issues in 185
Ergonomics Science 6.3-4, 277-279. 186

Pegg, E. ,2016. py_bonemat_abaqus.. Retreved 7/1/2016, 2016, from 187
https://pypi.python.org/pypi/py_bonemat_abaqus/ 188

Rho, J. Y., Ashman, R. B., Turner, C. .H., 1993. Young's modulus of trabecular and cortical bone material: ultrasonic and 189
microtensile measurements. Journal of Biomechanics 26, 111-119. 190

Taddei, F., Pancanti, A., Viceconti, M., 2004. An improved method for the automatic mapping of computed tomography 191
numbers onto finite element models. Medical Engineering and Physics 26, 61-69. 192

Taddei, F., Schileo, E., Helgason, B., Christofolini, L., Viceconti, M., 2007. The material mapping strategy influences the 193
accuracy of CT-based finite element models of bones: An evaluation against experimental measurements. 194
Medical Engineering and Physics 29, 973-979. 195

Zannoni, C., Mantovani, R., Viceconti, M., 1999. Material properties assignment to finite element models of bone 196
structures: a new method. Medical Engineering and Physics 20, 735-740. 197

Table and Figure Captions 198

Table 1. Parameters used when assessing equivalence between material assignments of the software packages. 199

Table 2. Summary of the modulus difference (py_bonemat_abaqus – Bonemat3.1) of the hemi-pelvis when analysed using 200
different elements and numerical integration algorithms. Results are shown in kPa. 201

Table 3. Summary of the modulus difference (py_bonemat_abaqus – Bonemat3.0) of the hemi-pelvis when analysed using 202
different elements and numerical integration algorithms. Results are shown in MPa. 203

Figure 1. Schematic illustration of the parameters detailed in Table 1 and how they influence the grouping of the modulus 204
results. 205

Figure 2. Comparison of the modulus values output by Bonemat3.1 and Bonemat3.0 to the py_bonemat_abaqus python 206
package, for the (a) linear hexahedron, (b) linear tetrahedron, and (c) quadratic tetrahedron (n=10) with the V2 algorithm. 207

Figure 3. Comparison of the modulus values assigned to the hexahedral mesh of the hemi-pelvis by py_bonemat_abaqus 208
and Bonemat 3.1 using the V3 algorithm. An anterior-posterior view of the whole mesh is shown, and a cross-sectional view 209
through the volume centroid. 210

Figure 4. Bland Altman plots summarising the difference in assigned modulus (in GPa) for the hemi-pelvis mesh for all 211
element types combined. Differences shown compare the py_bonemat_abaqus to Bonemat 3.1 analysed with (a) the V2 212
algorithm, (b) the V3 algorithm. Bland-Altman plots with kPa y-axis scales are provided as supplementary information 213

Figure 5. Bland Altman plots summarising the difference in assigned modulus (in GPa) for the hemi-pelvis mesh for all 214
element types combined. Differences shown compare the py_bonemat_abaqus to Bonemat 3.0 analysed with (a) the V2 215
algorithm, (b) the V3 algorithm. 216

Figure 6. Summary of the time taken for each software to perform the calculations and output the modified mesh file for 217
the three element types. Error bars represent the standard deviation in the time measurement (n=5). Tests were 218
performed on a Windows 7 PC with a 64-bit operating system, with four CPUs, 8 GB of RAM, and an Intel Core i5-3470 219
processor. 220

221

10

Tables and Figures 222

Parameter Description Set value

Gap Value Modulus interval used when grouping the modulus values 0.01 GPa

Integration order Order of the numerical integration used across the element 4

CT calibration coefficients
[ρapp=a+b HU]

Calibration parameters a and b of the equation used to calculate the
apparent density of bone (ρapp) from the CT Hounsfield Unit (HU)

a = -0.021075,
b = 0.000786

Calibration correction Option which allows correction of the calibration with up to three
linear correlation.

Not applied

Modulus calculation
parameters [E=a+b ρapp

c]
Parameters a, b and c of the power equation used to convert the
apparent density of bone to Young's modulus

a = 0, b = 2.0173,
c = 2.46

Minimum modulus value Any modulus values below the minimum are changed to the
minimum value

0.000001

Table 1. Parameters used when assessing equivalence between material assignments of the software packages. 223

Element Type Algorithm Mean Absolute Difference Standard Deviation Minimum Maximum

Linear Hex V2 -0.11 0.96 -18.38 6.91

Linear Tet V2 -0.18 0.09 -0.24 0.05

Quad Tet V2 0.00 0.13 -6.15 4.27

All Elements V2 -0.10 0.39 -18.38 6.91

Linear Hex V3 -0.07 0.92 -19.48 10.23

Linear Tet V3 0.05 1.47 -10.01 0.45

Quad Tet V3 0.00 0.16 -6.90 5.11

All Elements V3 -0.01 0.85 -9.48 10.23

All results combined -0.05 0.62 -19.48 10.23

Table 2. Summary of the modulus difference (py_bonemat_abaqus – Bonemat3.1) of the hemi-pelvis when analysed using 224
different elements and numerical integration algorithms. Results are shown in kPa. 225

Element Type Algorithm Mean Absolute Difference Standard Deviation Minimum Maximum

Linear Hex V2 0.00 0.00 -0.04 0.02

Linear Tet V2 0.00 0.08 -0.14 10.00

Quad Tet V2 -0.21 36.58 -2193.52 1242.79

All Elements V2 -0.07 12.22 -2193.52 1242.79

Linear Hex V3 81.06 108.60 5.70 672.33

Linear Tet V3 75.68 121.16 -2.38 812.07

Quad Tet V3 75.18 124.04 -1226.69 1907.02

All Elements V3 77.31 117.93 -1226.69 1907.02

All results combined 38.62 65.08 -2193.52 1907.02

Table 3. Summary of the modulus difference (py_bonemat_abaqus – Bonemat3.0) of the hemi-pelvis when analysed using 226
different elements and numerical integration algorithms. Results are shown in MPa. 227

11

 228

Figure 1. Schematic illustration of the parameters detailed in Table 1 and how they influence the grouping of the modulus 229
results. 230

a. b. 231

c. 232

Figure 2. Comparison of the modulus values output by Bonemat3.1 and Bonemat3.0 to the py_bonemat_abaqus python 233
package, for the (a) linear hexahedron, (b) linear tetrahedron, and (c) quadratic tetrahedron (n=10) with the V2 algorithm. 234

12

 235

Figure 3. Comparison of the modulus values assigned to the hexahedral mesh of the hemi-pelvis by py_bonemat_abaqus 236
and Bonemat 3.1 using the V3 algorithm. An anterior-posterior view of the whole mesh is shown, and a cross-sectional view 237
through the volume centroid. 238

a. b. 239

13

Figure 4. Bland Altman plots summarising the difference in assigned modulus (in GPa) for the hemi-pelvis mesh for all 240
element types combined. Differences shown compare the py_bonemat_abaqus to Bonemat 3.1 analysed with (a) the V2 241
algorithm, (b) the V3 algorithm. Bland-Altman plots with kPa y-axis scales are provided as supplementary information 242

a. b. 243

Figure 5. Bland Altman plots summarising the difference in assigned modulus (in GPa) for the hemi-pelvis mesh for all 244
element types combined. Differences shown compare the py_bonemat_abaqus to Bonemat 3.0 analysed with (a) the V2 245
algorithm, (b) the V3 algorithm. 246

 247

 248

Figure 6. Summary of the time taken for each software to perform the calculations and output the modified mesh file for 249
the three element types. Error bars represent the standard deviation in the time measurement (n=5). Tests were 250
performed on a Windows 7 PC with a 64-bit operating system, with four CPUs, 8 GB of RAM, and an Intel Core i5-3470 251
processor. 252

 253

14

Supplementary Information 1 254

Jacobian calculation for a quadratic tetrahedron by the ‘py_bonemat_abaqus’ Python package. 255

Assuming the shape functions defined in Equation 1, where l, r, s, and t represent the natural co-ordinate system of a 256
tetrahedron, the differentiation with respect to each of the natural co-ordinates is shown in Equations 2-5. Based on these 257
differentiated shape functions, the Jacobian can be calculated using the natural co-ordinates and the nodal co-ordinates 258
[(x1, y1, z1), (x2, y2, z2) … (x10, y10, z10)] using Equation 6 (the more compact transpose matrix is shown). 259

 260

𝑁 =

[

(2𝑙 − 1)𝑙
(2𝑟 − 1)𝑟
(2𝑠 − 1)𝑠
(2𝑡 − 1)𝑡

4𝑙𝑟
4𝑟𝑠
4𝑙𝑠
4𝑙𝑡
4𝑟𝑡
4𝑠𝑡]

 (1) 261

𝛿𝑁

𝛿𝑙
=

[

4𝑙 − 1

0
0
0
4𝑟
0
4𝑠
4𝑡
0
0]

𝛿𝑁

𝛿𝑟
=

[

0
4𝑟 − 1

0
0
4𝑙
4𝑠
0
0
4𝑡
0]

𝛿𝑁

𝛿𝑠
=

[

0
0

4𝑠 − 1
0
0
4𝑟
4𝑙
0
0
4𝑡]

𝛿𝑁

𝛿𝑡
=

[

0
0
0

4𝑡 − 1
0
0
0
4𝑙
4𝑟
4𝑠]

 (2), (3), (4), (5) 262

𝐽𝑇 = 4

[

1

4
𝑥1 (𝑙 −

1

4
) + 𝑥5𝑟 + 𝑥7𝑠 + 𝑥8𝑡 𝑦1 (𝑙 −

1

4
) + 𝑦5𝑟 + 𝑦7𝑠 + 𝑦8𝑡 𝑧1 (𝑙 −

1

4
) + 𝑧5𝑟 + 𝑧7𝑠 + 𝑧8𝑡

1

4
𝑥2 (𝑟 −

1

4
) + 𝑥5𝑙 + 𝑥6𝑠 + 𝑥9𝑡 𝑦2 (𝑟 −

1

4
) + 𝑦5𝑙 + 𝑦6𝑠 + 𝑦9𝑡 𝑧2 (𝑟 −

1

4
) + 𝑧5𝑙 + 𝑧6𝑠 + 𝑧9𝑡

1

4
𝑥3 (𝑠 −

1

4
) + 𝑥6𝑟 + 𝑥7𝑙 + 𝑥10𝑡 𝑦3 (𝑠 −

1

4
) + 𝑦6𝑟 + 𝑦7𝑙 + 𝑦10𝑡 𝑧3 (𝑠 −

1

4
) + 𝑧6𝑟 + 𝑧7𝑙 + 𝑧10𝑡

1

4
𝑥4 (𝑡 −

1

4
) + 𝑥8𝑙 + 𝑥9𝑟 + 𝑥10𝑠 𝑦4 (𝑡 −

1

4
) + 𝑦8𝑙 + 𝑦9𝑟 + 𝑦10𝑠 𝑧4 (𝑡 −

1

4
) + 𝑧8𝑙 + 𝑧9𝑟 + 𝑧10𝑠]

𝑇

 (6) 263

Jacobian calculation used by the old release of the Bonemat software 264

The shape functions used for the old release of Bonemat software (Chiarini, 2006) were the same, but l was defined as 265
equal to1-r-s-t, and then a 3x3 Jacobian matrix was used (Equation 7). This Jacobian calculation was erroneous. 266

 267

J = [

𝑥1(1 − 4𝑙) + 𝑥2(4𝑟 − 1) + 𝑥5(4𝑙 − 4𝑟) + (𝑥6 − 𝑥7)4𝑠 + (𝑥9 − 𝑥8)4𝑡 … 𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑦 … 𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑧

𝑥1(1 − 4𝑙) + 𝑥3(4𝑠 − 1) + 𝑥7(4𝑙 − 4𝑠) + (𝑥4 − 𝑥5)4𝑟 + (𝑥10 − 𝑥8)4𝑡 … 𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑦 … 𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑧

𝑥1(1 − 4𝑙) + 𝑥4(4𝑡 − 1) + 𝑥8(4𝑙 − 4𝑡) + (𝑥9 − 𝑥5)4𝑟 + (𝑥10 − 𝑥7)4𝑠 … 𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑦 … 𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑧

] (7) 268

 269

15

Supplementary Information 2 – Individual Bland Altman Plots 270

Algorithm Linear Hexahedral Elements Linear Tetrahedral Elements Quadratic Tetrahedral Elements

V2

V3

 271

Table S1. Bland Altman plots comparing the difference in modulus assignment with Bonemat3.1 and the 272
py_bonemat_abaqus package (py_bonemat_abaqus - Bonemat3.1) of an element mesh of the hemi-pelvis mesh. Difference 273
shown is in kPa. 274

 275

16

Algorithm Linear Hexahedral Elements Linear Tetrahedral Elements Quadratic Tetrahedral Elements

V2

V3

Table S2. Bland Altman plots comparing the difference in modulus assignment with Bonemat3.0 and the 276
py_bonemat_abaqus package (py_bonemat_abaqus - Bonemat3.0) of an element mesh of the hemi-pelvis mesh. Difference 277
shown is in GPa. 278

