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Abstract

A salient characteristic of Ebola, and some other infectious diseases such as Tu-
berculosis, is intense transmission among small groups of cohabitants and relatively
limited indiscriminate transmission in the wider population. Here we consider a
mathematical model for an Ebola epidemic in a population structured into house-
holds of equal size. We show that household size, a fundamental demographic unit,
is a critical factor that determines the vulnerability of a community to epidemics,
and the effort required to control them. Our analysis is based on the household
reproduction number, but we also consider the basic reproduction number, intrin-
sic growth rate and final epidemic size. We show that, when other epidemiological
parameters are kept the same, all of these quantifications of epidemic growth and
size are increased by larger households and more intense within-household transmis-
sion. We go on to model epidemic control by case detection and isolation followed
by household quarantine. We show that, if household quarantine is ineffective, the
critical probability with which cases must be detected to halt an epidemic increases
significantly with each increment in household size and may be a very challenging
target for communities composed of large households. Effective quarantine may,
however, mitigate the detrimental impact of large household sizes. We conclude
that communities composed of large households are fundamentally more vulnerable
to epidemics of infectious diseases primarily transmitted by close contact, and any
assessment of control strategies for these epidemics should take into account the
demographic structure of the population.

Keywords: mathematical model; household; reproduction number; quarantine; case
detection;

1 Introduction

The epidemiology of an infectious disease is governed by the way it is transmitted. Many
respiratory infections are spread widely and fairly indiscriminately by aerosols. HIV is
mainly spread through limited and well defined networks of sexual contacts. The Ebola
virus is spread by direct contact with the bodily fluids of an infectious person (Aylward
et al., 2014). Consequently transmission is much more intense among members of the
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same household than in the wider community. A study in Guinea in 2014 found that
82% of transmission occurred in the community and, of this, 81% occurred between fam-
ily members (Faye et al., 2015). Therefore, the composition of the community in terms
of households and the balance of transmission between and within households may be
expected to have strong influences on key epidemiological characteristics such as repro-
duction numbers, the final epidemic size and the impact of control strategies. Here we
use a mathematical model to investigate how household structure is likely to influence
the epidemiological dynamics of Ebola. We show that, under otherwise equivalent epi-
demiological conditions, communities composed of larger households are more vulnerable
to epidemics, and these epidemics are much harder to control by case detection and iso-
lation unless the whole household is placed under effective quarantine.

Epidemiological models with household structure have been around for some time (Ball,
1996a,b, 1999; Becker and Dietz, 1995) and interest has steadily increased over the last
decade. Household structure is appropriate to investigate any scenario in which it is
important to distinguish between random ‘mass-action’ transmission in the general pop-
ulation and transmission between members of the same family or small, well-defined
group. Early household models considered stochastic epidemics. They were analysed
with techniques such as branching process theory, typically to derive epidemic thresh-
olds. More recently, deterministic household epidemic models have been introduced,
using a similar framework to network epidemic models (House and Keeling, 2008). For
these deterministic models the state variables of the system are the proportions of house-
holds in given epidemiological states, and ordinary differential equations describe how
these variables change. Key epidemiological characteristics such as the intrinsic growth
rate and distribution of the number of secondary household infections arising from an
infected household can be computed using efficient methods based on the associated
Markovian transition matrix (Ross et al., 2010). In recent years there has also been a
concerted effort to develop theory for reproduction numbers for epidemics in populations
with household structure. The household reproduction number, defined as the expected
number of households infected by one infected household in a typical susceptible popu-
lation, has received the most attention because it is relatively easy to define, construct
and calculate. The basic reproduction number, ubiquitous throughout epidemiological
theory, was elusive for household models but has recently been carefully derived to have
the correct physical interpretation, although construction and calculation remain chal-
lenging (Pellis et al., 2012). Both the household and basic reproduction numbers specify
epidemic thresholds - the probability of an epidemic is only non-zero if they are greater
than 1. Several other reproduction numbers have also been defined for household mod-
els. These quantities offer insight into different aspects of the epidemiological dynamics
and provide bounds for the basic reproduction number and the critical vaccination rate.
Most of them also specify the epidemic threshold (Ball et al., 2014).

Household structured epidemic models have provided some interesting insights. House
and Keeling (2008) considered an SIR epidemic model with no mortality, no demographic
turnover and permanent immunity. They fixed the within-household transmission rate
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and, for any given household size, adjusted the between-household transmission rate to
maintain a constant intrinsic growth rate. They showed that, under this constraint,
household structure leads to a more sustained epidemic phase and larger final epidemic
size, with the divergence from the unstructured model greatest in communities with in-
termediate household size. They also showed that the critical coverage of a responsive
vaccination scheme depends on household size, but it is better to vaccinate randomly
than target certain households. Ross et al. (2010) considered an SIRS model with no
mortality, no demographic turnover and waning immunity. They showed that large
households act as amplifiers of infection. So large households and high within-household
transmission rates can support a positive epidemic growth rate even if between-household
transmission rates are low. Black et al. (2013) considered a similar model with hetero-
geneous household sizes, SEEIIR infection states (where the inclusion of two exposed
and infectious states allows the durations of exposure and infectiousness to be Erlang-2
distributed), and delayed antiviral treatment. They showed that epidemic prevention
in communities with larger mean household sizes requires the antiviral treatment to be
more effective, or be administered more quickly.

In this paper we will introduce and analyse a household-structured SEIR epidemic model
for Ebola. This model incorporates within-household transmission that can be high
relative to between-household transmission, and significant infection-induced mortality.
Our analysis will focus on the emergent stage of the epidemic, before significant depletion
of the susceptible population, although we will also briefly consider the final epidemic
size. The structured framework allows us to probe, with specific reference to Ebola, how
household size and the balance of transmission between and within households influence
epidemic risk, understand the divergence from the epidemiological dynamics generated
by conventional unstructured models (effectively households of size 1), and examine
how community composition modulates the impact of control strategies based on case
detection and quarantine.

2 Model description

In this section we present the household-structured epidemic model as a system of or-
dinary differential equations, and as a Markovian transition matrix. We discuss how
these representations are used to find the intrinsic growth rate, household reproduction
number and basic reproduction number, set out the parametrisation and describe the
main components of our model analysis.

2.1 Household states

The model population is structured into households using the deterministic framework
of House and Keeling (2008). The state of each household is defined by the number of
individuals in the household with an infection status of susceptible (s), exposed but not
yet infectious (e), infectious (i), and recovered with immunity (r). This state is coded as
{s, e, i, r} = seir. For instance, a household composed of 2 susceptible individuals and
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1 infectious individual has state 2010. If the maximum household size is n, then the set
of possible household states is S = {seir | 0 ≤ s, e, i, r ≤ n and s + e + i + r ≤ n}. Note
that we assume that initially all households are of size n, but the household size is not
constant because of infection-induced mortality. The epidemiological system describes
the rates of change of the proportion of households in each state, Hseir. The dynamics
are specified by considering the rate at which individuals in each class of households
experience epidemiological ‘events’. Exposed individuals become infectious at rate η.
Infectious individuals recover at rate γ, die at rate µ, make transmissible contact with
other members of their household at rate τ , and make transmissible contact with mem-
bers of other households (i.e. with the wider community) at rate α. These contact rates
are frequency dependent. They are independent of the population density in the house-
hold, or in the community as a whole.

If the maximum size of all households is n = 1 then households are equivalent to individ-
uals and the model is equivalent to the standard SEIR model. There are four household
states S = H1000, E = H0100, J = H0010, R = H0001 and a fifth implicit state in which
the household is empty Z = H0000. There is no within-household transmission and the
system is given by equations (1a-d).

Model with no within-household transmission

Ṡ = −α
SJ

N
(1a)

Ė = α
SJ

N
− ηE (1b)

J̇ = ηE − (γ + µ)J (1c)

Ṙ = γJ (1d)

where N = S + E + J + R is the size of the extant population which is not constant
because households/individuals may be in state Z. The basic reproduction number is
R0 = α

γ+µ
, which is also the household reproduction number R∗.

For households of size n the general system is given by equation (2). This equation
applies for all states seir in S if we adopt the convention that the proportions of house-
holds in any states generated on the right hand side of equation (2) that are not in
S are set to 0. The terms in the square brackets in equation (2) correspond, in the
order they appear, to between-household transmission, within-household transmission,
progression from exposure to infectiousness, recovery and mortality. Focussing on the
between-household transmission term, each of the s susceptible people in a household
with state seir makes contact with individuals in the wider community at rate α. A
proportion I of these contacts are with infectious individuals and result in transmission.
Hence between-household transmission transforms state seir to state (s− 1)(e + 1)ir at
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rate αsI. Similarly, between-household transmission transforms state (s + 1)(e − 1)ir
to state seir at rate α(s + 1)I. The other terms are constructed in a similar way. For
within-household transmission, the proportion of a household in state seir that is infec-
tious is i/m. Each of the s susceptible people in a household makes contact with other
individuals in household at rate τ , a proportion i/(m− 1) of these contacts are with the
infectious individuals. Hence the within-household transmission rate is τsi/(m − 1).

Model with within-household transmission

Ḣseir =αI
[

−sHseir + (s + 1)H(s+1)(e−1)ir

]

+ τ

[

−s
i

m − 1
Hseir + (s + 1)

i

m − 1
H(s+1)(e−1)ir

]

+ η
[

−eHseir + (e + 1)Hs(e+1)(i−1)r

]

+ γ
[

−iHseir + (i + 1)Hse(i+1)(r−1)

]

+ µ
[

−iHseir + (i + 1)Hse(i+1)r

]

(2)

where m = s + e + i + r is the current household size, and I is the proportion of the

total population that is infectious. So I =

∑

S i.Hseir

n̄
with n̄ =

∑

S m.Hseir the current

average household size.

2.2 Markovian transition matrix

If the maximum household size is n = 2, 4, 6 there are, respectively, 15, 70, 210 possible
household states. For such large systems it can be expedient to write the model as a
Markovian transition matrix Q. Following the methods described in Ross et al. (2010),
this matrix is relatively simple to construct algorithmically. An index j is assigned to
each state in S. Element q(j, k) of Q is the rate of transition from state j to state k if
j 6= k and q(j, j) = −∑

k 6=j q(j, k). It is straightforward to determine the transition rate
between two states, as shown in Table 1.

State j State k Transition Rate q(j, k)

seir (s − 1)(e + 1)ir Infection αsI + τs
i

s + e + i + r − 1
seir s(e − 1)(i + 1)r Progression η

seir se(i − 1)(r + 1) Recovery γ

seir se(i − 1)r Mortality µ

Table 1: Transition rates from state j to state k. The infection transition combines
within and between-household transmission.
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2.3 Case detection and quarantine

Infectious disease epidemics can be controlled by efficient case detection, isolation and
quarantine. The model described by equation (2) can be modified to include this process
by extending the set of household states. The states in S are as before, but are augmented
by a set Sq = {seirq |0 ≤ s, e, i, r ≤ n and s+e+i+r ≤ n}. So each household state seir
has a partner state seirq in which the household is under quarantine. Households with i
infectious individuals are detected at rate ξi. Upon detection each infectious individual
in the household moves to the immune state r with probability γ/(γ + µ) or dies with
probability µ/(γ + µ). In reality, infectious individuals would probably be removed to a
treatment centre and either die or recover and return home after a delay. Approximating
this process by reducing the delay to zero simplifies the model, and has minimal impact on
the dynamics since the only role of immune individuals is to slightly dilute the frequency-
dependent within-household transmission rate. Upon detection, infectious households
are also placed under quarantine. While under quarantine, epidemiological dynamics
within the household continue as before but for individuals in that household the between
household contact rate is reduced to θα where 0 ≤ θ ≤ 1. This change affects outgoing
and incoming transmission. The parameter θ is the quarantine efficiency. When θ = 0
quarantine is perfect. When θ = 1 quarantine has no effect, but detection still results
in the removal of all infectious individuals. Households exit from quarantine at rate ζ.
The transition rates involving the additional states in the quarantine model are given in
Table 2. These rates can be used to construct differential equations similar to equation
(2) in the obvious way. If the case detection rate is ξ, the probability that a case is
detected (directly) before recovery or death is ρ = ξ/(γ + µ + ξ).

State j State k Transition Rate q(j, k)

seir se0(r + î)q Detection and quarantine ξi

(

i

î

)

pî(1 − p)i−î

with 0 ≤ î ≤ i recoveries where p = γ/(γ + µ)

seirq seir Quarantine exit ζ

seirq (s − 1)(e + 1)irq Infection under quarantine θαsI + τs
i

s + e + i + r − 1
seirq s(e − 1)(i + 1)rq Progression under quarantine η

seirq se(i − 1)(r + 1)q Recovery under quarantine γ

seirq se(i − 1)rq Mortality under quarantine µ

Table 2: Transition rates for the additional states in the quarantine model.
Transition rates for the seir states not affected by quarantine are as in Ta-
ble 1 except that for all transitions associated with between-household trans-
mission the proportion of the contactable population that is infectious is

I =

∑

S i.Hseir + θ
∑

Sq
i.Hseirq

∑

S(s + e + i + r)Hseir + θ
∑

Sq
(s + e + i + r)Hseirq

.
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2.4 Intrinsic growth rate and reproduction numbers

Initially model epidemics (and most real epidemics) grow approximately exponentially.
This exponential growth continues until depletion of the susceptible population intro-
duces significant non-linearity into the transmission terms. In the exponential growth
phase infections increase at a constant rate r, the intrinsic growth rate. The epidemi-
ological reproduction numbers also remain constant. The intrinsic growth rate r is the
largest eigenvalue of the Jacobian matrix J0 that approximates the system by linearising
about the disease-free equilibrium. Element J0(j, k) is the rate of change of state j with
respect to state k. Consequently, for all transitions other than between-household infec-
tion, J0(j, k) = Q(k, j). Since we assume that all households are of size n linearisation
about the disease free equilibrium means that almost all households are in state n000.
So, between-household transmission is always a transition from state n000 to (n−1)000.

Approximately, Hn000 = 1, the mean household size n̄ = n and I =

∑

S i.Hseir

n
. Con-

sequently the rate of change of Hn000 with respect to Hseir for any other state seir is
αi
n

(−n) = −αi where i is the number of infectious individuals in a household in state
seir. It follows that for states j = n100 and k = seir, J0(j, k) = −αi, and for states
j = (n − 1)100 and k = seir, J0(j, k) = αi. It does not take long to find the eigenval-
ues numerically, even for large matrices but, if necessary, computationally more efficient
methods using the transition matrix Q directly are detailed in Ross et al. (2010).

The household reproduction number R∗ is straightforward to construct or calculate from
the Q matrix (Ross et al., 2010). Briefly, a state is transient if the rate at which house-
holds leave that state is non-zero q(j, j) 6= 0. Otherwise the state is absorbing. Let C be
the set of all transient states. The full transition matrix Q is reduced to the transition
matrix of transient states QC by removing the rows and columns corresponding to ab-
sorbing states. A ‘reward’ function of the household state is defined f(j) = i where i is
the number of infectious individuals in a household with state j. If X(t) is a continuous-
time Markov process taking values in C then the path integral Γ =

∫ ∞

0 f(X(t))dt is
the ‘total reward over the lifetime of the process’. The expected infectious period is
1/(γ + µ). So, each time the Markov process X(t) adds a new infectious individual, the
expected ‘reward’ Γ increases by 1/(γ + µ). The total expected number of infectious
individuals is equal to the total expected reward multiplied by γ + µ. The expected
household epidemic size ((γ +µ)Γ) in a household initially in state j, assuming there are
no further infections from outside, is H∞

j = (γ + µ)ej where the ej are found by solving
the linear system (Ross et al., 2010)

∑

k∈C

q(j, k)ek + f(j) = 0. (3)

When the entire population is initially susceptible, and all households have size n,
the state of all households is seir = n000 and the household reproduction number
R∗ = α

γ+µ
H∞

j = αej where α
γ+µ

:= µG is the expected number of between-household
infections arising from one infectious individual and state j is (n−1)100. For n = 2, R∗ =
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α
γ + µ + 2τ

(γ + µ)(γ + µ + τ)
. This method can also be used to find analytic expressions for R∗

for larger values of n, certainly up to n = 6 but these expressions are so complicated
that their utility is doubtful. The Supplementary Material includes the expected house-
hold epidemic sizes for all initial states when n = 2, and expressions for the household
reproduction numbers when n = 1, 2 and 3.

The basic reproduction number R0 for household models is not straightforward to either
define or calculate. However, Pellis et al. (2012) have developed a method based on the
next generation matrix (Diekmann et al., 2013). Briefly, the initial infected individual in
a household is assigned rank 1 and generation 1. Then, as the epidemic unfolds within
the household, an individual is assigned generation j if they are first infected by an
individual in generation j − 1. A susceptible individual will always be infected by the
first transmissible contact event in which they are involved. However, that individual
may be involved in subsequent encounters with infected individuals that would also have
resulted in infection, had it not already occurred. These are also considered transmissible
contact events. An individual is assigned rank j if j is the length of the shortest sequence
of transmissible contact events that connects them to the initial infected individual in
that household; this includes the transmissible contacts that occur after the individual
was first infected. Then µj is defined such that µ0 = 1 is the initial infected individual
in a household and µj is either the expected number of infections of generation j, or
the expected number of infections of rank j. It follows that each infected individual
for rank (or generation) j causes, on average, µj+1/µj new infections. Then, the basic
reproduction number is R0 = ρ(K) where ρ is the spectral radius and

K =















µG µG . . . µG µG

µ1/µ0 0 . . . 0 0
0 µ2/µ1 . . . 0 0
...

...
. . .

...
...

0 0 . . . µn−1/µn−2 0















. (4)

Deriving expressions for the expected number of infections in each generation of the
household epidemic µj is challenging. Pellis et al. (2012) give a method for an SIR
model with no mortality. The same result holds for SEIR models with no mortality
since the exposed state introduces a delay but does not affect the expected number of
infections. We employ this method, as described in the Supplementary Material, to get
an approximate value of R0 for our model under the assumption of a constant household
size. The result is not exact because disease-induced mortality may cause the household
size to decrease which increases the contact rate between the remaining individuals. We
also calculated R0 using expected generation size, and expected rank sizes, found by
stochastic simulation; for each parameter set the Gillespie method was used to simulate
10,000 household epidemics starting with one infectious individual. Since each of these
epidemics is small, this method is remarkably efficient.
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Other individual reproduction numbers have been suggested for household models. These
are easier to construct than the basic reproduction number and, in addition to being
useful in their own right, provide bounds for R0 (Ball et al., 2014; Goldstein et al.,
2009). The reproduction number RI approximates R0 by assuming that the initial
infected individual in a household is directly responsible for all subsequent infections. If
the expected size of the household epidemic, excluding the initial case, is µL = H∞

j − 1

then RI =
µG+

√
µ2

G
+4µGµL

2 . The reproduction number RHI is the expected number of
infections arising directly from a typical infected individual in a typical household. The
µL infections in a household are caused by µL + 1 infected individuals, including the
initial infection. So, the expected number of infections per infected individual, including
between-household transmission, is RHI = µG + µL

1+µL
. Ball et al. (2014) show that if

R0 > 1 then R∗ > RI > R0 > RHI and if R0 < 1 then R∗ < RI < R0 < RHI .

2.5 Parametrisation

For all of the numerical results presented here, parameter values were assigned as in
Table 3, unless otherwise stated. The maximum household size n was fixed between 1
and 6. Our methodology readily allows higher values but at high computational cost.
For reference, in 2012/2013 the average household sizes in Liberia, Sierra Leone and
Guinea were 5, 5.9 and 6.3 respectively (Institut National de la Statistique and ICF
International, 2012; Liberia Institute of Statistics and Geo-Information Services and ICF
International, 2013; Statistics Sierra Leone and ICF International, 2013). Observational
data from the emerging Ebola epidemic in Liberia, Sierra Leone and Guinea collected
between December 2013 and September 2014 (Aylward et al., 2014) report an average
duration of incubation 1/η = 9.4 days. The case fatality rate was m = 70.8%, the
average time from onset of symptoms until death was Tm = 7.5 days and the average
time from onset until recovery was Tr = 16.4 days, giving a mean infectious period
of mTm + (1 − m)Tr = 10.2 days. So, for our model, setting the expected infectious
period (time until recovery or death) 1/(γ + µ) = 10.2 days and the proportion of
infections resulting in death µ/(γ +µ) = 0.7 gives a mortality rate µ = 0.07 and recovery
rate γ = 0.03. From the same observational data the basic reproduction number was
estimated to be between 1.7 and 2, and epidemic doubling time between 12.8 - 17.5 days,
which corresponds to an intrinsic growth rate of 0.04 - 0.05 per day. In August 2014,
the doubling time was estimated to be between 15.7 and 30.2 days, corresponding to an
intrinsic growth rate of 0.02 - 0.04 per day. Our numerical results were carried out using
parameter values that were rescaled by dividing by γ+µ. With these rescaled parameters,
the expected duration of infection is 1 and an infectious individual is expected to make a
total of α transmissible contacts between households, and τ transmissible contacts within
their household (but τ infections will not occur in the household due to saturation), and
the case detection probability is ρ = ξ/(1 + ξ). In analyses where we fix the intrinsic
growth rate we use a value of r = 0.04 per day, which is re-scaled to r = 0.4.
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Parameter Meaning Original value Rescaled value

n Maximum household size 1 - 6 1 - 6

α Between-household contact rate 0 - 0.2 0 - 2

τ Within-household contact rate 0 - 0.5 0 - 5

η Infectivity progression rate 0.11 1.1

γ Recovery rate 0.03 0.30

µ Infection induced mortality rate 0.07 0.70

ξ Case detection rate 0 - 1 0 - 10

θ Quarantine efficiency 0 - 1 0 - 1

ζ Quarantine exit rate 0.042 0.42

r Intrinsic growth rate 0.04 0.4

Table 3: Parameter values used for all numerical results, unless otherwise stated. The
original values have rates of per day. The rescaled values are such that the expected
infectious period 1/(γ + µ) = 1.

2.6 Model analysis

The analysis of the model presented here will focus on how household size and the inten-
sity of within-household transmission affect epidemic risk, epidemic size and epidemic
management by quarantine. The epidemic risk is assessed through the reproduction
numbers, primarily the household reproduction number R∗. When R∗ < 1 significant
epidemics are not expected to occur in stochastic systems; in deterministic systems the
disease-free equilibrium is stable. For R∗ > 1 higher values of R∗ indicate a higher
probability of a significant epidemic when an infected individual is introduced into a
disease-free population; deterministically, the disease-free equilibrium is unstable. The
epidemic size is calculated by solving the deterministic system (2) numerically from an
initial condition consisting of a small number of infections in an otherwise susceptible
population (Hn000 = 0.99,H(n−1)100 = 0.01,Hseir = 0 otherwise) until the epidemic peak

has passed and the infectious proportion of the population 1
n̄

∑

S i.Hseir < 0.01. Two
measures of the final epidemic size are examined based on the household proportions
Hseir at the end of the epidemic. R∞ = 1 − 1

n̄

∑

S s.Hseir is the total proportion of
individuals in the initial population that were infected. R∞

∗ = 1−Hn000 is the total pro-
portion of households in the population in which at least one person was infected. The
potential for epidemic management by case detection and quarantine is assessed by using
numerical root-finding to determine the critical case detection rate ξ∗ required to move
the household reproduction number to the epidemic threshold R∗ = 1 beyond which the
disease-free state is stable. Although we mainly examine how household size and the
balance of transmission between and within households affect R∗, R∞ and R∞

∗ , we also
consider the sensitivity of R∗ to all parameters using elasticity analysis. For each parame-
ter p, the elasticity of R∗ with respect to p is defined as eR∗p = ∂ lnR∗

∂ ln p
= p

R∗

∂R∗

∂p
(Caswell,

2000) and quantifies the proportional response in R∗ to a proportional perturbation in p.
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We consider the role of within-household transmission from two perspectives. Initially,
we fix the between-household transmission rate α and consider the impact of varying the
within-household transmission rate τ for different household sizes n. Here the intrinsic
growth rate r also varies with τ . So we also consider models in which r is held constant by
covariation of α and τ . The intrinsic growth rate of an epidemic can be directly observed,
and this constraint produces models that are in some sense comparable. House and
Keeling (2008) consider three methods to maintain a constant r: fix τ and for any given
n adjust α; for any given n adjust both α and τ but fix their ratio; fix the proportion
of infections in the early stages of the epidemic that occur within households. Here, for
any given τ and n we adjust α to maintain r = 0.4.

3 Results

3.1 Within-household transmission varied, between-household trans-

mission constant

Figure 1a-c shows how the intrinsic growth rate r and reproduction numbers R∗, R0 de-
pend on the maximum household size n and the within-household transmission rate τ
when the between-household transmission rate is fixed, α = 0.9. The results are similar
for other values of α. The intrinsic growth rate and reproduction numbers are higher
in populations composed of larger households or with more intensive within-household
transmission. The number of individuals in a household that can be infected is lim-
ited by the household size, regardless of the transmission intensity. So the impact of
within-household transmission saturates, but less quickly for larger households. Elastic-
ity analysis of R∗ (Supplementary Figure ??) shows that increasing the disease-induced
mortality rate µ or the recovery rate γ reduce R∗, because the transmission window
narrows. Increasing the within-household transmission rate τ increases R∗. The impact
of all three of these parameters is strongest for large household sizes n and intermediate
within-household transmission rates (around τ = 1). The duration of the exposed state
η has no effect on R∗, and the impact of the between-household transmission rate α does
not depend on the household size or the within-household transmission rate. Figure
1c shows that the basic reproduction numbers calculated under the approximation that
the household size remains constant agrees well with that calculated using the expected
generation size of the household epidemic. Supplementary Figure ?? shows that using
the expected rank size rather than the expected generation size has little impact and,
although the individual reproduction numbers RHI and RI do bound R0 as expected,
these bounds are quite broad, particularly when n is large. Figure 1d shows how the
final epidemic size R∞, R∞

∗ depends on the maximum household size n and the within-
household transmission rate τ . The proportion of households that experience at least one
infection is higher in populations composed of larger households and with more intensive
within-household transmission. For n > 2 and τ > 1, almost all households experience
infection. In comparison to the proportion of households, the proportion of individuals
that are infected is smaller, and increases more slowly with n and τ .
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Figure 2a-c shows the critical probability with which a case must be detected before
death or recovery ρ∗ = ξ∗/(1 + ξ∗) to prevent an epidemic, or stop it during the initial
exponential growth phase. When infectious individuals are isolated following detection,
but the household is not quarantined (θ = 1), in communities of small households (n = 2)
the critical detection probability is below 0.4, even when there is intense within-household
transmission (τ = 5). The critical detection proportion increases markedly with any
increase in household size. When τ = 5, ρ∗ increases from 0.34 when n = 2, to 0.53
when n = 3 to 0.82 when n = 6. The general pattern is similar when the household
is quarantined following case detection, but quarantine means that epidemic prevention
is achieved at a lower case detection rate. Fully effective quarantine (θ = 0) reduces
the critical detection probability in communities of large households considerably; when
n = 6 and τ = 5, ρ∗ is reduced from 0.82 to 0.52. But the relative impact is smaller
in communities of small households; when n = 2 and τ = 5, effective quarantine only
reduces the critical detection probability from 0.34 to 0.31.

3.2 Within and between-household transmission co-varied such that

intrinsic growth rate constant r = 0.4

Figure 3a shows that an intrinsic epidemic growth rate of r = 0.4 is consistent with
a broad range of between and within-household transmission regimes. Higher within-
household transmission τ is balanced by lower between-household transmission α. But
the amplification capacity of households is limited by their size so the impact of in-
creasing τ saturates and some between-household transmission is always required. For
any given intensity of within-household transmission, in communities composed of larger
households the target intrinsic growth rate is achieved at lower between household trans-
mission rates.

Figure 3b,c shows how the reproduction numbers R∗ and R0 depend on the maxi-
mum household size n and the within-household transmission rate τ when the between-
household transmission rate α is adjusted to maintain a constant intrinsic growth rate.
In the absence of household structure i.e. when τ = 0 or n = 1, the household repro-
duction number is equal to the basic reproduction number. If τ 6= 0, larger households
always increase the household reproduction number associated with the same intrinsic
growth rate. For communities composed of large households (n = 6) with intermedi-
ate intensity within-household transmission, the household reproduction number is up
to 65% higher than the household (basic) reproduction number derived from an un-
structured population composed of ‘households’ of size 1. For small household sizes
(n = 2, 3), R∗ saturates as within-household transmission increases. For larger house-
hold sizes (n = 4− 6), the between/within-household transmission trade-off is such that
R∗ reaches a maximum when τ is around 2 and then drops back. In contrast to the
household reproduction number, household structure and within-household transmis-
sion always decreases the basic reproduction number associated with the same intrinsic
growth rate. R0 is lower when household size is larger, or within-household transmis-
sion is more intense. However, these factors have a modest impact on R0 compared
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with R∗. The greatest divergence from the basic reproduction number derived without
household structure occurs for communities composed of large households with high in-
tensity within-household transmission. For n = 6 and τ = 5 the community structure
reduces R0 by around 10%. Figure 1d shows how the final epidemic size R∞, R∞

∗ de-
pends on the maximum household size n and the within-household transmission rate
τ . The between/within-household transmission trade-off to maintain a constant intrin-
sic growth rate is such that the total proportion of households eventually infected is
higher if it is derived from communities of larger households and, for all household sizes,
lower if it is derived from communities with more intense within-household transmission.
Conversely, the total proportion of individuals eventually infected is lowest when derived
from communities with weak, but non-zero, within-household transmission and generally
increases when within-household transmission is more intense. Larger household sizes
amplify these effects.

Figure 4a-c shows the critical probability with which cases must be detected before
death or recovery ρ∗ = ξ∗/(1+ ξ∗) to prevent an epidemic when the within and between-
household transmission rates are co-varied to maintain a constant intrinsic growth rate.
When infectious individuals are isolated following detection but the household is not
quarantined (θ = 1) the critical detection probabilities derived from communities with
household structure are always higher than ρ∗ derived from an unstructured community.
The divergence is greater when households are larger and within-household transmission
is more intense. When n = 1, ρ∗ = 0.38 but this increases to ρ∗ = 0.61 when n =
6 and τ = 5. When quarantine is partially effective (θ = 0.5) the critical detection
probabilities are generally lower. Values of ρ∗ derived from communities with household
structure are higher than those derived from an unstructured community unless within-
household transmission is weak (0 < τ < 0.5) in which case they are marginally lower.
When quarantine is fully effective (θ = 0) the critical detection probabilities derived
from communities with household structure are always lower than ρ∗ derived from an
unstructured community, although the divergence is relatively small.

4 Discussion

We have used an epidemic model in which the population is structured into households
to examine how demography, in terms of the size of the households that make up a
community, affects the vulnerability to epidemics of Ebola and other infectious diseases
where a significant proportion of transmission occurs between cohabitants. Much of our
analysis has been based on the household reproduction number. This quantity specifies
an epidemic threshold. Large outbreaks are not expected to occur if R∗ < 1. The as-
sumptions behind the household reproduction number mean that it is meaningful as long
as the susceptible population is sufficiently large that almost all of the between-household
transmissible contacts made by an infectious individual are with susceptible individuals.
This may be a reasonable approximation, and so the insights from our model will be
applicable, for quite an extended period in the emergent phase of an epidemic. So R∗
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can be used to assess control strategies that may be implemented at any time during
that period, as well as to quantify the vulnerability of a disease-free population to an
epidemic. Here we have considered control case identification and quarantine, but the
model framework could also be used to examine other measures such as ‘lock-down’.

We have shown that, all else being equal, in the early stages of an epidemic, the intrinsic
growth rate, the basic reproduction number and the household reproduction number
are all higher if households are larger. This divergence is accentuated by more intense
within-household transmission. At the end of the epidemic, almost all households will
have had at least one infection unless the community is composed of small households
or within-household transmission is very weak. The proportion of individuals that are
eventually infected is smaller than the proportion of households, but increases if house-
holds are larger or within-household transmission is more intense.

We also considered the effort required to control an emergent epidemic by identifying
cases, isolating them and placing their household under quarantine. We showed that in
communities composed of small households a fairly modest, and likely achievable, case
detection probability is sufficient to halt or prevent an epidemic, even without house-
hold quarantine. In larger households this critical detection probability is much higher.
Without quarantine, each additional person in the household makes epidemic control
much more challenging to achieve. However, combining case detection and isolation
with effective quarantine of the whole household can greatly reduce the critical detec-
tion probability, even in communities of large households with intense within-household
transmission. This results indicates that, when an infectious case is detected in a large
household other members of the household are likely to be infected, but not yet infec-
tious, and preventing further transmission by these individuals is a crucial component
of epidemic control.

The intrinsic growth rate of an epidemic can be estimated directly from incidence data.
The basic or household reproduction number may be inferred from the data, or the in-
trinsic growth rate, with an assumed transmission model (e.g. Fraser (2007)). We have
shown that, when a significant part of transmission occurs within households, the details
of this model are important. The same intrinsic growth rate is consistent with a range
of within-household and between-household transmission rate pairs, which depend on
the household size of the community. If the intrinsic growth rate is invariant, the basic
reproduction number R0 is not very sensitive to the balance of transmission within and
between households, or the household size; the intrinsic growth rate and basic repro-
duction number are approximately proportional. However, the household reproduction
number is more sensitive. In general the basic reproduction number may be useful be-
cause it indicates the proportion of new infections (1− 1/R0) that need to be prevented
in order to halt epidemic growth. However, control strategies may not prevent infections
directly. We have shown that the control effort associated with case detection, isola-
tion and household quarantine can be sensitive to assumptions about the transmission
balance and household size, even if the intrinsic growth rate (and so the basic repro-
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duction number) is invariant. In comparison to a model with household structure and
within-household transmission, an unstructured model underestimates the critical case
detection probability if quarantine is ineffective, but slightly overestimates it if quaran-
tine is effective.

Our analysis shows that the demographic structure of a community can be a critical
factor influencing epidemic risk and control. If a significant component of transmission
occurs within-households, large households act as amplifiers, the risk of an epidemic is
greater, and the number of cases grows faster. The mean household sizes in the West
African countries afflicted by the 2014 Ebola epidemic are between 5 and 6.3, among
the highest in the world. For comparison the mean household size in the 34 OECD
countries is 2.6 (OECD, 2014). For infectious diseases such as Ebola where the majority
of transmission is among family members, putting aside any asymmetries of healthcare
infrastructure and resources, demography alone can determine upon which side of the
epidemic threshold a population finds itself.
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Figure 1: Intrinsic growth rate, reproduction numbers and epidemic size when the
between-household transmission rate α is fixed and the within-household transmission
rate τ is varied. (a) Intrinsic growth rate r. (b) Household reproduction number R∗.
(c) Basic reproduction number R0, computed using the expected generation size from
simulations, and under the approximation of a constant household population size. (d)
Proportion of households R∞

∗ , and proportion of individuals R∞, infected over the course
of an epidemic in an initially susceptible population. In all panels line shade indicates
the household size n as specified in the legend of (a), α = 0.9 and other parameters are
as in Table 3. So when n = 1, R0 = R∗ = α.
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Figure 2: Critical probability with which cases must be detected to prevent an epidemic
growing (ρ∗ = ξ∗/(1 + ξ∗) such that R∗ = 1) when the between-household transmission
rate α is fixed and the within-household transmission rate τ is varied. On detection,
all infected individuals are removed from the household and it may be placed under
quarantine. (a) No quarantine (θ = 1). (b) Partially effective quarantine (θ = 0.5). (c)
Fully effective quarantine (θ = 0). In all panels line shade indicates the household size
n as specified in the legend of (a), α = 0.9 and other parameters are as in Table 3.
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Figure 4: Critical detection probability (ρ∗ = ξ∗/(1 + ξ∗) such that R∗ = 1) when the
between-household α and within-household τ transmission rates are co-varied such that
the intrinsic growth rate remains r = 0.4. On detection, all infected individuals are
removed from the household and it may be placed under quarantine. (a) No quarantine
(θ = 1). (b) Partially effective quarantine (θ = 0.5). (c) Fully effective quarantine
(θ = 0). In all panels line shade indicates the household size n as specified in the legend
of (a). Other parameters are as in Table 3.
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1 Household epidemic size

Initial state ei Expected household epidemic size

0010 1/(γ + µ) 1

0011 1/(γ + µ) 1

0020 2/(γ + µ) 2

0100 1/(γ + µ) 1

0101 1/(γ + µ) 1

0110 2/(γ + µ) 2

0200 2/(γ + µ) 2

1010 (γ + µ + 2τ)/((γ + µ)(γ + µ + τ)) 1 + τ/(γ + µ + τ)

1100 (γ + µ + 2τ)/((γ + µ)(γ + µ + τ)) 1 + τ/(γ + µ + τ)

Table S1: Expected household epidemic sizes for different initial household states when
the maximum household size n = 2. The initial household state must include at least
one infected individual, which is included in the final epidemic size.

2 Household reproduction number

Analytic expressions for the household reproduction number include

n = 1, R∗ = α
1

γ + µ
,

n = 2, R∗ = α
γ + µ + 2τ

(γ + µ)(γ + µ + τ)
,

n = 3, R∗ =
α(Aτ4 + Bτ3 + Cτ2 + Dτ + E

(γ + µ)(2γ + 2µ + τ)2(γ + µ + τ)2

where A = 3, B = 16(µ+γ), C = (27µ2 +52µγ +25γ2), D = 16(µ3 +3µ2γ +3µγ2 +γ3),
E = 4(µ4 + 4µ3γ + 6µ2γ2 + 4µγ3 + γ4).
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3 Basic reproduction number

The method given by Pellis et al. (2012) for households that remain constant in size over
the course of the household epidemic gives a reasonable approximation for our model
even though disease-induced mortality may reduce the size of households, increasing the
contact rate between the people that remain. We reproduce their method here, with mi-
nor modifications for our model. The basic reproduction number is the largest eigenvalue
of the next generation matrix, equation (4), in the main text. This matrix requires the
expected number of infections µj of rank j in the household epidemic. To calculate µj ,
let q(k) be the probability that all of a set of k susceptible individuals escapes infection
from a single infectious individual. Since recovery, mortality and contact all occur at a
constant rate

q(k) =
γ + µ

γ + µ + k
n−1

τ
. (1)

Let Pa(m, s) be the probability that m out of s susceptible individuals escape direct
infection by a single infectious individual. Pa(m, s) can be found from

s∑

m=k

m!

k!
Pa(m, s) =

s!

k!
q(k)a, k = 1, 2, ...s (2)

with Pa(0, s) = 1 −

s∑

m=1

Pa(m, s).

Let µa,s,k be the expected number of infections of rank k in a household epidemic that
initially has a infectious individuals and s susceptible individuals. For a = 1, 2, ...,
s = 1, 2, ..., k = 1, 2, ...s, µa,s,k can be found from

µa,s,k =

s−k+1∑

i=1

Pa(s − i, s)µi,s−i,k−1 (3)

with µa,s,0 = a, µa,0,k = 0. Then µj = µ1,n−1,j.
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4 Supplementary Figures
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Figure S1: Elasticities of the household reproduction number R∗ when the between-
household transmission rate α is fixed and the within-household transmission rate τ is
varied. (a) Elasticity with respect to the recovery rate γ. (b) Elasticity with respect to
the disease-induced mortality rate µ. (c) Elasticity with respect to the within-household
transmission rate τ . The elasticity of R∗ with respect to the rate of progression to
infectiousness η is 0 for all τ . The elasticity with respect to the between-household
transmission rate α is 1 for all τ . In all panels line shade indicates the household size n
as specified in the legend of (a) and other parameters are as in Table 3. The elasticities
of R∗ are identical for all values of α.
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Figure S2: Basic and individual reproduction numbers R0, RI , RHI when the between-
household transmission rate α is fixed and the within-household transmission rate τ is
varied. The basic reproduction number is found using the method described above (dot-
ted line), which makes the approximating assumption that the household size remains
constant over the course of the household epidemic, using the expected rank size from
simulation (dashed black line) and the expected generation size from simulations (solid
line). RI is the dashed grey line, RHI is the dot-dashed line. All three versions of R0

and RI agree when n = 2. Parameters are as in Table 3.
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