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abstract: Arguments about the evolutionary modification of ge-
netic dominance have a long history in genetics, dating back more than
100 years. Mathematical investigations have shown that modifiers of
the level of dominance at the locus of interest can spread at a reasonable
rate only if heterozygotes at that locus are common. One hitherto ne-
glected scenario is that of sexually antagonistic selection, which not only
is ubiquitous in sexual species but also can generate stable high frequen-
cies of heterozygotes that would appear to facilitate the spread of such
modifiers. Here we present a mathematical model that shows that sex-
ually specific dominance modification is a potential outcome of sexu-
ally antagonistic selection. Our model predicts that loci with higher lev-
els of sexual conflict should exhibit greater differentiation between males
and females in levels of dominance and that the strength of antagonis-
tic selection experienced by one sex should be proportional to the level
of dominance modification. We show that evidence from the literature
is consistent with these predictions but suggest that empiricists should
be alert to the possibility of there being numerous cases of sex-specific
dominance. Further, in order to determine the significance of sexual con-
flict in the evolution of dominance, we need improvedmeasures of sex-
ual conflict and better characterization of loci that modify dominance
of genes with sexually antagonistic fitness effects.

Keywords: genetic dominance, modification of dominance, Fisher,
Wright, sexual conflict, mathematical model.

For much of the past century, the selective modification of
genetic dominance was considered to have played only a
minor role in the evolutionary process (Bourguet 1999; Ba-
gheri 2006). Though championed by Ronald Fisher (1928a,
1928b), the view that selection acted directly to modify ge-
netic dominance was criticized by Sewall Wright (1929), who
argued that the strength of selection for modification of dom-
inance was proportional to the frequency of heterozygotes (in
which dominance could be observed). Alleles at the frequency
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of the classical mutation-selection balance are rare, and hence
so also are the heterozygotes. Thus, selectionwould be tooweak
to modify the degree of dominance manifested in these het-
erozygotes. (For an overview of the sometimes fiery debate,
see Provine 1985 and Otto and Bourguet 1999, although we
note that the first suggestions about how dominance may
have evolved date from significantly earlier than these re-
views imply. The biometricians Karl Pearson and Ethel Elder-
ton, who were strongly critical of Mendelian theory, specu-
lated on the subject as early as 1907 [Elderton and Pearson
1907] and in more detail 4 years later [Elderton 1911].)
Feldman and Karlin (1971; see also Bürger 1983) formal-

izedWright’s verbal outline in a mathematical model in which
alleles at a second, modifier locus determined the degree of
dominance at the locus of interest and effectively confirmed
his view. Subsequently, Charlesworth (1979) and, later, Orr
(1991) reported thatmutations had characteristics (e.g., a neg-
ative correlation between homozygous fitness effect and dom-
inance coefficient) that were consistent with Wright’s ideas.
Finally, the development of metabolic control theory pro-
vided evidence that supportedWright’s notion that recessiv-
ity, not dominance, is an intrinsic feature of physiologically
constrained systems (Kacser and Burns 1981; Keightley 1996;
Agutter 2008; but see Savageau and Sorribas 1989; Bourguet
1999; Bagheri and Wagner 2004; Bagheri 2006).
Nevertheless, as Wright (1929) himself noted, his argu-

ments required heterozygotes to be rare, and so it was pos-
sible that Fisher’s theory applied when this condition was not
met. Indeed, Otto and Bourguet (1999) showed that dom-
inance modifiers could evolve when environmental hetero-
geneity maintains heterozygotes at high frequencies. This
finding is consistent with empirical evidence from experi-
ments in which dominance coefficients were successfully se-
lected to change (reviewed in Otto and Bourguet 1999). Thus,
if heterozygotes are common, Fisher’s theory may obtain.
One such scenario is that of sexually antagonistic selection,

in which different alleles at one locus are favored in males
and females. Population-genetic theory shows that this form
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Sex-Specific Dominance 659
of selection can maintain diallelic polymorphisms in which
both alleles are common (Owen 1953; Kidwell et al. 1977; Rice
1984; Patten and Haig 2009; Connallon and Clark 2012). Im-
portantly, different selective pressures on males and females
are likely to be widespread in natural populations of sexually
reproducing species (Arnqvist and Rowe 2005; Connallon
and Clark 2014), and so this scenario seems reasonable. Criti-
cally, the sexual conflict inherent in sexually antagonistic se-
lection means that neither sex can attain its selective opti-
mum (Bonduriansky and Chenoweth 2009; Cox and Calsbeek
2009; Connallon and Clark 2011b). Such sexual conflict may
be resolved (or at least reduced) in a number of ways, depend-
ing on the genetic architecture of the species concerned (Rhen
2000, 2007; Bonduriansky 2007).

Intralocus sexual conflict could be ameliorated by the evo-
lution of sex-specific modification of genetic dominance, so
that the favored allele in each sex is dominant in that sex. In-
deed, Fisher (1931) suggested that sex-linked genes subject
to different selection pressures in males and females should
evolve to be dominant in one sex and recessive (and even-
tually unexpressed) in the other. Rice (1984) modeled the
evolution of sex-specific expression as a response to sexually
antagonistic selection and found that sex linkage of the loci
in question facilitated such an outcome. Genomic imprint-
ing, too, is a possible response to intralocus genetic conflict
(Day and Bonduriansky 2004), which is interesting, given the
parallels between imprinting and genetic dominance (Ander-
son and Spencer 1999). Nevertheless, the conditions under
which sex-specific modification of dominance might evolve
are not clear.

Here we present a mathematical model that examines how
sexually antagonistic selection influences the evolution of
modifiers of dominance. Themodel is a classical “neutral mod-
ifier model”; this sort of model has been used previously to
examine the evolution of several aspects of genetic architec-
ture, such as recombination rates (reviewed in Feldman et al.
1996), migration rates (Balkau and Feldman 1973), genomic
imprinting (Spencer andWilliams 1997), and epistasis (Liber-
man and Feldman 2006), as well as dominance (reviewed in
Otto and Bourguet 1999). In contrast to previous models for
the evolution of dominance, we also allow dominance pa-
rameters to differ inmales and females.We note thatmodels
of differential selection on males and females are concep-
tually similar to Levene’s (1953) model of soft selection act-
ing differentially in two environments with complete mixing
(i.e., freemigration) each generation (Kidwell et al. 1977; Seger
and Brockmann 1987; Star et al. 2008), even though they dif-
fer in their disassortative mating structure, which generates
greater heterozygosity. (A little algebra shows that, compared
to a simple model with no sex differences in allele frequen-
cies, heterozygosity in a two-sex model with male and female
allele frequencies of pm and pf, respectively, is inflated by an
amount ðpm 2 pfÞ2=2.) In addition, our models differ from
This content downloaded from 138.03
All use subject to University of Chicago Press Term
the “large-scale patch” models used by Otto and Bourguet
(1999) to investigate the evolution of dominance modifiers
when genetic variation is maintained by environmental het-
erogeneity, in that these authors focused on conditions with
low migration rates.
Model

We consider a single autosomal locus, A, targeted by selec-
tion with two alleles, A and a. The fitnesses of males and fe-
males of the three possible genotypes are shown in table 1. In
brief, A is favored in males and a in females, and the het-
erozygotes have some intermediate fitness, depending on the
dominance parameters for each sex. Clearly, for any given al-
lele frequencies, if A were dominant over a in males (ka p 0)
and a dominant overA in females (ha p 0), the mean fitness
of each sex would be maximized.
Consider now a second diallelic locus, M, at a recombi-

nation distance r fromA, whichmodifies the degree of dom-
inance at A. We assume that, initially, allele m is fixed and
that male Aa heterozygotes have fitness 12 kmmt and corre-
sponding females fitness 12 hmms. The second allele at this
modifier locus, M, changes these values, depending on the
number of M alleles present (table 1). We are interested in
the conditions under whichM can invade a population fixed
form and the conditions (possibly the same ones) under which
itfixes, drivingm to extinction.Note that there is no selection
directly on theM locus; changes in the frequency of alleles at
this locus are driven solely by the effect they have on the var-
iation present at the A locus.
If the four possible haplotypes in the population, AM,

aM, Am, and am, have respective frequencies x1, x2, x3, and
x4 (p12 x1 2 x2 2 x3) in females and y1, y2, y3, and y4
(p12 y1 2 y2 2 y3) in males, we can then adapt the equa-
tions of the standard two-locus, two-allele selection model
(see, e.g., Bürger 2000) to obtain the iterations for our model
of these frequencies after a single generation of selection and
randommating (ignoring genetic drift), which are, for i p 1,
2, 3, and 4,

x 0
i p

xs
i

�x
,

y 0
i p

y s
i

�y
, ð1Þ
Table 1: Male and female fitnesses
Genotype
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aa
Fitness of females
 1 2 s
 1 2 ha s
 1

Fitness of males
 1
 1 2 kat
 1 2 t
Note: a ∈ fMM,Mm,mmg.
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in which

xs
1 p x1y1ð12 sÞ1 1

2
ðx1y2 1 x2y1Þð12 hMMsÞ

1
1
2
ðx1y3 1 x3y1Þð12 sÞ

1
1
2
ðx1y4 1 x4y1Þð12 hMmsÞ2 r ⋅ ~dð12 hMmsÞ,

xs
2 p

1
2
ðx2y1 1 x1y2Þð12 hMMsÞ1 x2y2 ⋅ 1

1
1
2
ðx2y3 1 x3y2Þð12 hMmsÞ

1
1
2
ðx2y4 1 x4y2Þ ⋅ 11 r ⋅ ~dð12 hMmsÞ,

xs
3 p

1
2
ðx3y1 1 x1y3Þð12 sÞ1 ðx3y2 1 x2 y3Þð12 hMmsÞ

1 x3y3ð12 sÞ1 1
2
ðx3y4 1 x4 y3Þð12 hmmsÞ

1 r ⋅ ~dð12 hMmsÞ,
xs
4 p

1
2
ðx4 y1 1 x1y4Þð12 hMmsÞ1 1

2
ðx4 y2 1 x2 y4Þ ⋅ 1

1
1
2
ðx4y3 1 x3y4Þð12 hmmsÞ1 x4 y4 ⋅ 1

2 r ⋅ ~dð12 hMmsÞ,
�x p xs

1 1 xs
2 1 xs

3 1 xs
4

ð2Þ

describe the iterations in females,

ys
1 p x1y1 ⋅ 11

1
2
ðx1y2 1 x2y1Þð12 kMMtÞ

1
1
2
ðx1y3 1 x3y1Þ ⋅ 11 1

2
ðx1y4 1 x4y1Þð12 kMmtÞ

2 r ⋅ ~dð12 kMmtÞ,
ys
2 p

1
2
ðx2y1 1 x1y2Þð12 kMMtÞ1 x2y2ð12 tÞ

1
1
2
ðx2y3 1 x3y2Þð12 kMmtÞ

1
1
2
ðx2y4 1 x4y2Þð12 tÞ1 r ⋅ ~dð12 kMmtÞ,

ys
3 p

1
2
ðx3y1 1 x1y3Þ ⋅ 11 ðx3y2 1 x2y3Þð12 kMmtÞ

1 x3y3 ⋅ 11
1
2
ðx3y4 1 x4y3Þð12 kmmtÞ

1 r ⋅ ~dð12 kMmtÞ,
ys
4 p

1
2
ðx4y1 1 x1y4Þð12 kMmtÞ1 1

2
ðx4y2 1 x2y4Þð12 tÞ

1
1
2
ðx4y3 1 x3y4Þð12 kmmtÞ1 x4y4ð12 tÞ

2 r ⋅ ~dð12 kMmtÞ,
�y p ys

1 1 ys
2 1 ys

3 1 ys
4

ð3Þ
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those in males, and

~d p
1
2
ðx1y4 1 x4y1 2 x2y3 2 x3y2Þ ð4Þ

is the modified linkage disequilibrium.
When m is fixed, x1 p x2 p y1 p y2 p 0 and remain

so, whereas the iterations for x3 and y3 are equivalent to
those of Owen’s (1953) model of differential viability selec-
tion on females and males (see also Kidwell et al. 1977).
Results and Analysis

Let us first consider the special case in which ha 1 ka p 1
for all a∈ fMM, Mm,mmg. This complementarity means
that there is a trade-off in the levels of dominance between
males and females, so that any benefit to one sex of any mod-
ification of dominance is offset against a detriment to the
other. This assumption is not essential for our overall anal-
ysis—we relax it below—but it provides a convenient place
to start. Nevertheless, it can also be argued that using this
special case also makes biological sense. Complementarity
covers the case in which the phenotypes under this differ-
ential selection pressure are identical in males and females
and the fitnesses in both sexes are linear functions of the phe-
notype on some suitable scale. For example, suppose the mean
phenotypes of AA, Aa, and aa genotypes are 0, φ, and 1, re-
spectively, for both males and females (with 0 ! φ ! 1). If the
phenotypic value 0 is favored in males and the phenotypic
value 1 in females, then the closer φ is to 1, the smaller hmm

and the larger kmm are. Moreover, kmm p φ and hmm p 12 φ.
It seems plausible, therefore, that when differential selec-
tion first arises, perhaps in response to some environmental
change differentially affecting the sexes, hmm 1 kmm p 1.
When m is fixed, Kidwell et al. (1977) have shown that

the equivalent one-locus model has a single globally stable
polymorphic equilibrium, ðx̂3, x̂4, ŷ3, ŷ4Þ, provided that

s
11 s

! t !
s

12 s
: ð5Þ

Outside these bounds, either A or a fixes. It is noteworthy
that the existence of this equilibrium does not depend on
hmm (although its haplotype-frequency values do). It is also
important to realize that condition (5) is quite restrictive, al-
lowing only a small range of similar-sized parameter values,
especially for weak selection (small s and t; fig. 1; see also
Kidwell et al. 1977).
In order to determine the fate of an M allele attempting

to invade such a population fixed for m and following the
method in Feldman and Karlin (1971), we examine the
leading eigenvalue of the reduced system in x 0

1, x 0
2, y 0

1,
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and y 0
2 linearized around ðx3, x4, y3, y4Þ p ðx̂3, x̂4, ŷ3, ŷ4Þ. A

Mathematica script (see supplementary zip file, available
online)1 shows that this leading eigenvalue is exactly 1, which
means that, to a first approximation at least, the invasion of
M is neither favored nor prevented by selection. Extensive nu-
merical analysis found no counterexamples, which suggests
that our linear approximation is accurate. This result is, per-
haps, not surprising, because the average of themean fitnesses
of males and females at ðx3, x4, y3, y4Þ p ðx̂3, x̂4, ŷ3, ŷ4Þ is
given by

1
2
ð�̂x1 �̂yÞ p 12 s

4
1

12 t
4

1
s2 1 t2

4st
, ð6Þ

independent of hmm. Consequently, the population’s fitness
is not affected by the alleles at the M locus.

We can use this result in a first step to elucidate the gen-
eral conditions under which M will invade. First, we keep
the assumption that hmm 1 kmm p 1 but remove the previ-
1. Code that appears in the American Naturalist is provided as a conve-
nience to the readers. It has not necessarily been tested as part of the peer re-
view.
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ous complementarity constraints on the other dominance
parameters. Extensive numerical exploration reveals that,
given the accuracy of our linearization approximation, M
will invade if and only if hMm 1 kMm ! 1, which means that
it is alleviating some of the conflict. Critically, we find that
the modifier can invade even if it makes things worse for
one sex (i.e., it increases the dominance parameter for that
sex), provided that the benefit to the other sex (i.e., the de-
crease in its dominance parameter) is sufficiently large. In
these cases, a trade-off is evident between the fitnesses of
the heterozygotes of each sex, although decreases in fitness
are of lower magnitude than the increases, which means
that the population may gain overall.
An example is shown in figure 2A, where a modifier (M)

that reduces the fitness of Aa females (hMm 1 hmm) but in-
creases that of Aa males (kMm ! kmm) successfully invades
but the frequency of A, favored in males but not females,
declines. Interestingly, in this example, the mean fitness of
females increases monotonically, whereas the mean fitness
of males increases at first and then decreases, although the
overall change is positive.Moreover, we note that arguments
using initial changes in mean fitness, often used in game-
theoretic or adaptive-dynamic approaches (see Spencer and
Feldman 2005), do not make the correct prediction, either:
the modifier can invade even if one of the male and female
mean fitnesses decreases; an example is shown in figure 2B.
We note, too, that, in these examples, the increase in fre-
quency of M is initially very slow: no perceptible increase
occurs for the first 400 generations, even though the reduc-
tion in the sum of the dominance parameters (0.1) is not
negligible.
When ha 1 ka ! 1, Kidwell et al. (1977) showed that at

most one stable polymorphic equilibrium was possible and
that such an outcome occurred, provided that

has
12 ka 1 has

! t !
ð12 haÞs
kað12 sÞ : ð7Þ

An example of such a region is shown in figure 1. Note that
this part of parameter space is a superset of that affording a
stable polymorphic equilibrium at A when ha 1 ka p 1.
Thus, if there exists a stable polymorphism at A for hmm 1
kmm p 1, any successful invasion of M will preserve this
polymorphism, since hMm 1 kMm ! 1.
We now examine the case when hmm 1 kmm ! 1. Our nu-

merical explorations show that the conditions for the inva-
sion ofM are not simple. For example, it is neither sufficient
nor necessary that hMm 1 kMm ! hmm 1 kmm. Figure 3 shows,
for a representative set of parameters ðr, s, t, hmm, kmmÞ that
result in a stable polymorphism at A whenm is fixed, the re-
gions of ðhMm, kMmÞ parameter space that favor the invasion
ofM. The insufficiency of the hMm 1 kMm ! hmm 1 kmm con-
dition is exemplified by the parts of parameter space be-
s
0.0 0.2 0.4 0.6 0.8 1.0

t

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Region of parameter space under sexually antagonistic se-
lection affording a unique, stable, polymorphic equilibrium at the A
locus, assuming (1) ha 1 ka p 1, in which case it lies between the two
solid black curves (after Kidwell et al. 1977), or (2) ha p 0:2 and ka p
0:3 (so ha 1 ka ! 1), inwhich case it lies between the dashed red curves.
As shown in table 1, s is the selection coefficient againstAA females and
t that against aa males; ha and ka are the dominance parameters for
females and males, respectively. Note that when ha 1 ka p 1 for weak
selection (small s and/or t), the region is also small, requiring s ≈ t, whereas
for ha 1 ka ! 1, the region is unconditionally larger.
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low the light blue line but above the dark blue line and its
unnecessity by the regions below the dark blue line but above
the light blue line. Nevertheless, the trend is certainly that se-
lection favors modifiers that reduce the sum of the domi-
nance parameters; the exceptions (below the dark blue line
but above the light blue one) arise when the differences are
small. In the numerical example of figure 3, invasion ofM re-
quires a reduction in h more than a decrease in k, because
s 1 t. Figure 3 also shows the more restricted part of pa-
rameter space satisfying the more stringent requirement
for M to invade at a reasonably rapid rate (in the case of
the figure, requiring the leading eigenvalue to be greater than
1.01, implying an initial increase of more than 1% in fre-
quency each generation). In brief, the change in dominance
parameters must be substantive and suggests that the ex-
ceptions to hMm 1 kMm ! hmm 1 kmm will be rare.

Finally, we turn to the case in which hmm 1 kmm 1 1. Al-
though it seems that such a condition is unlikely either ini-
tially, when differential selection on males and females first
arises, or subsequently (indeed especially), after the inva-
sion and fixation of a new modifier, we do so for the sake
This content downloaded from 138.03
All use subject to University of Chicago Press Term
of completeness. Kidwell et al. (1977) showed that at most
one stable polymorphic equilibrium at A was possible, al-
though its stability may not be global because fixation of
either A or a (depending on the parameters) may also be
locally stable. For our purposes, however, we are interested
in when variation is maintained at A, because that is when
genetic conflict arises; we note that this condition implies
large values of s and t, which may also be considered un-
likely. In the event, numerical analyses suggest that the gen-
eral trend described above still pertains: a modifier M will
invade if, in general, it reduces the sum of the dominance
parameters, although exceptions do occur if the dominance
parameter of one sex would be altered by some small amount.
A numerical example is shown in figure 4.
We also investigated the effect of the recombination pa-

rameter, r. In contrast to two-locus models of differential
selection on males and females in which the magnitude of
r has significant consequences (Patten et al. 2010), chang-
ing r rarely altered the outcome in our model, presumably
because the modifier locus was selectively neutral. Exten-
sive simulations revealed that, on the rare occasions in
Generation
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y

0.0

0.5
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s

0.800

0.801

Generation
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y

0.0

0.5
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s

0.800

0.805

A B

Figure 2: Trajectories of haplotype frequencies and mean fitnesses showing that (A) modifiers deleterious to one sex (in this case females)
can invade (r p 0:2, s p t p 0:4, hMM p kMM p 0:9, hMm p 0:5, kMm p 0:4, hmm p 0:4, and kmm p 0:6) and (B) the female mean fitnesses
need not increase (r p 0:2, s p t p 0:4, hMM p 0:9, kMM p 0:2, hMm p 0:7, kMm p 0:2, hmm p 0:4, and kmm p 0:6). In both panels, in the
lower graph, the frequencies of the four haplotypes, AM, aM, Am, and am, respectively x1, x2, x3, and x4, are depicted by red, pink, dark blue,
and light blue, respectively; in the upper graph, the female mean fitness is shown in red, the male in blue, and the average in black. Initial
haplotype frequencies for x3, x4, y3, and y4 were given by the equilibria under Owen’s (1953) model minus 0.0001; those for x1, x2, y1, and
y2 were all 0.0001.
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which there was an effect, smaller r values favored the in-
vasion of M whereas larger values caused the fixation of m
to be stable. In other words, the leading eigenvalue was a
decreasing function of r.

The conditions under which M continues to fixation
can be deduced from the above results: they are effectively
the same conditions required for m to repel an invasion by
M, but with the allele names swapped. For example, as-
suming that M has invaded successfully in the first place,
if we also have hMM 1 kMM ! hMm 1 kMm, then it is almost
certain that it will fix, the exceptions arising when the dif-
ference in these two sums is small.
Discussion

Our analytical and numerical investigations show that sex-
ually antagonistic selection maintaining a polymorphism
provides the opportunity for the evolution of dominance
in accordance with Fisher’s theory. Thus, this form of selec-
tion can be added to the list of heterozygote advantage and
spatially variable selection (Otto and Bourguet 1999), as well
as frequency-dependent selection (Peischl and Schneider
This content downloaded from 138.03
All use subject to University of Chicago Press Term
2010), under which there are sufficient heterozygotes in
the population for selective modification of dominance to
take place. Our finding is important because there is abun-
dant evidence that sexually antagonistic selection is ubiqui-
tous in natural populations (Arnqvist and Rowe 2005; Con-
nallon and Clark 2014)—certainly it is far more frequent
than heterozygote advantage, for example—and so domi-
nance is likely to have been subject to selective change sig-
nificantly more often than currently thought.
The evolution of dominance continues to be a central

question in evolutionary biology, not only because it was
the topic that led to the falling out of two of the most im-
portant historical figures in the field, Ronald Fisher and
Sewall Wright (Provine 1985), but also because it has basic
implications for sexual antagonism, the nature of inheri-
tance, and the evolution of genetic diseases (Wilkie 1994;
Rhen 2000; Bagheri 2006; Connallon and Clark 2014). It
had long been held that modifiers of dominance were un-
likely to contribute to genetic architecture, both because
direct selection had to be unreasonably strong to modify
dominance of new mutations and because it was thought
that dominance was an emergent property of metabolic net-
works (Kacser and Burns 1981; Keightley 1996; Agutter
2008). Our modeling shows that sexual conflict can plausi-
bly drive the evolution of dominance modifiers at reason-
h
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k
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Figure 3: The ðhMm, kMmÞ parameter space when ðr, s, t, hmm, kmmÞ p
ð0:1, 0:65, 0:45, 0:35, 0:45Þ. The modifier allele, M, will invade a pop-
ulation fixed for m provided that the heterozygotes’ dominance pa-
rameters ðhMm, kMmÞ are to the left of (below) the solid dark blue line.
The light blue line represents hMm 1 kMm p hmm 1 kmm p 0:8. A glob-
ally stable polymorphism at A is possible only for hmm and kmm values
below both red lines. Note that the two solid blue lines intersect when
hmm p hMm and kmm p kMm. The parts of the parameter space below
the dashed blue line have a leading eigenvalue greater than 1.01.
h
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Figure 4: The ðhMm, kMmÞ parameter space when ðr, s, t, hmm, kmmÞ p
ð0:1, 0:8, 0:6, 0:9, 0:3Þ. The modifier allele, M, will invade a popula-
tion fixed for m, provided that ðhMm, kMmÞ is to the left of (below)
the solid dark blue line. The light blue line represents hMm 1 kMm p
hmm 1 kmm p 1:2. Note that the two solid blue lines intersect when
hmm p hMm and kmm p kMm. Parts of parameter space below the
dashed line have a leading eigenvalue of greater than 1.01.
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able rates, adding to the increasing number of studies
questioning this orthodoxy.

Moreover, our models predict that at loci subject to sex-
ually antagonistic selection, males and females are likely to
evolve different dominance parameters. Indeed, there are
a number of genetic phenomena that are consistent with
this prediction, including sex-specific epistasis (Long et al.
1995), molecular mechanisms underlying sex-limited gene
expression (Hodgkin 1990), dominance in sex determina-
tion (Rhen et al. 2011), sex-specific nonadditivity of gene
expression (Gibson 2004), sex-specific modification of dis-
ease pathologies (Weydt et al. 2014), different dominance
hierarchies of self-incompatibility alleles in the pollen and
stigma of a number of plants (Llaurens et al. 2009; Schoen
and Busch 2009), and evidence for the modification of domi-
nance of genes with sex-specific functions (Montgomery
et al. 1996).

It is important to note that modification of sex-specific
dominance can lessen the degree of sexual conflict but may
not resolve it completely. In our model, for example, selec-
tively disadvantageous AA females and aa males will still be
produced every generation. Full resolution of this conflict
would require further changes in genetic architecture, such
as gene duplication followed by sex-specific expression of
each locus (Connallon and Clark 2011b). If examples of
sex-specific dominance turn out to be rare, it may be be-
cause the remaining sexual conflict has been resolved in a
way that obliterates any such dominance or renders any se-
lection for it unnecessary. Alternatively, the conflict may
have been resolved through some other genetic change (see
Bonduriansky and Chenoweth 2009 for a number of possi-
bilities). Such alternative resolutions might be considered
more general in their effects (and thus more likely) if, un-
like modifiers of dominance, which act on particular alleles,
they can act on many alleles at one locus or even several loci
simultaneously. Finally, the rapid evolution at sexually an-
tagonistic loci predicted by coevolutionary models may be
considerably faster than any changes in dominance (Bon-
duriansky and Chenoweth 2009).

Sexually antagonistic selection can occur when fitness
optima are balanced between the sexes or when there is
asymmetry in the antagonistic selection, such that benefits
to one sex outweigh the costs to the other. Our model
shows that the modification of dominance can evolve under
either condition, though with different predicted patterns
of the evolution of dominance. When sexual conflict affects
both sexes equally, modifiers of dominance on new reces-
sive mutations will tend to ameliorate the conflict by making
the heterozygotes of each sex more like the favored homo-
zygote of that sex. This finding leads to a general prediction
that species with higher levels of sexual conflict should ex-
hibit higher levels of sex-specific dominance. When there is
asymmetry in the antagonistic selection, we find that selec-
This content downloaded from 138.03
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tion will favor modifiers of dominance that alter expression
more in the sex that exhibits the greater fitness costs. This
result leads to the prediction that the sex that experiences
greater levels of antagonistic selection should exhibit greater
levels of dominance.
Although we cannot distinguish between other possible

hypotheses, there is some evidence from the literature that
is consistent with both of these predictions. High degrees
of dominance in fitness traits are evident in species, such
as the fruit fly, the seed beetle, and water striders, in which
females exhibit substantial costs of mating (Mukai et al.
1972; Bilde et al. 2008; Wolak 2013). In addition, in each
of these species females exhibit higher levels of dominance
in adult fitness traits than do males (Fox et al. 2004; Gib-
son et al. 2004; Wolak 2013). In seed beetles, females ex-
hibit substantially more dominance variance in longevity,
a trait that is governed largely by male mating behavior,
but not in development time or weight, which are not di-
rectly affected by antagonistic behaviors of males (Fox et al.
2004; Hallsson and Björklund 2011). But we need more re-
search on the loci underlying sexual conflict to understand
the source of these patterns.
When they have been identified, loci underlying intra-

locus sexual conflict often exhibit large sex-specific differ-
ences in dominance. Perhaps the best example is that of
the vestigial-like family member 3 gene (VGLL3) in Atlan-
tic salmon, for which sex-dependent dominance leads to
earlier maturation of males than of females, a difference
strongly favored by selection (Barson et al. 2015). And,
in mice, between-sex differences in dominance are greater
for loci underlying sexually dimorphic traits, such as body
size, than for traits in which there is no evidence of dimor-
phism, such as liver and spleen mass at adulthood (Hager
et al. 2008).
The mouse example is particularly interesting because it

provides evidence that sex-specific modification of domi-
nance can be altered though development (Hager et al.
2008). Although both body size and dominance are equiv-
alent between the sexes at birth, the loci associated with
body size exhibit increased dominance in males but not in
females, who become proportionally bigger than males dur-
ing development. Although it is tempting to suggest that
male body size must, therefore, be under intense sexually
antagonistic selection, it is important to note that the mouse
strains in question result from an artificial-selection exper-
iment on sex-corrected body size (Hager et al. 2008), which
we would not expect to generate sexual conflict. This exam-
ple highlights the problem that we need better data to dis-
tinguish between possible sources and potential evolution-
ary consequences of sexual antagonism.
We also need to be able to identify the loci that modify

dominance. One of the critical assumptions of our model is
that modifier alleles act on genes with substantial genotype-
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and sex-dependent influences on fitness. As we argue above,
when sexually antagonistic selection first arises, it is reason-
able to assume that the male and female dominance pa-
rameters are complementary (hmm 1 kmm p 1). Our models
imply that a modifier, M, will invade, provided that this
complementarity can be broken (hMm 1 kMm ! 1). There
is evidence that such noncomplementary parameters do
exist in nature. In fruit flies, there is evidence for the types
of genes required for dominance modification to succeed,
as it has been shown that alleles with sex-biased expression
often have fitness effects in the sex in which the expression
is biased (Connallon and Clark 2011a). In sheep, loci have
been characterized that modify sex-limited alleles at the
horn-development locus, Ho (Montgomery et al. 1996).

One final point is on the nature of how these alleles
evolve with respect to the average fitness of a population.
We find that the mean fitness of one sex can, at least ini-
tially, decrease in the course of a successful invasion by a
novel dominance modifier. Many studies of sexually an-
tagonistic selection, including artificial-selection experi-
ments, have argued that reduced population fitness is char-
acteristic of sexual antagonism. Our findings indicate that
fitness can be decreased even when alleles that tend to re-
solve conflict are rapidly increasing in frequency. This
model behavior suggests that arguments based on changes
in a population’s mean fitness must be viewed with cau-
tion (Spencer and Feldman 2005).
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