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Abstract  9 

Many oncology studies incorporate a blinded, independent central radiological review (BICR) to make an 10 

assessment of the integrity of the primary endpoint, progression free survival (PFS).   Recently it has 11 

been suggested that, in order to assess the potential for bias amongst investigators, a BICR amongst 12 

only a sample of patients could be performed; if evidence of bias is detected, according to a pre-defined 13 

threshold, the BICR is then assessed in all patients, otherwise it is concluded the sample was sufficient to 14 

rule-out meaningful levels of bias.  In this paper, we present an approach that adapts a method 15 

originally created for defining futility bounds in group sequential designs.  The hazard ratio ratio (HRR), 16 

the ratio of the hazard ratio (HR) for the treatment effect estimated from the BICR to the corresponding 17 

HR for the investigator assessments, is used as the metric to define bias.  The approach is simple to 18 

implement, and ensures a high probability that a substantial true bias will be detected. In the absence of 19 

bias, there is a high probability of accepting the accuracy of local evaluations based on the sample, in 20 

which case an expensive BICR of all patients is avoided.  The properties of the approach are 21 

demonstrated by retrospective application to a completed PIII trial in colorectal cancer.  The same 22 

approach could easily be adapted for other disease settings, and for test statistics other than the hazard 23 

ratio. 24 

Keywords: progression, sample, independent review, oncology 25 

Introduction 26 

Progression Free Survival (PFS) is often accepted as a valid endpoint in oncology both for assessing 27 

activity and for registration of drugs.   PFS, defined as the earliest of disease progression or death, is a 28 

time-to-event endpoint which assesses the relative rate with which the disease worsens.  Standard 29 

criteria, such as RECIST 1.1 [1] are applied to calculate the PFS time for each individual.  The longest 30 



diameters of a set of target lesions are measured repeatedly over time, together with an overall 31 

assessment of other non-target lesions and whether any new lesions appear.  Disease progression 32 

occurs if either the sum of target lesions has increased by 20% from the nadir or there is, in the 33 

investigator’s opinion, clear progression of non-target lesions or a new lesion detected. 34 

Whilst the criteria appear largely objective there remains a degree of judgement and measurement 35 

error [2]. Furthermore, a high rate of disagreement, 50% in some cases [3], has been observed between 36 

readers in the timing of progression; much of this is attributed to different readers selecting different 37 

target lesions.   This level of discordance has led to the widespread use of a blinded, independent, 38 

central review (BICR) to confirm and even replace the investigators’ assessment of progression when 39 

this is the primary endpoint.   Not only is a BICR expensive, up to $4-5M for a Phase III trial, it may also 40 

introduce new problems and can by itself introduce bias:  if the investigator decides there is progression 41 

earlier than the BICR then no more tumour assessments will be available to the BICR and the only option 42 

for the BICR analysis is to censor patients at the time the investigator defines progression.   This 43 

censoring is likely to be informative and thus, if the rate of such censoring differs between arms, then, 44 

whilst the BICR assessments remain informative, bias will be introduced in the estimation of the BICR 45 

hazard ratio (HR) [4]. 46 

We are most interested in whether the disagreement between readers in the time of progression for 47 

individual patients results in a biased estimate of a treatment effect.   A number of reviews [4-6], have 48 

shown a high concordance between the local evaluation (LE) HR estimated by the investigator and HR 49 

estimated by the BICR, particularly in blinded trials, although there is some overlap in the trials 50 

considered in these reviews.  Given the cost and complexity of a BICR, the idea of performing the 51 

independent review amongst a sample of patients has emerged: if the sample satisfactorily rules out the 52 

presence of bias then no more scans are re-read, otherwise the BICR is performed in all patients.  An 53 

Oncology Drugs Advisory Committee (ODAC) meeting was convened in July 2012 [7] to discuss this 54 

concept and all the committee members supported the notion of a sample review. 55 

There are currently two main methods for conducting a sample review, in this paper we present a third.    56 

In [8], the authors define θC to be the log hazard ratio when progression is evaluated by BICR and they 57 

test the null hypothesis H0: θC ≥ γ, where the threshold γ is termed the “clinical irrelevance factor”. The 58 

testing procedure uses estimates of θC based on (i) LE of the full set of patients plus BICR of a sample of 59 

patients or, if it is deemed appropriate, (ii) BICR of the full sample. The estimate of θC in (i) is a 60 

combination of HR estimates from LE and BICR data chosen to have minimum variance, given the 61 

correlation between LE and BICR estimates of HR (which can be estimated by bootstrapping the audited 62 

cases). Since H0 can be tested twice, a multiple testing procedure is used to protect the overall type I 63 

error rate: it is a non-significant result in the first of these tests (when the upper limit of a 1-α/2 64 

confidence interval is greater than γ) that leads to a BICR of the full data set.  65 

 66 

The second method [5] concludes that bias is absent if appropriately defined measures of discordance in 67 

progression times are similar between treatment arms.  The philosophy of this second approach is to 68 

regard the sample review as an audit to assess whether there is evidence of bias in the local evaluation 69 

for that particular trial, rather than to re-test statistical significance.   The discordance measures, late 70 



and early discrepancy rate (LDR and EDR), are compared between treatment arms and were chosen as 71 

they were found to be sensitive to bias [9].   The LDR quantifies the frequency that the LE declares 72 

progression later than the BICR as a proportion of the total number of discrepancies in the timing of 73 

progression.  The EDR quantifies the frequency with which the LE declares progression early relative to 74 

BICR as a proportion of the total number of investigator assessed progressions.  Initially, the authors 75 

proposed accepting the sample if the observed values of LDR and EDR were less than a fixed acceptance 76 

threshold but later proposed modifying the approach [10] to allow the acceptance thresholds to vary by 77 

design in order to guarantee the same high probability that bias would be detected if the LE and BICR 78 

HRs differed by a fixed proportion.   As a result, in order to utilise the Amit method an error model must 79 

first be set-up [9] by the user to define the appropriate sample acceptance thresholds, and this can 80 

make transferring the method between different researchers a challenge.   The performance of these 81 

two existing methods has been compared [11]. 82 

 83 
The model free audit approach presented in this paper is based on an approach to futility analyses 84 

developed to be used in group sequential designs. The approach has features in common with both the 85 

Dodd and Amit methods; it is simple to implement and reliably identifies bias.  In common with the 86 

Dodd method it utilises the HRs directly and in common with the Amit method it aims to detect bias in 87 

terms of differences in treatment effect estimates rather than to re-test statistical significance.  A key 88 

advantage of the approach lies in its simplicity and hence the ease with which it can be applied by 89 

different researchers. 90 

The paper is structured as follows:  firstly the methodology is outlined, followed by a results section 91 

identifying the likely sample sizes required to have appropriate sensitivity and specificity.   The approach 92 

is then retrospectively applied to data from a trial in metastatic colorectal cancer, where the BICR was 93 

performed in all patients in order to confirm the analytical findings.  Finally the paper discusses potential 94 

applications and practical considerations. 95 

 Methods 96 

The primary inference of the model-free audit procedure concerns the point estimate for the hazard 97 

ratio ratio (HRR) in the full data set, which is equal to the point estimate of BICR HR divided by the point 98 

estimate of the LE HR.  In the model-free approach, absence of bias, or more precisely lack of evidence 99 

of meaningful bias, is concluded if there is a low conditional probability that the HRR seen in the random 100 

sample of patients would have been observed if, in fact, the point estimate of the HRR in the full trial 101 

were unacceptably high, 1.25 for example. In the discussion section we explore this choice in more 102 

detail. 103 

If no bias is found the sample is accepted and no further scans are assessed by the BICR, otherwise the 104 

BICR is performed in all patients.  We propose that the estimate of treatment effect should be based on 105 

the local evaluation if either the sample is accepted or if the BICR is performed in all patients and there 106 

is insufficient evidence of bias, but if the BICR in the full trial indicates the presence of bias then 107 

inference about the treatment effect should be based on the BICR.  In practical terms, the sample for 108 



BICR assessment is drawn at completion of the trial.  The patients that form this sample are randomly 109 

selected within each treatment arm, with separate sampling within patients with progression events 110 

and with censored times to event according to the LE. All scans from sampled patients are then assessed 111 

by the BICR.    112 

The proposed process for generating the BICR sample and its evaluation is set out in Figure 1. 113 

  114 
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Figure 1 Process for selecting the sample for BICR and evaluating the sample results 137 
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Statistical model and assumptions: 140 

Under the assumption of proportional hazards, denote the hazard ratio between the control and 141 

experimental treatment by 142 

𝐻𝑅 =
𝐻𝑎𝑧𝑎𝑟𝑑 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝐻𝑎𝑧𝑎𝑟𝑑 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑟𝑚
 , 143 

so a value of 𝐻𝑅 below 1 indicates the new treatment is superior to control. 144 

Denote the estimate of 𝐻𝑅 based on the full data set and BICR evaluations of progression by 145 

𝐻𝑅̂𝐵𝐼𝐶𝑅,𝐹 146 

and the estimate of 𝐻𝑅 based on the full data set and local evaluations of progression by 147 

𝐻𝑅̂𝐿𝐸,𝐹 . 148 

We suppose that, as the gold standard, the BICR evaluations provide an unbiased estimate of the true 149 

𝐻𝑅, while the local evaluations may be biased. The estimated Hazard Ratio Ratio based on the full data 150 

set is 151 

𝐻𝑅𝑅̂𝐹 =  
𝐻𝑅̂𝐵𝐼𝐶𝑅,𝐹

𝐻𝑅̂𝐿𝐸,𝐹

  152 

and we write its large sample distribution, expressed on the log scale, as 153 

ln(𝐻𝑅𝑅̂𝐹) ~ 𝑁( ln(𝐻𝑅𝑅) , 𝐼𝐹
−1 ) . 154 

Here the true Hazard Ratio Ratio, 𝐻𝑅𝑅, is defined through the equation  ln(𝐻𝑅𝑅) =155 

𝐸(ln ( 𝐻𝑅̂𝐵𝐼𝐶𝑅,𝐹 𝐻𝑅̂𝐿𝐸,𝐹⁄ ) ) and 𝐼𝐹 denotes the Fisher information for ln(𝐻𝑅𝑅) in the full data set. After 156 

assessment of the sample of the data, we have the estimate of 𝐻𝑅 based on BICR evaluations, 𝐻𝑅̂𝐵𝐼𝐶𝑅,𝑆, 157 

and the estimate of 𝐻𝑅 based on local evaluations of sampled subjects, 𝐻𝑅̂𝐿𝐸,𝑆. The estimate of the 158 

Hazard Rate Ratio based on the sample is 159 

𝐻𝑅𝑅̂𝑆 =  
𝐻𝑅̂𝐵𝐼𝐶𝑅,𝑆

𝐻𝑅̂𝐿𝐸,𝑆

 160 

and the large sample distribution of this estimate is given by  161 

ln(𝐻𝑅𝑅̂𝑆) ~ 𝑁( ln(𝐻𝑅𝑅) , 𝐼𝑆
−1 ) , 162 

where 𝐼𝑆 denotes the information for ln(𝐻𝑅𝑅) in the sample data. We proceed on the assumption that 163 

the estimates ln(𝐻𝑅𝑅̂𝑆) and ln( 𝐻𝑅𝑅̂𝐹) have the canonical form of joint distribution described in 164 

Jennison & Turnbull, Ch. 11 [12]. Specifically, the two estimates are bivariate normal with means and 165 

variances as stated above and their covariance is 𝐼𝐹
−1. It follows that the conditional distribution of 166 

ln(𝐻𝑅𝑅̂𝑆) given 𝐻𝑅𝑅̂𝐹 = 𝐻𝑅𝑅̃𝐹  is 167 



ln(𝐻𝑅𝑅̂𝑆) |  𝐻𝑅𝑅̂𝐹 = 𝐻𝑅𝑅̃𝐹    ~  𝑁(ln(𝐻𝑅𝑅̃𝐹), 𝐼𝑆
−1 − 𝐼𝐹

−1). 168 

Standardised test statistics are defined as 169 

𝑍𝐹 =  ln(𝐻𝑅𝑅̂𝐹) √𝐼𝐹   and   𝑍𝑆 =  ln(𝐻𝑅𝑅̂𝑆) √𝐼𝑆  170 

 and the conditional distribution of 𝑍𝑆 given 𝑍𝐹 = 𝑍̃𝐹 (so ln(𝐻𝑅𝑅̂𝐹) = 𝑍̃𝐹/√𝐼𝐹  ) is 171 

𝑍𝑆 |  𝑍𝐹 = 𝑍̃𝐹   ~   𝑁 (𝑍̃𝐹
√𝐼𝑆

√𝐼𝐹
 ,

𝐼𝐹−𝐼𝑆

𝐼𝐹
)             (1). 172 

When analysing the sample data, we specify a maximum acceptable value 𝐻𝑅𝑅𝑈 (for example, as 173 

suggested Error! Reference source not found.) for  𝐻𝑅𝑅̂𝐹 and test the null hypothesis 𝐻0: 𝐻𝑅𝑅̂𝐹 ≥174 

 𝐻𝑅𝑅𝑈 against the alternative 𝐻1: 𝐻𝑅𝑅̂𝐹 <  𝐻𝑅𝑅𝑈. Note that these hypotheses concern 𝐻𝑅𝑅̂𝐹 , the final 175 

estimate of 𝐻𝑅𝑅. The distribution of 𝑍𝑆 given 𝐻𝑅𝑅̂𝐹 =  𝐻𝑅𝑅𝑈, the case at the boundary of the null 176 

hypothesis, is given by (1) with 𝑍̃𝐹 =  ln(𝐻𝑅𝑅𝑈 ) √𝐼𝐹 and 𝑍𝑆 will tend to take lower values under 𝐻1. So, 177 

for a level α test, we stop and reject H0 based on the sample of data if 178 

𝑍𝑆  <   ln(𝐻𝑅𝑅𝑈 ) √𝐼𝑆  −  𝛷−1(1 − 𝛼)√
𝐼𝐹 − 𝐼𝑆

𝐼𝐹
 ,      (2) 179 

where 𝛷 is the standard normal cumulative distribution function. This criterion can be expressed as a 180 

bound on the estimated 𝐻𝑅𝑅̂𝑆 from the data sample: 181 

ln(𝐻𝑅𝑅̂𝑆)  <   ln(𝐻𝑅𝑅𝑈) − 𝛷−1(1 − 𝛼)√
𝐼𝐹 − 𝐼𝑆

𝐼𝑆𝐼𝐹
  182 

or, equivalently, 183 

𝐻𝑅𝑅̂𝑆   <  𝑒𝑥𝑝 [ ln(𝐻𝑅𝑅𝑈) −  𝛷−1(1 − 𝛼)√
(𝐼𝐹−𝐼𝑆)

𝐼𝑆𝐼𝐹
    ]  = 𝐴𝑇,   say,     (3) 184 

where 𝐴𝑇 indicates the “acceptance threshold” for the Hazard Ratio Ratio observed in the sample data. 185 

If the above test does not reject 𝐻0, BICR is conducted for the full set of data so 𝐻𝑅𝑅̂𝐹  is known exactly 186 

and there is then no error in determining whether or not 𝐻0 is true. Thus, the type I error probability α 187 

assigned to the analysis of the sample data is the total type I error probability for testing 𝐻0: 𝐻𝑅𝑅̂𝐹 ≥188 

 𝐻𝑅𝑅𝑈. 189 

Suppose now that the full data estimate of 𝐻𝑅𝑅 takes the value  𝐻𝑅𝑅̂𝐹 = 1. We refer to the probability 190 

of stopping to reject 𝐻0 after analysing the sample data in this case as the “specificity” of the method. 191 

Conditionally, given 𝐻𝑅𝑅̂𝐹 = 1, 𝑍𝑆 ~ 𝑁 (0 ,
𝐼𝐹−𝐼𝑆

𝐼𝐹
) and the probability of satisfying (2), the specificity, is 192 



𝛷 [ ln(𝐻𝑅𝑅𝑈) √
𝐼𝑆𝐼𝐹

(𝐼𝐹−𝐼𝑆)
   −  𝛷−1(1 − 𝛼) ] =  𝛷 [ln(𝐴𝑇)√

𝐼𝑆𝐼𝐹

(𝐼𝐹−𝐼𝑆)
  ].      (4) 193 

Values of 𝐼𝐹 and 𝐼𝑆 194 

For a two-treatment comparison with randomisation ratio 𝑘 ∶ 1 between treatment arms, we use the 195 

result 196 

𝑉𝑎𝑟̂(ln(𝐻𝑅̂) )  ≅   
(𝑘 + 1)2

𝑘 𝑛
 197 

from [12]. In the full data with 𝑛𝐿,𝐹 LE events and  𝑛𝐵,𝐹 BICR events, we have, approximately, 198 

𝑉𝑎𝑟(ln(𝐻𝑅̂𝐵𝐼𝐶𝑅,𝐹) )  =  
(𝑘+1)2

𝑘𝑛𝐵,𝐹
    and    𝑉𝑎𝑟(ln(𝐻𝑅̂𝐿𝐸,𝐹) )  =  

(𝑘+1)2

𝑘𝑛𝐿,𝐹
 , 199 

so if 𝐶𝑜𝑟𝑟(ln(𝐻𝑅̂𝐵𝐼𝐶𝑅,𝐹), ln(𝐻𝑅̂𝐿𝐸,𝐹))  =  𝜌, we obtain 200 

𝑉𝑎𝑟(ln(𝐻𝑅𝑅̂𝐹)) = 𝑉𝑎𝑟(ln(𝐻𝑅̂𝐵𝐼𝐶𝑅,𝐹) − ln(𝐻𝑅̂𝐿𝐸,𝐹))  =   
(𝑘+1)2

𝑘𝑛𝐵,𝐹
 +    

(𝑘+1)2

𝑘𝑛𝐿,𝐹
 −  2 𝜌

(𝑘+1)2

𝑘
 √

1

𝑛𝐵,𝐹𝑛𝐿,𝐹
 . 201 

Defining 𝑟 = 𝑛𝐵,𝐹 𝑛𝐿,𝐹⁄ , we have 202 

𝐼𝐹  =  [𝑉𝑎𝑟(ln(𝐻𝑅𝑅̂𝐹) )]−1  =  
𝑘 𝑛𝐿,𝐹

(𝑘+1)2  
𝑟

( 1+𝑟−2𝜌√𝑟 )
.                   (5) 203 

In the data sample, let 𝑛𝐿,𝑆 denote the number of LE events and 𝑛𝐵,𝑆 the number of BICR events. By a 204 

scaling argument, we expect the ratio 𝑛𝐵,𝑆 𝑛𝐿,𝑆⁄  to be close to 𝑟 and, approximately, 205 

𝐼𝑆  =  [𝑉𝑎𝑟(ln(𝐻𝑅𝑅̂𝑆) )]−1  =  
𝑘 𝑛𝐿,𝑆

(𝑘+1)2  
𝑟

( 1+𝑟−2𝜌√𝑟 )
.                       (6) 206 

One practical consideration is how to estimate the correlation 𝜌  between ln(𝐻𝑅̂𝐵𝐼𝐶𝑅) and ln(𝐻𝑅̂𝐿𝐸).    207 

We have followed [8], and estimated the correlation using a bootstrap approach.  In the sample there 208 

are nsample patients of whom 𝑛𝐿,𝑆 have events according to the LE.  In the bootstrap calculations, the 209 

nsample subjects are sampled with replacement, stratified by treatment arm and whether the patients had 210 

an event, to create a sample of size nsample.  Using both the LE and BICR determined PFS times, 211 

ln(𝐻𝑅̂𝐵𝐼𝐶𝑅) and ln(𝐻𝑅̂𝐿𝐸) are computed in the bootstrap sample.  This is repeated b times and the 212 

sample correlation coefficient of ln(𝐻𝑅̂𝐵𝐼𝐶𝑅) and ln(𝐻𝑅̂𝐿𝐸) provides the estimate of 𝜌.  Results 213 

presented in the supplementary appendix support the assumption that this correlation is independent 214 

of the size of the sample and, in particular, that  Corr(ln(HR̂BICR,S) , ln (HR̂LE,S)) = Corr(ln(HR̂BICR,F),215 

ln(HR̂LE,F)) . 216 

 Results 217 

We have investigated the methods described above in an example with a total sample size of Nstudy= 500 218 

patients and a selection of values for the audit sample size nsample. We have assumed 60% of patients 219 



have an event according to local evaluation and 55% according to BICR. The lower event rate for BICR 220 

reflects the fact that any BICR progressions occurring after local evaluation progression are unlikely to 221 

be captured. The acceptance threshold, AT, is calculated from (3) using 𝛼 = 0.1 and values of 𝐼𝐹 from (5) 222 

and  𝐼𝑆 from (6) with k=1 and r=0.55/0.6=0.92.  The specificity, the probability of accepting local 223 

evaluations based on the sample if 𝐻𝑅𝑅̂𝐹 = 1, is found from (4). 224 

Results for different scenarios are shown in Figures 2 to 5. By construction, with 𝛼 = 0.1 the sensitivity, 225 

defined as the probability of accepting  𝐻0 when 𝐻𝑅𝑅̂𝐹 =  𝐻𝑅𝑅𝑈, is 90% in all cases. For a given total 226 

sample size Nstudy, the acceptance threshold and the specificity change with the correlation 𝜌 between 227 

local evaluation and BICR (Figure 2), the size nsample of the audit sample (Figure 3), and the value 𝐻𝑅𝑅𝑈 228 

of  𝐻𝑅𝑅̂𝐹 used to define 𝐻0 (Figure 4). We see that the acceptance threshold and specificity increase 229 

with each of 𝜌, nsample and  𝐻𝑅𝑅𝑈. Figure 5 demonstrates how the acceptance threshold and specificity 230 

vary with total sample size Nstudy when nsample is fixed at a value of 200.231 

 232 
Figure 2 Acceptance threshold, AT, and specificity by correlation, ρ  (Nstudy=500, nsample = 200, proportion of patients with 233 
events = 0.6 for LE and 0.55 for BICR, testing 𝑯𝟎: 𝑯𝑹𝑹̂𝑭 ≥ 𝑯𝑹𝑹𝑼 = 𝟏. 𝟐𝟓) 234 

 235 
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 237 

Figure 3 Acceptance threshold, AT, and specificity by sampling proportion, nsample   (ρ = 0.7, Nstudy=500, proportion of patients 238 
with events = 0.6 for LE and 0.55 for BICR, testing 𝑯𝟎: 𝑯𝑹𝑹̂𝑭 ≥ 𝑯𝑹𝑹𝑼 = 𝟏. 𝟐𝟓) 239 

 240 

Figure 4 Acceptance threshold, AT, and specificity by the value of 𝑯𝑹𝑹𝑼 used to specify H0  (ρ = 0.7, Nstudy=500, nsample=200, 241 
proportion of patients with events = 0.6 for LE and 0.55 for BICR) 242 
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 243 

Figure 5 Acceptance threshold, AT, and specificity by full study population size Nstudy  (ρ = 0.7, nsample=200, proportion of 244 
patients with events = 0.6 for LE and 0.55 for BICR, testing 𝑯𝟎: 𝑯𝑹𝑹̂𝑭 ≥= 𝑯𝑹𝑹𝑼 = 𝟏. 𝟐𝟓) 245 

With a sample of 200 patients from a total of Nstudy=500, testing 𝐻0: 𝐻𝑅𝑅̂𝐹 ≥ 𝐻𝑅𝑅𝑈 = 1.25, Figure 2 246 

shows that under an assumed correlation of ρ = 0.7, the acceptable sample threshold is AT=1.08 and the 247 

specificity is 0.76.  As the correlation increases the specificity increases sharply, while the impact on the 248 

threshold is smaller, with AT rising from 0.97 for ρ = 0.1 to 1.15 for ρ = 0.9. Figure 3 shows that 249 

specificity increases with the size of the sample, nsample, for example with nsample=300, we have AT=1.14 250 

and the specificity is 0.96.  However, specificity decreases steeply as the sample size is reduced below 251 

200, for example, specificity is only 0.47 for nsample=100. Figure 4 shows that the acceptance threshold 252 

and specificity increase with 𝐻𝑅𝑅𝑈, with specificity close to 1 by the time 𝐻𝑅𝑅𝑈 reaches 1.4. Analyses of 253 

previous trials at AstraZeneca have indicated a fairly stable estimate of correlation between local 254 

evaluation and BICR around 0.7 .  In planning to apply the methodology described in this paper, the 255 

sample size can be calculated for an estimated value of the correlation ρ. While it is possible, in 256 

principle, to adjust the sample size in the light of observed data and an updated estimate of ρ, 257 

requesting additional central reviews could cause delays, making this approach impractical. A simpler 258 

option is to aim to err in the direction of under-estimating ρ then, as seen in Figure 2, if the true value of 259 

ρ is higher than this estimate, specificity will be higher than the design value. 260 
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Operating Characteristics by Simulated Retrospective Application to 261 

a Phase III Trial in First Line Metastatic Colorectal Cancer 262 

In this section, we demonstrate that when the proposed method is applied in practice, the observed 263 

sensitivity and specificity align closely with the theory presented in the previous sections. This is 264 

achieved by repeated simulation of sample BICR results for a large clinical trial dataset. 265 

 Study Background 266 

The proposed sample audit BICR approach was simulated by repeatedly applying it to data from a large 267 

randomised double blind study in first-line metastatic colorectal cancer (mCRC) with 1:1 randomisation 268 

in 1422 patients [14].  In this study, the duration of progression free survival for all patients was derived 269 

according to a local investigator evaluation (LE) and according to a supportive blinded independent 270 

central review (BICR). The primary results from analyses of the LE and BICR data are summarised in 271 

Table 1 and Table 2  below. 272 

Table 1 Local Evaluation of PFS in a study of mCRC 273 

Randomised 

Treatment Arm 
Number of Patients 

(Number of 

Progression Events) 

Hazard Ratio 95% Confidence 

Interval For Hazard 

Ratio 

Active Treatment 709 (471) 1.103 (0.97,1.25) 

Control Treatment 713 (453)   

 274 

Table 2 BICR Evaluation of PFS in a study of mCRC 275 

Randomised 

Treatment Arm 
Number of Patients 

(Number of 

Progression Events) 

Hazard Ratio 95% Confidence 

Interval for Hazard 

Ratio 

Active Treatment 709 (377) 1.041 (0.90, 1.20) 

Control Treatment 713  (377)   

 276 

 Demonstrating Sensitivity for a given Null Distribution 277 

In the full study data reported above, the value of 𝐻𝑅𝑅̂𝐹 is 𝐻𝑅̂𝐵𝐼𝐶𝑅,𝐹/𝐻𝑅̂𝐿,𝐹 = 0.944.  With both 278 

𝐻𝑅̂𝐵𝐼𝐶𝑅,𝐹  and 𝐻𝑅̂𝐿,𝐹  above 1, there is no evidence of a beneficial treatment effect. Since 𝐻𝑅𝑅̂𝐹 < 1, 279 

there is no indication of bias in the LE in favour of the active therapy. In order to use this example to 280 

demonstrate the theoretical properties introduced in the Methods section, we suppose that 𝐻𝑅𝑅𝑈 is set 281 

to be 0.944 ‒ even though a value greater than 1 would usually be specified. We, therefore, wish to test 282 

the null hypothesis 283 



𝐻0: 𝐻𝑅𝑅̂𝐹 ≥  0.944. 284 

This 𝐻0 is true for the given data set, so 𝐻0 should be accepted and a full sample audit initiated based on 285 

the BICR sample with probability 1 − 𝛼 = 0.9.  Our objective is to demonstrate that the conclusion that 286 

a full sample audit should be conducted arises with this probability in simulations of the proposed 287 

method. 288 

In each of 10000 simulations, we created a BICR sample dataset in the manner described in Figure 1. We 289 

first used a 30% sampling rate, so each sample contained 30% of patients with events and 30% of 290 

patients with censored events within each treatment arm. 291 

 292 

For 1000 of the simulated datasets, we created 100 bootstrap samples and used these to estimate the 293 

correlation 𝜌 between ln(𝐻𝑅̂𝐿𝐸) and ln(𝐻𝑅̂𝐵𝐼𝐶𝑅).  The median value obtained in the 1000 datasets was  294 

𝜌 = 0.66 and we have taken this as our overall estimate of 𝜌. Table 1 shows a total of 𝑛𝐿,𝐹 = 924 LE 295 

events and Table 2 a total of 𝑛𝐵,𝐹 = 754 BICR events, so 296 

 297 

𝑟 =  
𝑛𝐵,𝐹

𝑛𝐿,𝐹
=

754

924
= 0.816. 298 

 299 
We combined this value of  𝑟 with 𝑘 = 1 and 𝜌 = 0.66 to obtain 300 
 301 

𝐼𝐹  =  [𝑉𝑎𝑟(ln(𝐻𝑅𝑅̂𝐹) )]−1  =  
𝑘 𝑛𝐿,𝐹

(𝑘+1)2  
𝑟

( 1+𝑟−2𝜌√𝑟 )
= 302.271  302 

 303 
and  𝐼𝑆 = 0.3 ×  𝐼𝐹 = 90.681. 304 
 305 
We then carried out the following steps for each of the 10000 simulated BICR sample datasets. 306 
   307 

1) Calculate 𝐻𝑅̂𝐿,𝑆,  𝐻𝑅̂𝐵𝐼𝐶𝑅,𝑆   and, hence,  𝐻𝑅𝑅̂𝑆  for the BICR sample. 308 
 309 

2) Calculate 𝑍𝑆 = ln( 𝐻𝑅𝑅̂𝑆) √𝐼𝑠 and, following (2), reject  𝐻0: 𝐻𝑅𝑅̂𝐹 ≥  0.944 if 310 

 311 

𝑍𝑆  <   ln(0.944 ) √𝐼𝑆  − 𝛷−1(0.9)√
𝐼𝐹 − 𝐼𝑆

𝐼𝐹
 =  −1.624 = 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 312 

Out of 10000 simulated BICR samples, 8985 (89.9%) led to acceptance of 𝐻0, in close agreement with 313 

the theoretical sensitivity of 90%. The above exercise was repeated using sampling rates of 20%, 40% 314 

and 50%, with 10000 replicates in each case. Again, correlation was assumed to be 0.66 so 𝐼𝐹 remained 315 

the same but 𝐼𝑆 varied with the value of nsample. Table 3Table 3 shows the acceptance threshold for 316 

𝐻𝑅𝑅̂𝑆,  i.e., AT from equation (3), and the percentage of cases out of 10000 simulations in which 𝐻0 was 317 

accepted. All these estimates of sensitivity are close to 90%. 318 

Table 3 Acceptance Thresholds for 𝑯𝑹𝑹̂𝑺 and estimated sensitivity for tests of 𝑯𝒐: 𝑯𝑹𝑹̂𝑭 ≥ 𝟎. 𝟗𝟒𝟒 319 



% Sampling (Number 

of patients) 

Acceptance Threshold, 

AT, for sensitivity  0.9 

under 𝐻0 

Estimated sensitivity 

from 10000 

simulations 

20% (286) 0.814 89.8% 

30% (428) 0.843 89.8% 

40% (570) 0.862 90.2% 

50% (712) 0.877 89.6% 

 320 

The above results concern a single point in the distribution of 𝑍𝑆 . We can go further and compare the 321 

full distribution of the simulated values of 𝑍𝑆 against the theoretical density of 𝑍𝑆 given  𝐻𝑅𝑅̂𝐹 = 0.944  322 

or, equivalently, 𝑍𝐹 =  ln(𝐻𝑅𝑅̂𝐹) √𝐼𝐹 = ln(0.944) × √302.271 =  −1.002.  This conditional 323 

distribution of 𝑍𝑆 is given by (1) with  𝑍̃𝐹 =  −1.002,  𝐼𝐹 = 302.271 and, for 30% sampling, 𝐼𝑆 = 0.3 ×324 

 𝐼𝐹 = 90.681.  Figure 6 shows a smoothed kernel density estimate based on the simulated values of 𝑍𝑆 325 

for the case of 30% sampling plotted with the conditional density of 𝑍𝑆 | 𝑍𝐹 = −1.002  given by 326 

equation (1). The critical value 𝑍𝑆 =  −1.624, below which  𝐻0 is rejected, is indicated in the figure. 327 

Figure 6 also compares results in terms of  𝐻𝑅𝑅̂𝑆, showing the smoothed kernel density estimate based 328 

on simulated values of  𝐻𝑅𝑅̂𝑆 and the theoretical conditional density of  𝐻𝑅𝑅̂𝑆  given 𝐻𝑅𝑅̂𝐹 = 0.944. In 329 

this case the critical value for 𝐻𝑅𝑅̂𝑆, below which  𝐻0 is rejected, is  exp (
−1.624

√90.681
 ) = 0.843,  and this is 330 

also the value 𝐴𝑇 obtained from (3). The results in Figure 6 demonstrate excellent agreement between 331 

the distribution of the simulated data and the theoretical null distribution. 332 



  333 

Figure 6 Observed density of 𝒁𝑺 and 𝑯𝑹𝑹̂𝑺  (purple) versus density given  𝑯𝑹𝑹̂𝑭 = 𝟎. 𝟗𝟒𝟒  (red) 334 

Demonstrating Specificity for a given Null Distribution 335 

We now use the same example to confirm that the theoretically derived value for specificity is observed 336 

in practice. To this end, suppose it is desired to test 𝐻0: 𝐻𝑅𝑅̂𝐹 ≥  𝐻𝑅𝑅𝑈 = 1.25 with 𝛼 = 0.1. For the 337 

data set we are considering, 𝐻𝑅𝑅̂𝐹 = 0.944, and 𝐼𝐹 = 302.271. With 𝑘% sampling, 𝐼𝑆 = (
𝑘

100
) × 𝐼𝐹  338 

and equation (4) gives the specificity under  𝐻𝑅𝑅̂𝐹 = 0.944  as 339 

𝛷 [ (ln(1.25) −  ln (0.944)) √
𝐼𝑆𝐼𝐹

(𝐼𝐹−𝐼𝑆)
   −  𝛷−1(0.9) ] =  𝛷 [ ln(1.324) √

𝑘 × 302.271

(100−𝑘)
   −  𝛷−1(0.9) ]  (7)   340 

Table 4 compares the estimated specificity, based on 10000 simulated BICR samples, with the values 341 

given by (7) for 20%, 30%, 40% and 50% sampling. We see that in each case the estimated specificity is a 342 

little higher than the theoretical value. While the differences are greater than might be explained by the 343 

sampling error in 10000 replications, they are still small and do not give any serious cause for concern. 344 

Table 4 Acceptance Threshold for testing H0: HRR ≥ 1.25, Estimated Specificity based on 10000 Simulations and Theoretical 345 
Specificity from Equation (7) 346 



% Sampling 
(Number of patients) 

Acceptance Threshold 

AT for testing 
 Ho: 𝐻𝑅𝑅̂𝐹 ≥  1.25 

Estimated 

specificity from 

simulations 

Theoretical 

Specificity 

20% (286) 1.079 88.9% 87.7% 

30% (428) 1.117 97.8% 97.2% 

40% (570) 1.142 99.76% 99.66% 

50% (712) 1.161 100% 99.98% 

“Real life” Properties of the Method  347 

In the preceding calculations and simulations regarding sensitivity and specificity, we have used the full 348 

study information to define 𝑟 = 𝑛𝐵,𝐹/𝑛𝐿,𝐹, to compute 𝐼𝐹, and to find a bootstrap estimate of 𝜌. In 349 

practice, this complete information would not be known at the time of carrying out a sample BICR. 350 

Instead, we would use the information in the sample, directly calculating 𝐼𝑠 from the estimated 351 

variances of the log hazard ratios for the sample BICR and sample LE data returned by standard software 352 

packages and a separate bootstrap estimate of 𝜌 from each sample. 𝐼𝐹 could then be calculated as   353 

𝛾−1𝐼𝑠, where 𝛾 is the sampling fraction used.  354 

In order to assess the proposed procedure as it would be used in practice, we analysed the same sets of 355 

simulated samples from the previous section in this way. The percentages of simulations in which 𝐻0: 356 

𝐻𝑅𝑅̂𝐹 ≥  0.944  was not rejected are given in Table 5. 357 

Table 5 Estimated sensitivity for tests of 𝑯𝒐: 𝑯𝑹𝑹̂𝑭 ≥ 𝟎. 𝟗𝟒𝟒 when 𝑰𝑺, 𝑰𝑭 and 𝝆 are estimated from information in the 358 
sample data only 359 

% Sampling 
(Number of patients) 

Estimated Sensitivity 
from 10000 simulations 

20% (286) 92.23% 

30% (428) 92.15% 

40% (570) 92.23% 

50% (712) 91.72% 

 360 

The observed sensitivities are close to the intended value of 90% and perhaps slightly conservative, i.e., 361 

with an error rate under 𝐻0 below  𝛼 = 0.1. 362 

We have repeated the calculations of sensitivity and specificity in simulated sample data sets from a 363 

smaller study of 196 gliobastoma patients who were randomised in a ratio of 2 to 1 between 364 



experimental and control treatments. We found similarly agreement between theoretical and empirical 365 

properties of the proposed procedure, including the “real-life” case where values for 𝑟, 𝐼𝐹 and 𝜌 based 366 

on the sample data sets themselves. (See Appendices.) 367 

 Discussion: Practical Considerations and Potential Applications 368 

Methods 369 

We have presented a method whereby a sample of centrally reviewed cases can be used to decide if a 370 

full review of local assessments of progression free survival is needed. This method is simple to apply 371 

and effective in reducing the volume of BICR when the audit of a sample of patients supports use of the 372 

hazard ratio from local evaluation in determining the study conclusion. The method’s theoretical 373 

statistical properties have been confirmed in examples of historical data from Phase III trials of 374 

metastatic colorectal cancer and gliobastoma.  375 

In the proposed method, we define a null hypothesis under which the level of bias in local evaluations is 376 

unacceptable. If the audit sample leads to rejection of this null hypothesis, we conclude that local 377 

evaluations are sufficiently close to independent reviews (or biased against the experimental treatment) 378 

and a full BICR is unnecessary. The approach is in keeping with the idea that a full study BICR is 379 

appropriate unless there is evidence to demonstrate this is not necessary. 380 

If the audit sample triggers a full study BICR and the hazard ratio ratio observed in the full-study data 381 

indicates a difference between the LE and BICR estimates of hazard ratio, then both these estimates 382 

may be subject to bias. The LE sample may indicate progression that BICR does not confirm, while 383 

limited availability of post-progression scans causes informative censoring for the BICR estimate.  384 

Methods have been proposed for such a BICR situation, for example to include an event at the visit 385 

subsequent to the LE progression [16].  Another possibility in this situation could be a multiple 386 

imputation approach [17]. 387 

We have presented a situation with a single value of maximum acceptable HRR (1.25) to illustrate the 388 

proposed method.  In practical application, we propose that a graded approach be taken, such that the 389 

limit varies depending on the observed LE HR.  It would seem logical to have greater tolerance for 390 

possible bias (higher HRR, >1) in the presence of a strong treatment effect according to the LE HR, and 391 

smaller tolerance (lower HRR, closer to 1) in the case of a weaker LE treatment effect. A possible graded 392 

approach to satisfy this requirement would be to set the HRR threshold such that it preserves the 393 

majority of the observed LE HR. Table 6 for example, illustrates the HRR which would result from 394 

preserving 2/3rds of the observed full study LE HR for a range of LE hazard ratios.   Using this approach it 395 

is suggested the sample is designed to have sufficient specificity against the HRR that corresponds to the 396 

minimally clinically important LE HR. 397 

Table 6 Graded Approach to Choice of HRR Threshold 398 



Full Study Local Evaluation 

Hazard Ratio 
HRR Threshold to preserve 2/3rd 

of LE HR 

0.3 1.78 

0.5 1.33 

0.7 1.14 

0.9 1.04 

 399 

We have proposed using an alpha of 10% instead of the typical 2.5%.   Given the prior data consistently 400 

demonstrating the concordance in treatment effects estimated by the BICR and LE we feel this is 401 

appropriate in most situations.    402 

Application of the proposed method requires an initial estimate of the correlation between LE and BICR 403 

hazard ratio estimates. In principle, the correlation observed in the first part of an audit sample could be 404 

used to re-calculate the necessary sample size. However, for simplicity of application, it may well be 405 

preferable to adopt a conservative approach and assume a low value for the correlation, since this will 406 

lead to a specificity above the target value as long as the estimated correlation is below the true value.  407 

For studies with long durations, or known operational changes during conduct, a stratified approach 408 

could be followed (e.g., early/late, before/after) where correlations, and HRR estimates, are allowed to 409 

vary between levels of the stratification factor.  The BICR sample would select proportionately from 410 

each level, so that the overall HRR estimate is representative of the whole study.  Alternatively, if there 411 

was concern about the potential for bias in certain subgroups of patients, such as those with non-412 

measurable disease, these patients could be enriched in the sample.   In this case, the HRR in each 413 

subgroup would need re-weighting to provide an estimate of the HRR in the overall population. 414 

Practical Implementation 415 

The practical considerations for performing a BICR can be challenging.  To benefit most from the 416 

proposed approach, the study should be sufficiently large that an audit sample size can be chosen which 417 

is big enough to determine whether a full BICR is necessary, yet small enough that carrying out BICR only 418 

for this audit sample represents a worthwhile saving.  Our experience indicates that $1-$1.25m could be 419 

saved if 50% of a trial were sampled, with the costs for the process being equally split between 420 

collecting and reading the scans.   Plans should be in place to collect and store scans from all patients, 421 

with which there is an associated cost. 422 

There are two potential options for implementation. The sample BICR may be initiated prior to database 423 

lock to allow a rapid decision on whether full study review is required, so that such a review can be 424 

conducted without a major impact on reporting timelines.  However, the review process cannot be 425 

started too early since it must not have any impact on the study conduct.  The maximum acceptable HRR 426 

(graded by observed HR(LE)), the sample selection process, and a mechanism for collecting the 427 



appropriate scans promptly should all be prepared at the start of the trial.  One possibility is that an 428 

Independent Data Monitoring Committee, or other independent party, could be supplied, close to 429 

database lock, with the random scheme and PFS data for the LE and BICR in the sample.   They could 430 

then indicate to the sponsor whether the sample had been accepted without revealing either treatment 431 

effect. Alternatively, the decision to initiate the sample BICR could be taken after database lock and the 432 

primary LE analysis results are available to the sponsor. Clearly, if there is no significant treatment effect 433 

according to the LE, the sample BICR would not be required. 434 

If a sample were pre-specified at the trial design stage, a BICR could feasibly be conducted in real time.  435 

Real-time BICR results can be used for improving data quality, and ensuring independent verification 436 

prior to treatment crossover on progression if permitted, during a trial. However, our method identifies 437 

the need for a full BICR based on the observed treatment effect, and not, for example, on observed 438 

quality of data collected.  Assessing sample quality based on emerging treatment effect data is beyond 439 

the scope of this paper. 440 

 441 

Summary 442 

The possibility of requiring expert review of outcomes arises across a range of therapy area indications. 443 

Cardiovascular outcome trials often have evidence of stroke or myocardial infarction centrally reviewed 444 

by an independent cardiologist.  X-rays used to assess scale of bone deterioration in rheumatoid arthritis 445 

patients are also frequently independently reviewed. The proposed methodology has the potential for 446 

more general use. Indeed, its application is likely to be more straightforward when the primary outcome 447 

is measured at a single time point and issues of repeated assessment and possible informative censoring 448 

issue do not arise.  449 

In summary we propose a sampling method that is simple to implement and reliable that would enable 450 

conclusions about bias to be assessed at reduced cost.   451 

 452 
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Appendices 515 

 516 

Consistency in Bootstrap Correlation Estimate with Sample Size 517 

For each of 10000 samples generated for a given sample size (20% - 50% of the whole study [14]), 1000 518 

bootstrap samples were generated in order to estimate the correlation between ln(HRLE) and ln(HRBICR).  519 

The distribution of these correlation estimates is summarised in Table 7. This suggests that the statistical 520 

properties of the correlation estimates do not vary much with the % sampling of the whole study. 521 

Table 7 Summary of Bootstrap Correlation Estimates by size of BICR sample 522 

Sample 

BICR as % 

of total 

study 

 Summary of Correlation between HRLE and HRBICR 

Min 1st 

Quartile 

Median Mean 3rd 

Quartile 

Max 

20% 0.356 0.551 0.586 0.584 0.619 0.743 

30% 0.409 0.559 0.588 0.587 0.617 0.722 



40% 0.429 0.564 0.590 0.589 0.613 0.709 

50% 0.473 0.569 0.591 0.590 0.613 0.704 

 523 

Sensitivity of the method in a trial in Gliobastoma [17] 524 

 525 

Table 8 Local Evaluation of PFS in a study of glioblastoma 526 

Randomised 

Treatment Arm 
Number of Patients 

(Number of 

Progression Events) 

Hazard Ratio 95% Confidence 

Interval For Hazard 

Ratio 

Active Treatment 131 (107) 0.837 (0.59,1.18) 

Control Treatment 65 (47)   

 527 

Table 9 BICR Evaluation of PFS in a study of  glioblastoma 528 

Randomised 

Treatment Arm 
Number of Patients 

(Number of 

Progression Events) 

Hazard Ratio 95% Confidence 

Interval for Hazard 

Ratio 

Active Treatment 131 (109) 1.015 (0.71, 1.48) 

Control Treatment 65  (44)   

 529 

Study HRR = 1.212 530 

Theoretical sensitivity 531 

10000 simulations using 50% sampling were run (to ensure a reasonable number of progression events 532 

within BICR sample time to event analysis). NB/NLE = 153/154 was assumed as fixed for nB/nLE and 𝜌 was 533 

set to 0.67 (the mean and median correlation observed using the bootstrap approach in 1000 earlier 534 

BICR simulations). Figure 7 shows the close concordance between the distribution of the simulated 535 

sample BICRs and the expected distribution. Approximate 90% sensitivity is demonstrated in Table 9.  536 



  537 

 538 

Figure 7 Observed density of 𝒁𝑺 and 𝑯𝑹𝑹̂𝑺  (purple)  versus density given  𝑯𝑹𝑹̂𝑭 = 𝟏. 𝟐𝟏𝟐  (red) for the gliobastoma trial  539 
(50% sampling of 196 patients) 540 

 541 

Table 10 Acceptance Thresholds for 𝑯𝑹𝑹̂𝑺 and estimated sensitivity for tests of 𝑯𝒐: 𝑯𝑹𝑹̂𝑭 ≥ 𝟏. 𝟐𝟏𝟐 542 

 543 

% Sampling (Number 

of patients) 

Acceptance Threshold, 

AT, for sensitivity  0.9 

under 𝐻0 

Estimated sensitivity 

from 10000 

simulations 

50% (99) 1.015 88.8% 

  544 


