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Abstract

Purpose

To assess the validity of two accelerometer devices, at two different anatomical locations,

for the prediction of physical activity energy expenditure (PAEE) in manual wheelchair

users (MWUs).

Methods

Seventeen MWUs (36 ± 10 yrs, 72 ± 11 kg) completed ten activities; resting, folding clothes,

propulsion on a 1% gradient (3,4,5,6 and 7 km�hr-1) and propulsion at 4km�hr-1(with an addi-

tional 8% body mass, 2% and 3% gradient) on a motorised wheelchair treadmill. GT3X+

and GENEActiv accelerometers were worn on the right wrist (W) and upper arm (UA). Line-

ar regression analysis was conducted between outputs from each accelerometer and crite-

rion PAEE, measured using indirect calorimetry. Subsequent error statistics were

calculated for the derived regression equations for all four device/location combinations,

using a leave-one-out cross-validation analysis.

Results

Accelerometer outputs at each anatomical location were significantly (p < .01) associated
with PAEE (GT3X+-UA; r = 0.68 and GT3X+-W; r = 0.82. GENEActiv-UA; r = 0.87 and GEN-

EActiv-W; r = 0.88). Mean ± SD PAEE estimation errors for all activities combined were 15 ±

45%, 14 ± 50%, 3 ± 25% and 4 ± 26% for GT3X+-UA, GT3X+-W, GENEActiv-UA and GEN-

EActiv-W, respectively. Absolute PAEE estimation errors for devices varied, 19 to 66% for

GT3X+-UA, 17 to 122% for GT3X+-W, 15 to 26% for GENEActiv-UA and from 17.0 to 32%

for the GENEActiv-W.
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Conclusion

The results indicate that the GENEActiv device worn on either the upper arm or wrist pro-

vides the most valid prediction of PAEE in MWUs. Variation in error statistics between the

two devices is a result of inherent differences in internal components, on-board filtering pro-

cesses and outputs of each device.

Introduction
The positive contribution of regular physical activity (PA) to weight balance, metabolic regula-
tion and cardiovascular fitness is well documented and broadly accepted in the able-bodied
population [1]. Epidemiological studies concerning the impact of PA on health in wheelchair
users with a spinal cord injury (SCI) have been limited to assessing associations between sub-
jective reports of activities of daily living (ADL) [2] or leisure time physical activity (LTPA) [3]
and chronic disease risk factors. The assessment of these constructs in previous studies were
quantified via the Physical Activity Recall Assessment for people with a SCI [PARA-SCI; [4]],
which is administered via a telephone interview. This subjective PA assessment tool asks par-
ticipants to recall activities undertaken during the previous 3 days, which is a relatively short
monitoring period. The results, like other self-report measures, depend on the accuracy of the
participants’memory and recall [5]. Ullrich et al, [6] also suggested that the use of the PARA--
SCI might have limited application for other investigators besides the developers due to the ex-
clusion of subjective appraisals and the technical complexity of interview administration. To
date, despite the aforementioned limitations, quantifying free living PA among wheelchair
users has mostly been restricted to self-report measurements. As such there is a requirement to
develop unobtrusive objective measurement tools that can be easily used to characterise the as-
sociation between physical activity and metabolic health in this population.

The PA monitoring literature has evolved rapidly, particularly in able-bodied populations,
yet there is a paucity of research focussing on the use of activity monitors to predict physical ac-
tivity energy expenditure (PAEE) in certain populations, including manual wheelchair users
(MWUs). Broadly speaking, various devices used previously to determine PA in MWUs have
distinct limitations. For example despite being unobtrusive, a tri-axial accelerometer attached
to a wheelchair [7] is unable to distinguish between self or assisted propulsion and is also un-
able to quantify any activity out of the wheelchair, or during stationary arm crank ergometry
exercise. Monitors attached on the waist near the participants’ centre of mass, as advised by
manufacturers for use in able-bodied cohorts, have been shown to under-estimate energy ex-
penditure by 24% in MWUs [8]. Previous work by our research group [9] and others [10] has
indicated that the anatomical placement location is critical to accurately estimate PAEE. It is
perhaps not surprising due to restricted patterns of movement that a tri-axial accelerometer
worn on the wrist explains more of the variance in PAEE, resulting in the lowest random error
compared to the waist. The use of multi-sensor devices has mostly been limited to laboratory-
based validation of the SenseWear Armband (SWA). With the development of specific energy
expenditure (EE) prediction equations for MWUs [11] the SWA’s accuracy has been improved
somewhat. However, even when using these specific prediction equations, the SWA tended to
overestimate EE (27 to 43%) whereas a wrist-mounted accelerometer accurately predicted EE
(9 to 25%) during wheelchair propulsion [12]. Also a recent free-living study using doubly-la-
belled water demonstrated that the SWA was unable to detect variation in within-individual
EE during voluntary increases in physical activity in individuals with a SCI [13].
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The technological advancements in the field of PAEE assessment have stimulated the devel-
opment of sensitive tri-axial accelerometers, capable of storing higher resolution raw, unfiltered
acceleration signals, with increased memory capacity for capturing data over prolonged periods
of time [14]. Previous work validating objective PA monitoring tools in MWU’s have only re-
ported accelerometer outputs as arbitrary count values. The GENEActiv device gives raw accel-
eration values, reporting signal vector magnitude (SVM) in g-seconds (g�s-1). This device is not
subject to on-board manufacturer-defined band pass filters and hence does not demonstrate
the plateau phenomenon of the GT3X+ observed previously [9]. Furthermore, it remains to be
established whether fluctuations in criterion PAEE during wheelchair propulsion over differing
gradients or during load carriage can be detected by accelerometer outputs at the wrist. There-
fore, the aim of the present study was to assess the validity of two commonly used accelerome-
ter devices, at two different anatomical locations, for the prediction of PAEE in MWUs in a
controlled laboratory environment.

Methods
Ethics approval was granted by the University of Bath Research Ethics Approval Committee
for Health (REACH) and written informed consent was obtained from each participant. Seven-
teen (n = 17) male manual wheelchair users visited the Centre for DisAbility Sport and Health
(DASH) human physiology laboratory on one morning following an overnight fast. Ten of the
participants had complete paraplegia with lesion levels ranging from T1 to L4. Other condi-
tions responsible for use of a wheelchair included Spina Bifida (n = 3), Cerebral Palsy (n = 1)
and Scoliosis (n = 1). A bilateral lower limb amputee (n = 1), who was considered a regular
wheelchair user (>70% of locomotion manual wheelchair propulsion) and an able-bodied
wheelchair basketball player (n = 1) who was also familiar with wheelchair propulsion (> two
years) were also included in the analysis. Previous work from our research group demonstrated
that the inclusion of numerous disabilities had no measurable impact on the prediction of
PAEE in MWUs [9]. Other research has also included participants with various aetiologies re-
sponsible for wheelchair use when assessing methods to predict EE in this population [15]. If
anything, this approach provides a robust model for the assessment of PAEE in the broader
MWU population and the inclusion of a diverse range of participants is in accordance with
best practice recommendations for PA validation studies [16].

Time since injury (TSI) was self-reported based on when the medical condition was first di-
agnosed by a clinician. The mass of the wheelchair and participant was recorded in light cloth-
ing to the nearest decimal place using platform wheelchair scales (Detecto BRW1000,
Missouri, USA). The wheelchair, along with participants shoes were weighed separately and
subtracted from the total mass of the participant plus wheelchair to derive an accurate body
mass (kg) [17]. Waist and hip circumference (cm) were measured in duplicate, with partici-
pants lying flat on a hard physiotherapy bed, using a metallic tape measure (Lufkin, US). The
mean value was taken, and waist/ hip ratio calculated. Skinfold thickness (mm) at 4 upper
body sites (biceps, triceps, subscapular, suprailiac) were measured in duplicate using a set of
skinfold calipers (Holtain Ltd, Crymych, UK); the mean value was calculated. Resting metabol-
ic rate) (RMR; kcal�day-1) was measured in a semi-recumbent position in accordance with best
practice [18] using a TrueOne 2400 computerized metabolic system (ParvoMedics, Salt Lake
City, UT). Blood pressure (mmHg) was also measured using an automated blood pressure
monitor (Boso Medicus Prestige, Bosch + Sohn, Germany) in a semi-recumbent positions fol-
lowing RMR. Three readings were taken and the mean value was calculated.
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Activity Protocol
Following the measurement of RMR and anthropometric assessment, participants performed
an activity protocol, which consisted of wheelchair propulsion and a folding clothes task, repre-
sentative of an activity of daily living. Participants continuously untangled t-shirts placed on a
desk, then neatly folded and stacked them. Wheelchair propulsion took place on a wheelchair
adapted treadmill with necessary safety features and stabilising arm (HP Cosmos Saturn 250/
100r, HaB International Ltd, UK). A counterbalanced approach for randomly assigning the
order of activities was not utilised in this study based on observations from previous work [9].
Even with five minutes of recovery in between activities, a considerable carryover effect in oxy-
gen uptake (V̇O2) and heart rate (HR) was observed. Therefore, each activity was assigned in
order of intensity and lasted for six minutes interspersed with four minute recovery periods.
Wheelchair propulsion on the adapted treadmill included eight trials 3 km�hr-1, 4 km�hr-1, 5
km�hr-1, 6 km�hr-1 & 7 km�hr-1 on a 1% gradient. Following a ten minute rest, participants pro-
pelled at 4 km�hr-1 on a 1% gradient with 8% of body mass added to the chair in a rucksack and
4 km�hr-1 on a 2% and 3% gradient.

Instrumentation and assessment of energy expenditure
The GT3X+ activity monitor (Actigraph, Pensacola, FL, USA) records time-varying accelera-
tions within the dynamic range of ± 6 g, and contains a solid state tri-axial accelerometer. The
GT3X+ activity monitor is compact (dimensions: 4.6 cm x 3.3 cm x 1.9 cm), lightweight (19
grams), and can easily be worn at multiple locations on the body. To quantify the amount and
frequency of human movement, accelerometer outputs are digitized via a twelve-bit analog to
digital converter (A/DC) and passed through Actigraph’s proprietary digital filtering algo-
rithms. In order to eliminate any acceleration noise outside of the normal human activity fre-
quency, digitized signals pass through low (0.25 Hz) and high (2.5 Hz) band width filters [19].
‘Physical activity counts’ (PAC) are calculated through summing the change in raw accelera-
tion values measured during a specific interval of time, or ‘epoch’. The GENEActiv tri-axial de-
vice (GENEActiv, Activinsights, Cambridge, UK) contains a ± 8 g seismic accelerometer and is
also compact (dimensions: 4.3 cm x 4.0 cm x 1.3 cm) and lightweight (16 grams). This device
has been explained in detail elsewhere [20]. Both devices were initialised with a sampling fre-
quency of 30 Hz.

Throughout the activity protocol two GT3X+ units were worn, one on the right wrist (W,
using a Velcro wrist strap positioned over the dorsal aspect of the wrist midway between the ra-
dial and ulnar Styloid processes) and one on the right upper arm (UA, using a small elastic belt
positioned on the lateral surface of the arm midway between the acromion process and lateral
epicondyle of the humerus). Two GENEActiv accelerometers were also worn; one distal to the
GT3X+ on the right W and one on the posterior aspect of the midpoint on the right UA, se-
curely fixed to the skin over the triceps brachii using a 10 cm2 patch of tape (Hyperfix self-ad-
hesive dressing retention tape, Smith & Nephew Healthcare Ltd., UK). The GENEActiv and
GT3X+ devices were both initialised with a sampling frequency of 30Hz.

Continuous gas exchange measurements were collected during each activity, using a
TrueOne 2400 computerized metabolic system,calibrated according to manufacturer’s instruc-
tions prior to use. Fractions of oxygen and carbon dioxide were measured via a paramagnetic
oxygen analyser and an infrared, single beam, single wave-length carbon dioxide analyser, re-
spectively. Metabolic data was retrieved and analysed using associated software (TrueOne met-
abolic software, Salt Lake City, UT). V̇O2 and carbon dioxide production (V̇CO2) were used to
estimate EE (kcal.min-1) of each activity, using indirect calorimetry. A Polar Team HR monitor
(Polar Electro Inc., Lake Success, NY, USA) was also worn during each activity. Accelerometer
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outputs and physiological variables for each task and each participant can be found in the sup-
porting information file (S1 Dataset). Peak oxygen uptake (V̇O2 peak) was determined at the
end of the activity protocol using a continuous, progressive intensity test with three minute ex-
ercise stages until the point of volitional exhaustion. This was conducted using an electrically
braked arm crank ergometer (Lode Angio, Groningen, Netherlands) using a prescribed crank
rate of 70 rev�min-1.

Statistical Analyses
An a priori power calculation revealed a sample size of fifteen was necessary in order to detect
a correlation coefficient (r) of 0.67 using a one-tailed test with an α = 0.05 and power = 0.95.
This calculation was based on activity count (counts�s-1) from a Computer Science and Appli-
cations (CSA) accelerometer and V̇O2 data during a protocol which included three wheelchair
propulsion velocities [21]. Activity monitors were synchronised prior to use. Breath-by-breath
data was exported into Microsoft Excel from the TrueOne metabolic software and averaged
over the final two minutes of each activity. Assuming that dietary-induced thermogenesis was
negligible (participants came into the laboratory following a 10-hr overnight fast) resting meta-
bolic rate (kcal�min-1) was subtracted from total energy expenditure (TEE) measured by the
TrueOne 2400 computerized metabolic system to generate PAEE for each activity. Compari-
sons between the ‘criterion’measurement of PAEE [TEE—RMR] and activity monitors were
made between the final two minutes of each activity.

Data Modelling. GT3X+ and GENEActiv units were downloaded using ActiLife software
(Actigraph, Pensacola, FL, USA) and GENEActiv PC software (version 1.2.1, Activinsights,
Cambridge, UK), respectively. Data was exported to Microsoft Excel in a time and date
stamped comma-separated value (c.s.v.) file format. Physical activity counts (counts�min-1)
from the GT3X+ and Signal vector magnitude (SVMgs) data from the GENEActiv were sum-
mated into 60-s epochs. Activity counts (counts�min-1) from the GT3X+ and raw acceleration
values (g�min-1) from the GENEActiv were then averaged over the final two minutes of each
activity. Physical activity energy expenditure prediction models were developed using corre-
sponding data from each task for each device at each location, using linear regression analysis.
The dependent variable was PAEE (kcal�min-1) during the final two minutes of each task (that
is, 171 values in total). The independent variables included accelerometer outputs, i.e.
counts�min-1 and SVMg.min-1 for the GT3X+ and GENEActiv, respectively. Pearson product
moment correlation coefficients (r) and coefficients of determination (R2) statistics were con-
ducted to assess the association between the criterion PAEE and outputs from each device at
each location. Standard Error of the Estimate (SEE) was also calculated for each correlation.

Error statistics. When the development and evaluation of predictive models are con-
ducted on the same participants, subsequent evaluation statistics tend to be biased and are
often overly optimistic [22]. Hence, there is a need to cross-validate generated prediction equa-
tions using an independent sample; this can be achieved by using a ‘split sample’ approach
whereby half of the participants are used for developing the models and half for cross-valida-
tion. However, it is not always feasible to utilise this ‘split sample’ approach when sample sizes
are small, a common occurrence when working with disabled populations due to challenges
with participant identification and recruitment [23]. This problem was overcome by develop-
ing the estimation algorithm on all but one of the participants and then evaluating it on the
‘held-out’ participant by calculating the PAEE prediction error. This process was repeated
where each participant acted as the held-out participant and the mean of all the error evalua-
tions were calculated. This procedure is a ‘leave-one-out cross validation’ described in more de-
tail elsewhere [24].
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The comparison statistics involved calculating the mean absolute error (MAE) and mean
signed error (MSE) for each activity, the later will be displayed graphically using modified
Bland and Altman plots. Considering it is likely the absolute error of estimation will increase
with exercise intensity [22], error of estimate data will also be presented as a percentage. A
two-way mixed model ANOVA was performed on the raw data to determine differences be-
tween criterion PAEE and predicted PAEE. Where a significant interaction effect was observed,
a Ryan-Holm-Bonferroni Stepwise Adjustment was applied to post hoc tests where multiple
comparisons were considered. This was to identify the specific activities in which there were
significant differences between the criterion and predicted PAEE. Statistical significance was
set at a priori of α< 0.05. All analyses were performed using IBM SPSS Statistics 20 for Win-
dows (IBM, Armonk, NY, USA).

Results
Demographic and anthropometric characteristics of the participants are described in Table 1.
Criterion PAEE (kcal�min-1) and accelerometer outputs at each anatomical location are dis-
played in Table 2. Four [SCI (T1 and T2); n = 2 Cerebral Palsy; n = 1 and Scoliosis; n = 1] and
two participants (T1 and Cerebral Palsy) were unable to complete the 7km�hr-1 propulsion
speed and 4km�hr-1 (3% gradient) tasks, respectively. PAEE, HR and rating of perceived exer-
tion (RPE) increased with increasing velocity of wheelchair propulsion and during steeper gra-
dients. Calculated metabolic equivalents (METs) from dividing V̇O2 for each activity by
individual V̇O2 determined at rest, suggests that all the propulsion trials besides 3km�hr-1were
on average considered as moderate-intensity activities, whereas folding clothes and propulsion
at 3km�hr-1 were light-intensity activities.

Data Modelling
The associations between criterion PAEE measured by the TrueOne 2400 computerized meta-
bolic system and predicted PAEE derived from accelerometer outputs from each device are
presented as scatter plots in Fig 1. Physical activity counts from the GT3X+ were significantly
(P< 0.01) associated with PAEE (UA; r = 0.68, W; r = 0.82), as were raw acceleration outputs
from the GENEActiv (UA; r = 0.87, W; r = 0.88). The SEE for the correlations were 1.16 and
0.91 kcal�min-1 for the GT3X+ worn at the UA and W, 0.77 and 0.75 kcal�min-1 for the GEN-
EActiv worn at the UA andW. The linear regression equations using activity counts from the

Table 1. Demographic and anthropometric characteristics of the participants.

Variable Mean ± SD Range (lowest—highest)

Age (years) 36 ± 10 19–50

Body mass (kg) 71.6 ± 10.6 53.4–87.5

Time since injury (years) 15 ± 14 2–50

Total skinfold from 4 sites (mm) 48.5 ± 20.3 24.6–110.9

Waist-hip ratio 1.0 ± 0.1 0.8–1.1

Blood pressure (mmHg)

Systolic 133 ± 18 108–174

Diastolic 84 ± 16 62–116

RMR (kcal�day-1) 1571 ± 254 1201–2152

V̇O2 peak (ml�kg-1�min-1) 27.0 ± 8.0 16.7–41.1

Note: Able-bodied participant was not included in Time since injury

doi:10.1371/journal.pone.0126086.t001
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GT3X+ (Eq 1 and 2) and raw acceleration outputs from the GENEActiv (Eq 3 and 4) for each
location are shown beneath.

PAEEUA ¼ ð0:000372 � Physical activity counts �min�1Þ þ 0:291708 ð1Þ

PAEEW ¼ ð0:000245 � Physical activity counts �min�1Þ þ 0:132379 ð2Þ

PAEEUA ¼ ð0:006260 � SVM g �min�1Þ þ 0:139778 ð3Þ

PAEEW ¼ ð0:003210 � SVM g �min�1Þ þ 0:392209 ð4Þ

Error Statistics
Modified Bland and Altman plots illustrate overall percentage error of estimate [± 95% limits
of agreement (LoA)] between criterion PAEE and predicted PAEE derived from the developed
linear regressions; 15 ± 87%, 14 ± 97%, 3 ± 49% and 4 ± 50% for the GT3X+-UA, GT3X+-W,
GENEActiv-UA and GENEActiv-W, respectively (Fig 2). The GT3X+-W significantly
(P< 0.05) over-predicted propulsion at 3km�hr-1 (mean ± SD; 25 ± 27%), as does the GT3X
+-UA (62 ± 48%) and GENEActiv-UA (20 ± 22%). Both the GT3X+-W (-23 ± 24%) and GEN-
EActiv-W (-20 ± 24%) significantly under-predicted PAEE during propulsion at 4km�hr-1 on a
3% gradient. The GT3X+-UA, GT3X+-W and GENEActiv-W over-predicted PAEE during a
simulated folding clothes task by 64 ± 50%, 122 ± 51% and 29 ± 26%, respectively, whereas the
GENEActiv-UA significantly under-predicted PAEE (-14 ± 18%). All monitors significantly
over-predicted PAEE during rest by 0.31, 0.16, 0.32 and 0.54 kcal�min-1 for the GT3X+-UA,
GT3X+-W, GENEActiv-UA and GENEActiv-W, respectively.

Table 3 shows the MAE and mean absolute percentage difference between the criterion and
estimated PAEE. Absolute PAEE estimation errors varied from 19 to 66% for the GT3X+-UA,
17 to 122% for the GT3X+-W, 15 to 26% for the GENEActiv-UA and 17 to 32% for the

Table 2. Measured PAEE, accelerometer outputs at each anatomical location, calculated METs, heart rate, RPE and number of participants per
trial for each activity (mean ± SD).

Activity Measured PAEE
(Kcal�min-1)

Physical activity
counts�min-1

SVM (g�min-1) MET
(calculated)

Heart rate
(b�min-1)

RPE n

GT3X+-UA GT3X+-W GENEActiv-
UA

GENEActiv-
W

Resting 0.0 ± 0.0 46 ± 57 119 ± 151 30 ± 16 46 ± 24 1.0 ± 0.0 65 ± 12 - 17

Folding clothes 1.1 ± 0.2 3843 ± 1235 8905 ± 1885 121 ± 22 296 ± 66 2.0 ± 0.3 85 ± 15 8 ± 2 17

3 km�hr-1 1.9 ± 0.4 7008 ± 1751 8806 ± 1973 330 ± 78 529 ± 125 2.7 ± 0.4 90 ± 13 9 ± 2 17

4 km�hr-1 2.4 ± 0.6 7056 ± 1761 10283 ± 2569 421 ± 110 708 ± 220 3.2 ± 0.6 97 ± 20 10 ± 3 17

5 km�hr-1 3.1 ± 1.0 7100 ± 1405 12066 ± 4382 492 ± 127 898 ± 353 3.8 ± 0.8 114 ± 23 12 ± 3 17

6 km�hr-1 4.2 ± 1.7 7615 ± 1422 14918 ± 5500 618 ± 154 1170 ± 491 4.7 ± 1.2 130 ± 33 14 ± 3 17

7 km�hr-1 4.7 ± 0.9 8602 ± 1898 16367 ± 5492 701 ± 151 1244 ± 355 5.1 ± 0.8 136 ± 26 14 ± 3 13

4 km�hr-1 (+ 8% of
body mass)

2.5 ± 0.7 7151 ± 2091 10193 ± 2718 397 ± 106 667 ± 240 3.4 ± 0.6 111 ± 20 10 ± 3 17

4 km�hr-1 (2%
gradient)

3.2 ± 0.8 7477 ± 1891 10934 ± 3503 455 ± 109 760 ± 276 3.9 ± 0.7 119 ± 24 12 ± 3 17

4 km�hr-1 (3%
gradient)

4.0 ± 0.9 7852 ± 1785 11439 ± 2686 512 ± 121 830 ± 223 4.6 ± 0.9 128 ± 22 13 ± 4 15

doi:10.1371/journal.pone.0126086.t002
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GENEActiv-W. The aetiology responsible for wheelchair use was evaluated to see if it impacted
on the fit of the model during our leave-one-out analysis. No trend with regards to increased
mean absolute error for various aetiologies was observed. There was no relationship between
wheelchair experience, TSI was used as a surrogate for this, and error. Furthermore, looking
specifically at participants with paraplegia, there was no relationship between level of SCI le-
sion (indicative of function) and magnitude of error.

Discussion
Of the two accelerometers considered in this study, these data indicate that the GENEActiv de-
vice worn on either the upper arm or wrist provided the most valid (mean percentage error 3 &
4% for the upper arm and wrist, respectively) prediction of PAEE. For the GT3X+ the most ap-
propriate anatomical location was on the wrist. There was a negligible difference in the strength
of associations and error statistics for the GENEActiv device worn on the upper arm or wrist.
Seemingly, incorporating raw acceleration signals as opposed to ‘arbitrary’ physical activity
counts into linear regression models for the prediction of PAEE offered an improvement in the
error of estimation for PAEE in MWUs (Fig 2; Table 3).

Fig 1. Scatterplots showing the relationship between predicted PAEE for the GT3X+-UA (a), GT3X+-W (b), GENEA-UA (c) and GENEA-W (d). The
straight line represents the models best fit, and the dotted line indicates the line of identity.

doi:10.1371/journal.pone.0126086.g001
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Considering physical inactivity has been associated with a cluster of metabolic abnormalities
[25], it is surprising that relatively few studies have attempted to investigate the use of move-
ment sensors in a population where self-report measures suggest that PA is substantially re-
duced. Despite employing some complex statistical modelling methods, previous studies have
tended to use arbitrary ‘count’ values in the prediction of EE [21; 10] and also adopted a small
selection of activities in their validation protocol [8; 26; 27]. The current study aimed to im-
prove our understanding of accelerometer outputs and the prediction of PAEE in MWUs by
incorporating raw acceleration values into linear regression models. Furthermore, participants

Fig 2. Modified Bland and Altman plots displaying error of estimated PAEE expressed as a
percentage for GT3X+-UA (a), GT3X+-W (b), GENEA-UA (c) and GENEA-W (d) for each activity. The
solid line indicates overall percentage error of estimate. The dotted lines indicate the upper and lower 95%
LoA. † Indicates significant difference (P� 0.05) from the criterion PAEE.

doi:10.1371/journal.pone.0126086.g002

Table 3. Mean absolute error (MAE; kcal�min-1) and Mean absolute percentage error of predicted PAEE using generated linear regression equa-
tions for eachmonitor at each location.

Activity MAE (kcal�min-1) Mean absolute percentage error (%)

GT3X+-UA GT3X+-W GENEActiv-
UA

GENEAcitv-
W

GT3X+-UA GT3X+-W GENEActiv-
UA

GENEAcitv-
W

Resting 0.31 ± 0.05 0.16 ± 0.07 0.32 ± 0.11 0.54 ± 0.08 - - - -

Folding clothes 0.66 ± 0.41 1.24 ± 0.46 0.21 ± 0.17 0.32 ± 0.19 63.7 ± 41.0 122.0 ± 51.3 18.9 ± 12.2 32.1 ± 22.0

3 km�hr-1 1.15 ± 0.65 0.48 ± 0.33 0.46 ± 0.27 0.34 ± 0.22 66.1 ± 41.6 28.0 ± 23.7 25.8 ± 14.7 19.1 ± 14.2

4 km�hr-1 0.86 ± 0.57 0.42 ± 0.24 0.52 ± 0.45 0.42 ± 0.29 35.9 ± 24.7 18.4 ± 12.3 21.9 ± 18.3 17.9 ± 13.5

5 km�hr-1 0.67 ± 0.84 0.54 ± 0.43 0.61 ± 0.42 0.60 ± 0.42 19.3 ± 16.6 17.1 ± 12.9 18.9 ± 11.3 18.8 ± 12.2

6 km�hr-1 1.14 ± 1.53 0.90 ± 0.81 0.87 ± 1.02 0.74 ± 0.75 21.7 ± 18.1 19.7 ± 14.1 17.3 ± 15.0 17.5 ± 14.4

7 km�hr-1 1.13 ± 0.72 0.92 ± 0.84 0.73 ± 0.51 0.79 ± 0.67 23.6 ± 13.0 18.7 ± 16.0 15.2 ± 9.7 16.5 ± 12.8

4 km�hr-1 (+ 8% of body
mass)

0.96 ± 0.61 0.52 ± 0.31 0.59 ± 0.33 0.55 ± 0.31 38.0 ± 22.9 21.5 ± 14.5 24.1 ± 14.0 22.6 ± 12.9

4 km�hr-1 (2% gradient) 0.81 ± 0.83 0.64 ± 0.51 0.56 ± 0.56 0.54 ± 0.46 22.9 ± 17.7 19.9 ± 13.1 16.6 ± 15.4 16.7 ± 12.2

4 km�hr-1 (3% gradient) 0.95 ± 0.96 1.19 ± 0.95 1.01 ± 0.80 1.16 ± 0.81 21.4 ± 16.5 28.0 ± 18.0 24.3 ± 14.8 27.6 ± 14.5

All activities 0.86 ± 0.82 0.69 ± 0.63 0.58 ± 0.56 0.59 ± 0.51 35.3 ± 30.8 33.0 ± 39.5 20.4 ± 14.3 21.0 ± 15.1

doi:10.1371/journal.pone.0126086.t003
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performed a comprehensive wheelchair propulsion protocol which consisted of various veloci-
ties and gradients whereby the validity of these devices were assessed.

Previous research has provided encouragement for the wrist as the preferred anatomical lo-
cation for previous generations of Actigraph accelerometers to predict V̇O2, explaining 44%
[21] and 74% [10] of the variability in V̇O2, respectively. Off-the-shelf activity monitors incor-
porating manufacturer’s proprietary equations are unable to accurately predict EE in MWUs
[27; 26]. As such, validation studies in this area have attempted to develop new predictive mod-
els. Washburn and Copay [21] generated a simple linear equation using counts�min-1 from the
uniaxial CSA accelerometer over three propulsion velocities. Improvements in this prediction
can be seen in the Garcia-Masso et al, [10] study, which used the GT3X tri-axial device and the
acquisition of 1-s epochs to permit a feature extraction process which was incorporated into
more complex multiple linear modelling (MLM). Previous work by our research group has
demonstrated associations of r = 0.93 and r = 0.87 between counts�min-1 from the newest gen-
eration GT3X+ worn at the wrist and upper arm and PAEE during outdoor wheelchair propul-
sion [9]. One of the strengths of the present study was the controlled laboratory protocol
adopted, being more comprehensive, including five extra activities, smaller increments in ve-
locity (1km�hr-1 compared to 2km�hr-1) and various treadmill gradients. Consequently, weaker
associations were observed between physical activity counts with criterion PAEE at the wrist
and upper arm of r = 0.82 vs. r = 0.68. However, correlations between raw acceleration values
expressed as SVM in g�minute-1 from the GENEActiv and criterion PAEE were similar to our
previous field-based observations, at r = 0.88 and r = 0.87 for the wrist and upper arm, respec-
tively. The GENEActiv-W has previously demonstrated excellent validity in able-bodied popu-
lations, displaying similar correlations to ours during a series of semi-structured laboratory
and free living activities (left wrist vs. V̇O2, r = 0.86) [20].

Another strength of this present study was the comparison of two widely used accelerome-
try-based technologies to quantify PAEE. Specifically, by holding the anatomical location con-
stant, variations in the strength of the relationships and error of estimate are inherent to the
differences in the internal components, on-board filtering processes and outputs of each device
[28]. To discard noise or movement artefacts unlikely to be representative of ‘human move-
ment’, the GT3X+ has upper and lower bandwidth filters of 0.25 and 2.5Hz. These filters were
designed for ambulation, based on the premise that acceleration frequencies arising from most
human activities at the hip usually fall between this range. Bailey et al, [29] demonstrated that
processed activity counts from a GT3X+ worn on the wrist are capable of distinguishing be-
tween tasks where upper extremities were used more intensively (e.g folding towels) than less
intensively (e.g. writing). Whilst this protocol consisted of a comprehensive selection of upper
extremity ADLs, no comparison was made to a PAEE criterion measurement, preventing the
assessment of PAEE error. It is possible that these aforementioned filters are not suitable to
capture movements at the wrist of MWUs, particularly during low-frequency ADLs as indicat-
ed by the sizeable over-estimation of 122% during the folding clothes task. However, excluding
the folding clothes task from the analysis reduced the mean percentage error of estimate for the
GT3X+-W to 0.4% during wheelchair propulsion at various speeds and gradients. Outputs
from the GENEActiv are raw acceleration signals per unit time or epoch and are not subject to
a tight bandwidth filter which may influence the prediction of PAEE at the wrist during certain
activities. Whilst the GT3X+, and other commercially available monitors have the capability to
report raw acceleration, the most common and easily accessible outputs from these devices are
counts, which are influenced by the amplitude and frequency of acceleration. Physical activity
counts have been shown to vary across devices and even within generations of the same type of
device [30]. It is possible that the band-pass filtering and reporting of accelerometer outputs
using ‘arbitrary’ units, which lack physical meaning, may be responsible for the differences in
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the error of estimation between the two devices (Fig 2; Table 3). As processing of raw data
from the GT3X+ and other devices becomes available as standard then researchers can start to
adopt an end-user practitioner approach to assessing the application and efficacy of these de-
vices in the future.

Another explanation for the differences in associations for the two devices at the upper arm
could be due to slight variations in their anatomical positioning and method of affixation. The
GT3X+-UA worked loose during two trials, although these data were removed from subse-
quent analyses. It is possible that the secure attachment of the GENEActiv-UA provided by the
medical tape minimised any movement inherent with the elastic belt of the GT3X+-UA. Whilst
predictive models for the GENEActiv at the upper arm and wrist offer negligible bias in error
prediction statistics and both under/over-predicted PAEE during three activities, the feasibility
of attaching the GENEActiv to the upper arm during free living might be limited. Whereas the
device worn on the wrist has a constant position, securely attached over the Styloid processes
of the radius and ulna (worn like a watch). From a practical perspective, the GENEActiv worn
on the wrist would be the preferred device/location for the accurate prediction of PAEE in
MWUs. Accelerometers worn on the wrist are well tolerated and unobtrusive in this popula-
tion and intuitively should not interfere with regular PA levels during free-living monitoring.

Considering the validity of an accelerometer based solely on the strength of its association
to a criterion measure should be avoided as it does not indicate the agreement between the two
variables [31]. Correlations are also dependent on the range of true quantity in the sample, see-
ing as our protocol had a wide selection of wheelchair propulsion velocities and gradients it is
perhaps not surprising that this current study reported strong associations. A recent review on
statistical considerations in the analysis of accelerometer data [22] advocated that it is useful
for researchers to report measurement error. Mean percentage error of estimate (±SD) for the
GT3X+-UA and GT3X+-W was 15 ± 45% and 14 ± 50%, compared to 3 ± 25% and 4 ± 26%
for GENEActiv-UA and GENEActiv-W, respectively. Whilst our generated linear regression
models for the GENEActiv demonstrated a relatively small bias, looking at MSE can be mis-
leading as it is likely that under and over-estimations from different tasks cancel each
other out.

An alternative is to look at mean absolute percentage error. Mean absolute percentage error
ranged from 19–66%, 17–122%, 15–26% and 17–32% for the GT3X+-UA, GT3X+-W, GEN-
EActiv-UA and GENEActiv-W, respectively. Previous research [27] attempted to develop new
prediction models, using general and activity specific equations for an RT3 tri-axial accelerom-
eter worn on the arm. The authors generated MLM’s using a training group of 19 participants
and evaluated their performance on a smaller validation group (n = 4). The range of mean ab-
solute percentage error using the general equation was 14–114% during an activity protocol
that involved propulsion on a dynamometer, tiled floor and arm-ergometer exercise. This was
similar to that of the GT3X+-W (17–122%). When looking solely at wheelchair propulsion,
resting and deskwork using the activity specific equations, the mean absolute percentage error
was reduced to 26% [27], which is slightly larger than the 20% and 21% for the GENEActiv
upper arm and wrist for all activities included in our protocol.

The GT3X+-UA, GT3X+-W, GENEActiv-UA and GENEA-Wmonitors significantly over-
predicted PAEE during rest by 0.31, 0.16, 0.32 and 0.54 kcal�min-1, respectively. This might
have implications with the accurate prediction of PAEE during free-living. Garcia-Masso et al,
[10] observed a significant over-prediction of estimated V̇O2 using a MLM from a device worn
at the wrist during a lying down activity. Both monitors at the wrist also significantly over-esti-
mate PAEE for the folding clothes activity. Nevertheless over-estimation of PAEE for light-in-
tensity activities [32] or the inability to accurately describe the association between activity
counts and the metabolic cost of certain lifestyle related activities [33] is a common observation
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when using accelerometers in the able-bodied physical activity monitoring literature. Even
considering these limitations accelerometers are still widely used during cross-sectional and
epidemiological physical activity research in ambulatory populations, observing similar issues
in predicting PAEE when worn at the wrist in MWUs should not discourage their use in this
population. Especially if there accuracy is better than current methods used to quantify PA in
these cohorts. The relationships between raw acceleration at the upper arm and wrist (r = 0.87,
r = 0.88) and criterion PAEE is better than the correlation between PARA-SCI scores and indi-
rect calorimetry (r = 0.79) [4]. The authors found that this relationship was reduced and non-
significant for low intensity activities (r = 0.27) and consequently the PARA-SCI scores under-
reported the amount of time spent doing activities of low intensity by 10%. This self-report
measure was instrumental in informing the most recent physical activity guidelines for adults
with a chronic SCI [34]. The conversion of these scores using METS to predict EE would lead
to a slight under-estimation. This is in contrast to our results and others [10], that accelerome-
ters over-estimate PAEE for light intensity activities. It is of concern that error with monitoring
sedentary behaviours may be exacerbated in a population whereby sedentary time may be ele-
vated. One limitation of this study is that only one ADL was incorporated into the protocol
whereby PAEE could be misclassified by the devices. Considering that 6–8 hrs of the day is
spent in occupational tasks future work should incorporate more of these work-day tasks into
laboratory validation protocols.

Limitations of accelerometers in the able-bodied literature are that outputs do not always re-
flect PAEE during walking on a slope [35] or during load carriage [36]. To the best of our
knowledge, there is only one previous study looking at the validity of an activity monitor
(SWA) in quantifying EE during wheelchair propulsion over differing gradients [37]. It is clear
that proprietary algorithms used by the SWA over-estimate metabolic rate (MAE range; 24–
126%) [26], but this overestimation and variability increased more when gradient was elevated,
than when speed was increased [37]. This present study is the first to assess whether similar ac-
celeration profiles with differing energy costs, such as changing gradient or load carriage, can
be captured by new prediction models for tri-axial accelerometers in MWUs. There is a trend
for all monitors to under-predict PAEE during propulsion on increasing gradients, and the
GT3X+-W and GENEA-W significantly underestimated (-23 and -20%) PAEE during propul-
sion at 4km�hr-1 on a 3% gradient. Devices worn on the upper arm did not underestimate by
the same magnitude as devices worn on the wrist during propulsion on differing gradients. It is
possible that propulsion technique was modified, perhaps via an increase in flexion and exten-
sion of the shoulder to cope with the demands of uphill propulsion. Changes in propulsion pat-
terns between conditions could be monitored using expensive motion analysis systems in
future research studies.

Physical activity energy expenditure was not significantly different when an additional 8%
of participant body mass was added to the chair during wheelchair propulsion at 4km�hr-1
(2.5 ± 0.7 vs. 2.4 ± 0.6 kcal�min-1). Sagawa et al., [38] noticed no significant effect of a 5 kg addi-
tional mass on EE or HR. It is plausible that a load attached to the wheelchair has a minimal
impact on EE during propulsion on the flat unlike load carriage during ambulation. This may
be because an 8% load is spread evenly across the axial and weight is supported in the vertical
axis unlike walking. Importantly the MAE (Table 3) is not significantly different between pro-
pulsion at 4km�hr-1 and when an additional 8% of body mass is added for all monitors. Fur-
thermore, each device displays relatively negligible biases during propulsion with
additional weight.

The strengths of the present study are that RMR was accounted for and a comprehensive
evaluation of two commonly used accelerometers, using a robust treadmill protocol with a vari-
ety of velocities and gradients was conducted. Previous studies have not controlled for RMR,
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which varies substantially between individuals with SCI, depending on level and completeness
of lesion [39]. Previous validation work has often randomised the task order. With limited re-
covery time in between tasks it is therefore not always possible to exclude a carryover effect as a
confounding variable, particularly when lower intensity activities follow higher intensity tasks.
To avoid this, tasks were assigned in order of intensity as a method to prevent a carryover effect
between trials. Fatigue seemingly had a minimal impact on our findings as we observed a
strong linear relationship in physiological variables and accelerometer outputs across all tasks.
These data would also suggest that assessing wheelchair propulsion using a controlled treadmill
method is reflective of ‘real world’ propulsion. Despite using an independent group of partici-
pants and a portable metabolic analyser, PAEE during propulsion on the treadmill at 4km�hr-1
is identical to PAEE recorded during previous work involving propulsion on an athletics track
at 4km�hr-1 (2.4 ± 0.6 vs. 2.4 ± 0.9 kcal�min-1) [9]. This is encouraging considering it has previ-
ously been recognized that treadmill walking/ running can affect gait mechanics and therefore
may not reflect true metabolic costs of ambulation at a given speed over the ground [40]. An-
other considerable strength is that a ‘leave-one-out’ cross validation analysis of our generated
prediction equations was conducted, an approach strongly advocated for future research
whereby recruitment of participants with specific injury characteristics might be problematic.
Reporting raw acceleration data in SI units (g�min-1) is a significant advantage as it allows easi-
er comparison between devices and subsequently future research studies [14]. The developed
linear regression model for the GENEActiv device could be utilised by other activity monitors
that have the function or are capable of reporting raw acceleration values. However, the equiva-
lency of raw outputs between monitors needs to be assessed in the future with regards to differ-
ences in dynamic sensing capacities (i.e. GENEActiv ± 8 g compared to ± 6 g for the GT3X+)
or type of microelectromechanical systems (MES) sensor used.

This study demonstrated, for the first time, that the measurement of raw acceleration signals
using the GENEActiv offered an improvement in the prediction of PAEE in MWUs. Specific
on-board by-pass filtering methods intrinsic to the GT3X+ when reporting accelerometer data
as activity counts appear to impact on the devices measurement sensitivity, particularly during
low frequency movements (e.g. folding clothes). In keeping with the rapid development of ac-
tivity monitoring over the past six years in ambulatory populations we expect the acquisition
of raw data to become more prevalent in the prediction of PAEE during free-living.

Supporting Information
S1 Dataset. Influence of Accelerometer Type and Placement on Physical Activity Energy
Expenditure Prediction in Manual Wheelchair Users Trial Dataset. The first two tabs dis-
play participant characteristics at rest and during peak oxygen consumption testing. Subse-
quent tabs contain accelerometer outputs and physiological variables for each participant
during each task.
(XLSX)

Acknowledgments
We are grateful to our research participants for their time, effort and commitment. We would
also like to express our thanks to Michael Hutchinson for his assistance during data collection.

Author Contributions
Conceived and designed the experiments: TN JW DT JB. Performed the experiments: TN JW.
Analyzed the data: TN JB. Contributed reagents/materials/analysis tools: TN JB. Wrote the

Physical Activity Energy Expenditure in Manual Wheelchair Users

PLOS ONE | DOI:10.1371/journal.pone.0126086 May 8, 2015 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0126086.s001


paper: TN JW DT JB. Made substantial contributions to the analysis and interpretation of data
for the work; made important critical contributions to the intellectual content; and approved
the final version to be published: TN JW DT JB.

References
1. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. (2007) Physical activity and pub-

lic health: updated recommendation for adults from the American College of Sports Medicine and the
American Heart Association. Med Sci Sports Exerc 39: 1423–1434. PMID: 17762377

2. Hetz SP, Latimer AE, Buchholz AC, Martin Ginis KA, SHAPE-SCI Research Group (2009) Increased
participation in activities of daily living is associated with lower cholesterol levels in people with spinal
cord injury. Arch Phys Med Rehabil 90: 1755–1759. doi: 10.1016/j.apmr.2009.04.021 PMID: 19801067

3. Buchholz AC, Martin Ginis KA, Bray SR, Craven BC, Hicks AL, Hayes KC, et al. (2009) Greater daily
leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord inju-
ry. Appl Physiol Nutr Metab 34: 640–647. doi: 10.1139/H09-050 PMID: 19767799

4. Ginis KA, Latimer AE, Hicks AL, Craven BC (2005) Development and evaluation of an activity measure
for people with spinal cord injury. Med Sci Sports Exerc 37: 1099–1111. PMID: 16015125

5. Sallis JF, Saelens BE (2000) Assessment of physical activity by self-report: Status, limitations, and fu-
ture directions. Research Quarterly for Exercise and Sport 71: S1–S14. PMID: 10925819

6. Ullrich PM, Spungen AM, Atkinson D, Bombardier CH, Chen Y, Erosa NA, et al. (2012) Activity and par-
ticipation after spinal cord injury: state-of-the-art report. J Rehabil Res Dev 49: 155–174. PMID:
22492345

7. Coulter EH, Dall PM, Rochester L, Hasler JP, Granat MH (2011) Development and validation of a physi-
cal activity monitor for use on a wheelchair. Spinal Cord 49: 445–450. doi: 10.1038/sc.2010.126 PMID:
20856261

8. Hiremath SV, Ding D (2009). Evaluation of activity monitors to estimate energy expenditure in manual
wheelchair users. Conf Prod IEEE Eng Med Biol Soc. 2009: 835–838. doi: 10.1109/IEMBS.2009.
5333626 PMID: 19964247

9. Nightingale TE, Walhim JP, Thompson D, Bilzon JL (2014) Predicting physical activity energy expendi-
ture in manual wheelchair users. Med Sci Sports Exerc 46: 1849–1858. doi: 10.1249/MSS.
0000000000000291 PMID: 25134004

10. Garcia-Masso X, Serra-Ano P, Garcia-Raffi LM, Sanchez-Perez EA, Lopez-Pascual J, Gonzalez LM
(2013) Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full
time manual wheelchair users with spinal cord injury. Spinal Cord 51: 898–903. doi: 10.1038/sc.2013.
85 PMID: 23999111

11. Hiremath SV, Ding D, Farringdon J, Cooper RA (2012) Predicting energy expenditure of manual wheel-
chair users with spinal cord injury using a multisensor-based activity monitor. Arch Phys Med Rehabil
93: 1937–1943. doi: 10.1016/j.apmr.2012.05.004 PMID: 22609119

12. Conger SA, Scott SN, Fitzhugh EC, Thompson DL, Bassett DR (2015) Validity of Physical Activity Mon-
itors for Estimating Energy Expenditure During Wheelchair Propulsion. J Phys Act Health (in press).

13. Tanhoffer RA, Tanhoffer AI, Raymond J, Johnson NA, Hills AP, Davis GM (2014) Energy Expenditure
in Individuals With Spinal Cord Injury Quantified by Doubly-Labelled Water and a Multi-Sensor Arm-
band. J Phys Act Health 12: 163–170. doi: 10.1123/jpah.2013-0190 PMID: 24770697

14. Intille SS, Lester J, Sallis JF, Duncan G (2012) New horizons in sensor development. Med Sci Sports
Exerc 44: S24–31. doi: 10.1249/MSS.0b013e3182399c7d PMID: 22157771

15. Conger SA, Scott SN, Bassett DR Jr. (2014) Predicting energy expenditure through hand rim propul-
sion power output in individuals who use wheelchairs. Br J Sports Med 48: 1048–1053. doi: 10.1136/
bjsports-2014-093540 PMID: 24825852

16. Bassett DR Jr., Rowlands A, Trost SG (2012) Calibration and validation of wearable monitors. Med Sci
Sports Exerc 44: S32–38. doi: 10.1249/MSS.0b013e3182399cf7 PMID: 22157772

17. Clasey J, Gater D (2007) Body Composition Assessment in Adults with Spinal Cord Injury. Top Spinal
Cord Inj Rehabil 12: 8–19.

18. Compher C, Frankenfield D, Keim N, Roth-Yousey L, Evidence Analysis Working Group (2006) Best
practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J
Am Diet Assoc 106: 881–903. PMID: 16720129

19. John D, Freedson P (2012) ActiGraph and Actical physical activity monitors: a peek under the hood.
Med Sci Sports Exerc 44: S86–89. doi: 10.1249/MSS.0b013e3182399f5e PMID: 22157779

Physical Activity Energy Expenditure in Manual Wheelchair Users

PLOS ONE | DOI:10.1371/journal.pone.0126086 May 8, 2015 14 / 15

http://www.ncbi.nlm.nih.gov/pubmed/17762377
http://dx.doi.org/10.1016/j.apmr.2009.04.021
http://www.ncbi.nlm.nih.gov/pubmed/19801067
http://dx.doi.org/10.1139/H09-050
http://www.ncbi.nlm.nih.gov/pubmed/19767799
http://www.ncbi.nlm.nih.gov/pubmed/16015125
http://www.ncbi.nlm.nih.gov/pubmed/10925819
http://www.ncbi.nlm.nih.gov/pubmed/22492345
http://dx.doi.org/10.1038/sc.2010.126
http://www.ncbi.nlm.nih.gov/pubmed/20856261
http://dx.doi.org/10.1109/IEMBS.2009.5333626
http://dx.doi.org/10.1109/IEMBS.2009.5333626
http://www.ncbi.nlm.nih.gov/pubmed/19964247
http://dx.doi.org/10.1249/MSS.0000000000000291
http://dx.doi.org/10.1249/MSS.0000000000000291
http://www.ncbi.nlm.nih.gov/pubmed/25134004
http://dx.doi.org/10.1038/sc.2013.85
http://dx.doi.org/10.1038/sc.2013.85
http://www.ncbi.nlm.nih.gov/pubmed/23999111
http://dx.doi.org/10.1016/j.apmr.2012.05.004
http://www.ncbi.nlm.nih.gov/pubmed/22609119
http://dx.doi.org/10.1123/jpah.2013-0190
http://www.ncbi.nlm.nih.gov/pubmed/24770697
http://dx.doi.org/10.1249/MSS.0b013e3182399c7d
http://www.ncbi.nlm.nih.gov/pubmed/22157771
http://dx.doi.org/10.1136/bjsports-2014-093540
http://dx.doi.org/10.1136/bjsports-2014-093540
http://www.ncbi.nlm.nih.gov/pubmed/24825852
http://dx.doi.org/10.1249/MSS.0b013e3182399cf7
http://www.ncbi.nlm.nih.gov/pubmed/22157772
http://www.ncbi.nlm.nih.gov/pubmed/16720129
http://dx.doi.org/10.1249/MSS.0b013e3182399f5e
http://www.ncbi.nlm.nih.gov/pubmed/22157779


20. Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG (2011) Validation of the GENEA Ac-
celerometer. Med Sci Sports Exerc 43: 1085–1093. doi: 10.1249/MSS.0b013e31820513be PMID:
21088628

21. Washburn RA, Copay AG (1999) Assessing physical activity during wheelchair pushing: Validity of a
portable accelerometer. Adapt Phys Act Q 16: 290–299.

22. Staudenmayer J, ZhuW, Catellier DJ (2012) Statistical considerations in the analysis of accelerometry-
based activity monitor data. Med Sci Sports Exerc 44: S61–67. doi: 10.1249/MSS.0b013e3182399e0f
PMID: 22157776

23. Yilmaz DDCB (2006) Recruitment of Spinal Cord Injury Patients to Clinical Trials: Challenges and Solu-
tions. Topics in Spinal Cord Injury Rehabilitation 11: 12–23.

24. Hastie Y, Tibshirani R., Friedman J.H. (2009) The Elements of Statistical Learning; Data Mining, Infer-
ence, and Prediction. New York (NY): Springer

25. Biolo G, Ciocchi B, Stulle M, Piccoli A, Lorenzon S, Dal Mas V, et al. (2005) Metabolic consequences of
physical inactivity. J Ren Nutr 15: 49–53. PMID: 15648007

26. Hiremath SV, Ding D (2011) Evaluation of activity monitors in manual wheelchair users with paraplegia.
J Spinal Cord Med 34: 110–117. PMID: 21528634

27. Hiremath SV, Ding D. Regression equations for RT3 activity monitors to estimate energy expenditure in
manual wheelchair users; 2011 August 30—September 3; Boston, Massachusetts, USA.

28. Chen KY, Bassett DR Jr. (2005) The technology of accelerometry-based activity monitors: current and
future. Med Sci Sports Exerc 37: S490–500. PMID: 16294112

29. Bailey RR, Klaesner JW, Lang CE (2014) An Accelerometry-Based Methodology for Assessment of
Real-World Bilateral Upper Extremity Activity. Plos One 9: 9.

30. Ried-Larsen M, Brond JC, Brage S, Hansen BH, Grydeland M, Andersen LB, et al. (2012) Mechanical
and free living comparisons of four generations of the Actigraph activity monitor. Int J Behav Nutr Phys
Act 9: 113. doi: 10.1186/1479-5868-9-113 PMID: 22971175

31. Bland JM, Altman DG (2010) Statistical methods for assessing agreement between two methods of
clinical measurement. Int J Nurs Stud 47: 931–936.

32. Atkin AJ, Gorely T, Clemes SA, Yates T, Edwardson C, Brage S, et al. (2012) Methods of Measurement
in epidemiology: sedentary Behaviour. Int J Epidemiol 41: 1460–1471. doi: 10.1093/ije/dys118 PMID:
23045206

33. Bassett DR Jr., Ainsworth BE, Swartz AM, Strath SJ, O'BrienWL, Bassett DR, et al. (2000) Validity of
four motion sensors in measuring moderate intensity physical activity. Med Sci Sports Exerc 32:
S471–480. PMID: 10993417

34. Ginis KA, Hicks AL, Latimer AE, Warburton DE, Bourne C, Ditor DS, et al. (2011) The development of
evidence-informed physical activity guidelines for adults with spinal cord injury. Spinal Cord 49: 1088–
1096. doi: 10.1038/sc.2011.63 PMID: 21647164

35. Bouten CVC, Sauren A, Verduin M, Janssen JD (1997) Effects of placement and orientation of body-
fixed accelerometers on the assessment of energy expenditure during walking. Med Biol Eng Comput
35: 50–56. PMID: 9136191

36. Willems MET, Bilzon JLJ, Fallowfield JL, Blacker SD (2009) Physiological Responses to Load Carriage
During Level and Downhill Treadmill Walking. Medicina Sportiva 13: 116–124.

37. Davis GM, Tanhoffer RA, Tanhoffer AIP, Pithon KR, Estigoni EH, Eduardo H, et al. (2010) Energy Ex-
penditures duringWheelchair Propulsion Derived from a Body-worn Sensor versus Indirect Calorime-
try. Med Sci Sports Exerc 42: 335–335.

38. Sagawa Y Jr., Watelain E, Lepoutre FX, Thevenon A (2010) Effects of wheelchair mass on the physio-
logic responses, perception of exertion, and performance during various simulated daily tasks. Arch
Phys Med Rehabil 91: 1248–1254. doi: 10.1016/j.apmr.2010.05.011 PMID: 20684906

39. Buchholz AC, Pencharz PB (2004) Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr
Metab Care 7: 635–639. PMID: 15534431

40. Parvataneni K, Ploeg L, Olney SJ, Brouwer B (2009) Kinematic, kinetic and metabolic parameters of
treadmill versus overground walking in healthy older adults. Clin Biomech (Bristol, Avon) 24: 95–100.
doi: 10.1016/j.clinbiomech.2008.07.002 PMID: 18976839

Physical Activity Energy Expenditure in Manual Wheelchair Users

PLOS ONE | DOI:10.1371/journal.pone.0126086 May 8, 2015 15 / 15

http://dx.doi.org/10.1249/MSS.0b013e31820513be
http://www.ncbi.nlm.nih.gov/pubmed/21088628
http://dx.doi.org/10.1249/MSS.0b013e3182399e0f
http://www.ncbi.nlm.nih.gov/pubmed/22157776
http://www.ncbi.nlm.nih.gov/pubmed/15648007
http://www.ncbi.nlm.nih.gov/pubmed/21528634
http://www.ncbi.nlm.nih.gov/pubmed/16294112
http://dx.doi.org/10.1186/1479-5868-9-113
http://www.ncbi.nlm.nih.gov/pubmed/22971175
http://dx.doi.org/10.1093/ije/dys118
http://www.ncbi.nlm.nih.gov/pubmed/23045206
http://www.ncbi.nlm.nih.gov/pubmed/10993417
http://dx.doi.org/10.1038/sc.2011.63
http://www.ncbi.nlm.nih.gov/pubmed/21647164
http://www.ncbi.nlm.nih.gov/pubmed/9136191
http://dx.doi.org/10.1016/j.apmr.2010.05.011
http://www.ncbi.nlm.nih.gov/pubmed/20684906
http://www.ncbi.nlm.nih.gov/pubmed/15534431
http://dx.doi.org/10.1016/j.clinbiomech.2008.07.002
http://www.ncbi.nlm.nih.gov/pubmed/18976839

