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Abstract In this short paper we consider the effect of the presence of conducting sidewalls of finite

thickness on the onset of convection in a two-dimensional porous cavity. Two cases are considered where

the outer boundaries of the sidewalls are either perfectly insulating or perfectly conducting. A unified

theory is presented which combines both these cases, and the stability properties of the overall system is

found to undergo a full transition from that of the classical Darcy-Bénard problem to that of the degenerate

system studied in detail by Rees and Tyvand (2004).
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NOMENCLATURE

A arbitrary constant

c conductivity ratio

d aspect ratio of the sidelayers

F reduced streamfunction perturbation

g gravity

G reduced temperature perturbation

h height of the layer

k conductivity of the porous layer

ks conductivity of the sidelayers

K permeability

L aspect ratio of the porous layer

p pressure

Ra Darcy-Rayleigh number

T dimensional temperature

u horizontal velocity

w vertical velocity

x horizontal coordinate

z vertical coordinate

Greek symbols

α constant given in Eq. (57)

β expansion coefficient

γ1, γ2 constants given in Eq. (43)

θ temperature

Θ disturbance temperature

κ thermal diffusivity

µ dynamic viscosity

ρ density

ψ streamfunction

Ψ disturbance streamfunction

Ω constant given in Eq. (46)

Subscripts and superscripts

c cold

h hot

i denoting sidelayers 1 or 2

1, 2 sidelayer indices

ˆ dimensional quantity
′ derivative with respect to x



1 Introduction

The topic of convective flows in porous media is important because it is a ubiquitous process in the world

around us and in many and varied technological applications. Of particular importance are those systems

which display transitions in behaviour as the strength of heating is altered. For example, quiescent states

(and others) may be destabilised and cellular patterns might be formed as heating increases, and generally

these transitions also alter the the rate of heat flux across the system, which may be either good or bad

depending on the application.

The Darcy-Bénard problem is the classical thermoconvective instability problem for convection in porous

media, the first papers on which first appeared over 60 years ago: Lapwood (1948) and Horton and Rogers

(1945). These pioneering works have been extended in a huge variety of ways a few decades later; see, for

example, Nield (1968), Holst and Aziz (1972), Palm et al. (1972), Straus (1974), Weidman and Kassoy

(1986), Chelghoum et al. (1987), Aidun and Steen (1987), Caltagirone et al. (1987), Riley and Winters

(1991) and Nyg̊ard and Tyvand (2010). These studies include the effects of different boundary conditions,

of nonlinearities, of large Darcy-Rayleigh numbers compared with the onset value, of confinement, of oscil-

latory convection. In all of these cases it is the ‘pure’ Darcy flow model with the Boussinesq approximation

that has been used. Other authors have considered form drag, Brinkman effects, multiple diffusing species,

vibration, inclination, local thermal nonequilibrium and non-Newtonian fluids. We refer the reader to the

reviews by Rees (2000), Tyvand (2002) and Nield and Bejan (2013).

The present paper is motivated by the fact that almost all the studies which one might find in the

literature are model problems in the sense that it will be very difficult to be able reproduce them in the

laboratory. A simple instance of this might involve, say, a cubical cavity filled with porous medium which is

heated from below, cooled from above and insulated on its four vertical sidewalls. Typically these boundary

conditions are applied on what would be, in an experiment, the inner surface of the bounding container,

rather than on its outer surface.

To date there have appeared only a few studies which consider the effect of solid bounding walls, and these

are confined mainly to the upper and lower surfaces. Mojtabi and Rees (2011) considered Darcy-Bénard

convection in a layer of infinite horizontal extent where the outer surfaces of the solid layers were subject

to constant-heat-flux conditions. They found that, for certain ranges of parameters (i.e. conductivity ratios

and the thickness of the solid layers) that it is possible for such a system to mimic quite closely that of the

idealised classical Darcy-Bénard layer with constant temperature boundary conditions. Similar analyses

were undertaken by Kubitchek and Weidman (2003, 2006). Much earlier, Riahi (1983) considered solid

layers of infinite thickness and determined, using a weakly nonlinear theory, the region of parameter space

wherein square cells are preferred as opposed to rolls when the Darcy-Rayleigh number is just supercritical.

Both of these papers were extended by Rees and Mojtabi (2011) who undertook the constant-temperature-

surface analogue of Mojtabi and Rees (2011), and also presented the corresponding weakly nonlinear theory.

In the present paper we consider the effect of solid, thermally conducting sidewalls on the onset of

convection. Wang et al. (1987) provides the closest study to the present one, and it corresponds to an

asymptotically thin vertical porous slab sandwiched between the solid blocks. The present analysis considers

a porous cavity with O(1) thickness, and we provide a comprehensive account of the onset of convection for

the full range of values of the conductivity ratio between the porous medium and the block, the thickness

of the block, and the width of the porous cavity. In addition, an asymptotic analysis is presented for small

values of the parameter, Ω, which is a function of the conductivity ratio and the thickness of the block.



2 Governing Equations

We consider the onset of convection in a rectangular porous cavity which is heated from below. The height

of this cavity is h and the length is hL, and therefore L represents the aspect ratio. Although the horizontal

surfaces are assumed to be subject to uniform fixed temperatures, where the lower surface is held at T = Th
and the upper at T = Tc, the sidewalls are shrouded using solid but thermally conducting sidelayers of

thickness hd. The outside surfaces of both these side layers are either perfectly insulated or else are held

at precisely that linear heat conduction profile which corresponds to the imposed upper and lower surface

temperatures. These details are summarized in Figure 1 where we note, in particular, that the conductivity

of the porous medium is k while that of the two solid sidelayers is ks. We will consider solely those cases

where the sidelayers are identical.

The conservation of mass corresponds to,

∂û

∂x̂
+
∂ŵ

∂ẑ
= 0, (1)

while Darcy’s law for a Newtonian fluid (subject to the Boussinesq approximation being valid and a linear

relationship between the density and temperature) takes the form,

û = −K
µ

∂p̂

∂x̂
, (2)

ŵ = −K
µ

[

∂p̂

∂ẑ
− ρgβ(T − Tc)

]

. (3)

The steady heat transport equation for the porous region is given by,

û
∂T

∂x̂
+ ŵ

∂T

∂ẑ
= κ

[∂2T

∂x̂2
+
∂2T

∂ẑ2

]

. (4)

while for each of the two side layers it is,

∂2Ti
∂x̂2

+
∂2Ti
∂ẑ2

= 0, (5)

where i = 1 denotes the left hand side layer for which −hd < x̂ < 0, and i = 2 denotes the right hand side

layer for which hL < x̂ < h(L+ d). The boundary and interface conditions are given by

ŵ = 0, T = T1 = T2 = Th on ẑ = 0, (6)

ŵ = 0, T = T1 = T2 = Tc on ẑ = h, (7)

while the outer vertical surfaces are subject to,

case (a):

T1 = Tc + (1− z/h)(Th − Tc) on x̂ = −hd,

T2 = Tc + (1− z/h)(Th − Tc) on x̂ = h(L+ d),

(8)

or

case (b):
∂T1
∂x̂

= 0 on x̂ = −hd, ∂T2
∂x̂

= 0 on x̂ = h(L+ d). (9)

The conditions at the interfaces are,

û = 0, T1 = T, ks
∂T1
∂x̂

= k
∂T

∂x̂
on x̂ = −hd,

û = 0, T2 = T, ks
∂T2
∂x̂

= k
∂T

∂x̂
on x̂ = h(L+ d).

(10)



We may now create a set of nondimensional equations using the following scalings,

(x̂, ẑ) = h(x, z), (û, ŵ) =
κ

h
(u,w), T = Tc + θ(Th − Tc), (11)

and define the streamfunction, ψ, using,

u = −∂ψ
∂z
, w =

∂ψ

∂x
. (12)

Thus the nondimensional governing equations and boundary/interface conditions become,

∂2ψ

∂x2
+
∂2ψ

∂z2
= Ra

∂θ

∂x
, (13)

∂ψ

∂x

∂θ

∂z
− ∂ψ

∂z

∂θ

∂x
=
∂2θ

∂x2
+
∂2θ

∂z2
, (14)

∂2θi
∂x2

+
∂2θi
∂z2

= 0, (i = 1, 2), (15)

ψ = 0, θ = θ1 = θ2 = 1 on z = 0, (16)

ψ = 0, θ = θ1 = θ2 = 0 on z = 1, (17)

case (a): θ1 = (1− z) on x = −d, θ2 = (1− z) on x = L+ d, (18)

or

case (b):
∂θ1
∂x

= 0 on x = −d, ∂θ2
∂x

= 0 on x = L+ d, (19)

ψ = 0, θ1 = θ, c
∂θ1
∂x

=
∂θ

∂x
on x = −d,

ψ = 0, θ2 = θ, c
∂θ2
∂x

=
∂θ

∂x
on x = L+ d.

(20)

Here the value c is the conductivity ratio,

c =
ks
k
, (21)

and

Ra =
ρgβ(Th − Tc)Kh

µκ
, (22)

is the Darcy-Rayleigh number. Thus, at this stage, solutions depend on four parameters: Ra, L, d and c.

3 Basic state and stability analysis

The basic state is given by,

θ = θ1 = θ2 = 1− z, ψ = 0, (23)

and hence there is a linear temperature drop across the layer with no flow. We may perturb about this

solution by setting,

θ = 1− z +Θ, θ1 = 1− z +Θ1, θ2 = 1− z +Θ2, ψ = Ψ. (24)

Substitution of these expressions into Eqs. (13)–(20) followed by linearization yields the systems,

∂2Ψ

∂x2
+
∂2Ψ

∂z2
= Ra

∂Θ

∂x
, (25)

∂2Θ

∂x2
+
∂2Θ

∂z2
= −∂Ψ

∂x
, (26)

∂2Θ1

∂x2
+
∂2Θ1

∂z2
= 0, (27)



∂2Θ2

∂x2
+
∂2Θ2

∂z2
= 0. (28)

The boundary conditions on the horizontal surfaces are that

Ψ = Θ = Θ1 = Θ2 = 0 on z = 0, 1, (29)

while the outer vertical surfaces are subject to,

case (a): Θ1 = 0 on x = −d, Θ2 = 0 on x = L+ d, (30)

or

case (b):
∂Θ1

∂x
= 0 on x = −d, ∂Θ2

∂x
= 0 on x = L+ d. (31)

The conditions at the interfaces are,

Ψ = 0, Θ1 = Θ, c
∂Θ1

∂x
=
∂Θ

∂x
on x = 0,

Ψ = 0, Θ2 = Θ, c
∂Θ2

∂x
=
∂Θ

∂x
on x = L.

(32)

When undertaking the linear stability analysis of a convecting system it is very common to factor out

a horizontal Fourier component which serves to impose a horizontal periodicity on the convecting pattern.

In the present problem, though, we shall instead factor out a vertical component as follows. We let,

(Ψ,Θ,Θ1,Θ2) =
(

F (x), G(x), G1(x), G2(x)
)

sinπz. (33)

This process yields an ordinary differential eigenvalue problem for Ra,

F ′′ − π2F = RaG′, (34)

G′′ − π2G = −F ′, (35)

G′′

i − π2Gi = 0, (i = 1, 2) (36)

where the boundary and interface conditions are,

x = −d : G1 = 0 case (a), G′

1 = 0 case (b),

x = 0 : G1 = G, cG′

1 = G′, F = 0,

x = L : G2 = G, cG′

2 = G′, F = 0,

x = L+ d : G2 = 0 case (a), G′

2 = 0 case (b).

(37)

It is possible to solve for the disturbance field within the sidelayers and to convert this into an equivalent

boundary condition for the porous region; see Kubitchek and Weidman (2003, 2006) and Mojtabi and Rees

(2011) who present a similar technique to account for conducting layers above and below the cavity. The

equation for G1 in Eq. (36) and subject to the boundary condition at x = −d has solution,

case (a): G1 = A
[

sinhπx+ tanhπd coshπx
]

, case (b): G1 = A
[

sinhπx+ cothπd coshπx
]

, (38)

where A is an arbitrary constant. In each case we may evaluate G1 and G′

1 at x = 0 and eliminate A

between these expressions to obtain the following boundary conditions of the third kind,

case (a): πG1 = tanhπdG′

1, case (b): πG1 = cothπdG′

1. (39)



Given the interface conditions shown in Eq.(37) the boundary conditions which may be applied at x = 0

for the porous layer and which account perfectly for the presence of the sidelayer are

case (a): πG =
tanhπd

c
G′, case (b): πG =

cothπd

c
G′. (40)

The equivalent forms at x = L may be shown easily to be,

case (a): πG = − tanhπd

c
G′, case (b): πG = −cothπd

c
G′. (41)

Equations (34) and (35) may now be solved analytically subject to the conditions, F (0) = F (L) = 0 and

those given in Eqs. (40) and (41). This involves the substitution of the trial solution, eγx, and imposing

the requirement that the equations have a nonzero solution. This leads naturally to a dispersion relation

for the Darcy-Rayleigh number, Ra, in terms of L and d. We eventually obtain the following expression,

0 = 2π2c2
(

1− sin γ1L sin γ2L− cos γ1L cos γ2L
)

+2πc(γ1 − γ2) tanhπd
(

sin γ2L cos γ2L− sin γ2L cos γ1L
)

+(γ1 − γ2)
2 tanh2 πd sin γ1L sin γ2L,

(42)

where the auxiliary quantities, γ1 and γ2, are given by,

γ21 =
Ra

2
− π2 +

√
Ra

2

[

Ra− 4π2
]1/2

,

γ22 =
Ra

2
− π2 −

√
Ra

2

[

Ra− 4π2
]1/2

.

(43)

The dispersion relation in Eq. (42) corresponds to case (a) and the equivalent formula for case (b) may be

obtained by replacing all the tanh functions by coth functions.

The form taken by the dispersion relation hints strongly that it might be possible to factorise it into the

product of two factors, a process that is known to arise occasionally and other examples may be found in

Rees and and Genç (2011). Therefore we obtain the following pair of relations,

πc
(

sin γ1L cosγ2L− sin γ2L cosγ1L+ sin γ1L− sin γ2L
)

+ (γ1 − γ2) tanhπd sin γ1L sin γ2L = 0, (44)

πc
(

sin γ1L cosγ2L− sin γ2L cosγ1L− sin γ1L+ sin γ2L
)

+ (γ1 − γ2) tanhπd sin γ1L sin γ2L = 0. (45)

These different factors correspond respectvely to the odd and even symmetries of the onset mode.

Given the forms of γ1 and γ2 it is impossible to write down the value of Ra explicitly as a function of the

length, L, of the porous cavity, the conductivity ratio, c, and the width of the sidelayers, d. Therefore we

have resorted to using either (i) a straightforward Newton-Raphson scheme to solve for Ra in terms of L,

c and d, or (ii) creating a fine two-dimensional grid in terms of Ra and L of values of the function on the

right hand side of Eq. (42) and then using a contouring package to determine where this function is equal

to zero; such a procedure is guaranteed to find all the branches of the neutral curves within the chosen

range. Profiles for the onset modes were obtained using the detailed analysis (omitted here for the sake of

brevity) leading to the dispersion relation, and were checked by solving Eqs. (34) and (35) subject to the

boundary conditions (40) and (41) using a shooting method and the classical fourth order Runge-Kutta

method.

4 Results and Discussion

We begin the presentation of the results of our analysis by noting that the dispersion relation given by

Eq. (42) is a function of only three variables, namely, Ra, L and (tanhπd)/c for case (a) flows, rather than



four: Ra, L, d and c. For case (b) flows precisely the same form of dispersion relation applies, and this is the

same function of Ra, L and (cothπd)/c. Given that both (tanhπd)/c and (cothπd)/c may range in value

from zero to infinity when c and d take various physically realistic values, the two different problems we

are solving and which are differentiated by having different sidelayer boundary conditions, may be unified

into one problem. We may therefore define the quantity, Ω, according to

case (a): Ω =
tanhπd

c
, case (b): Ω =

cothπd

c
. (46)

Thus critical values of Ra will now depend only on the two parameters, Ω and L. We have validated our

numerical scheme against that of Nyg̊ard and Tyvand (2010) for the case, Ω = π (which is equivalent to

their case a = 1 and b = 0), with L = 1/2 and L = 1; our critical values are identical to theirs.

4.1 Disturbance profiles

Figure 2 illustrates the effect on the onset profile of having different pairs of values of c and d which combine

to yield Ω = 1. The temperature profiles presented in Fig. 2 include those in both sidelayers. Given that

Ω = 1 the disturbance profile in the porous region is the same in each case, but the sections of profile

which occupy the sidelayers depend strongly on the chosen value of d and whether the problem is case (a)

or case (b). It is also clear that, as d increases, cases (a) and (b) tend to become indistinguishable from

one another. This is simply the consequence of the exponential decay of the profile in the solid sidelayers.

In the rest of the paper we will concentrate mainly on the effect of having different values of Ω without

necessarily specifying whether case (a) or (b) is meant because either may apply.

Figures 3 and 4 show the effect of having different values of Ω on porous cavity with L = 1. We show

those profiles which correspond to the smallest critical value of Ra, and they correspond to temperature

profiles which are odd about x = L/2. Figure 3 displays the temperature disturbances and Fig. 4 shows

the corresponding streamfunction disturbances. The value, Ω = 104, essentially corresponds to when the

sidelayers are effectively insulating and therefore this case mimics the classical Darcy-Bénard problem in a

unit box for which Ra = 4π2. The disturbance temperature profile shown in Fig. 3 is then proportional to

cosπx while the corresponding streamfunction profile in Fig. 4 is proportional to sinπx.

As Ω decreases, the sidelayers increase their conductivity until one obtains the perfectly conducting

limit, Ω = 0. This limit was studied in detail in Rees and Tyvand (2004); also see Lyubimov (1975), Nilsen

and Storesletten (1990), Bratsun et al. (1995) and Rees and Lage (1997). For the unit box the critical

Darcy-Rayleigh number is 8π2, therefore a perfectly conducting sidelayer inhibits convection relative to

a perfectly insulating sidelayer. The corresponding temperature and streamfunction profiles may gleaned

from the analysis of Rees and Tyvand (2004) and are,

G ∝ sinπx cos
√
2π(x− 1

2 ), F ∝ sinπx sin
√
2π(x− 1

2 ). (47)

We note that these solutions in (47) are also displayed in the form of full two-dimensional contour plots in

Fig. 1a of Rees and Tyvand (2004).

4.2 Neutral curves

Figure 5 displays six sets of neutral curves corresponding respectively to Ω = 100, 10, 3, 1, 0.3 and 0.1.

These were obtained using the aforementioned contouring procedure and display the variation of Ra/π2

with L.

When Ω is sufficiently large we recover the behaviour one expects for insulated boundaries. The neutral

curves are given by,

Ra =
(L2 + n2)2

n2L2
π2, (48)



where n is the number of convection cells in the horizontal direction (i.e. the number of half sine waves

comprising the reduced streamfunction, F ). The value of Ra achieves its minimum value of 4π2 whenever

L = n. For this extreme case it is easy to identify the different modes with the value of n, and we see that,

as L increases from zero, successive values of n starting from 1 take over briefly as the mode which has the

smallest value of Ra. Thus one would normally identify the mode number with a single parabolic-like curve

of the type approximated in the subfigure showing Ω = 100. However, once Ω takes finite values, the shapes

of the neutral curves change, and curves corresponding to two different odd modes, say, no longer cross one

another but these crossings unfold. Therefore it is necessary to use a different modal numbering system, as

illustrated in the subfigure for Ω = 1. In general, then, when Ω takes finite values, neutral curves are split

into pairs consisting of one odd mode and one even mode, where respective members of each pair intertwine

thereby continually swapping roles as the one with the lower value of Ra as L increases. From the point

of view of determining the smallest value of Ra, the intertwining of the first two modes ensures that odd

and even modes (in terms of both their mode number and the symmetry of the disturbance temperature

profile) alternate as the primary mode of instability.

As Ω finally reduces towards zero, Figure 5 shows that the neutral curves for modes 1 and 2 get closer

and tend towards a common limit when Ω = 0. This is perfectly consistent with the analysis of Rees and

Tyvand (2004) who described a degenerate onset of convection in which two different modes correspond to

precisely the same value of the critical Darcy-Rayleigh number. Rees and Tyvand (2004) showed that the

critical Darcy-Rayleigh number for the perfectly conducting case is

Ra = 4π2
(

1 +
1

L2

)

, (49)

in the present notation. It is also important to note that the small gaps in neutral curves which appear

for the cases, Ω = 0.3 and 0.1 in Fig. 5 are simply an artefact of the grid resolution used for the contour

plotter which employed the dispersion relation in Eq. (42); the curves are continuous in reality. Indeed,

Appendix 1 provides a detailed mathematical analysis of the onset criterion for small values of Ω, and it is

clear from Eq. (64) that the odd and even modes interleave as L increases, with the largest gap between

these curves decreasing as L−3.

From Fig. 5 it also appears that the critical value of Ra decreases monotonically as L increases when Ω

is less than a value which is very close to 1.

Given that the most important value of Ra is the lowest for any chosen value of Ω and L, we have

summarised these minimising values in Fig. 6 and have also indicated whether the mode is even or odd.

Thus, for small values of L, we see that the onset mode is odd, and further increases in L cause the

symmetry to alternate successively between odd and even. Also shown there as dotted lines are the curves

in (L,Ra)-space which delineate where the modal exchange takes place. These were obtained using a

slightly more complicated Newton-Raphson procedure where the factored dispersion relations which are

given in Eqs. (44) and (45) are solved simultaneously while insisting that they have identical values of Ra.

For a given value of Ω this process yields the values of both Ra and L.

5 Conclusions

In this paper we have relaxed the classical Darcy-Bénard problem by allowing the insulating sidewalls of

the rectangular porous cavity to be replaced by sidelayers of thermally conducting solid material. The

outer vertical boundaries of these sidelayers may be considered to be either perfectly insulating or perfectly

conducting, but the form of the dispersion relation we have obtained shows that both may be subsumed

into one unified form involving the parameter, Ω. In general, as the aspect ratio of the porous cavity, L,

increases the identity of the most unstable mode alternates between one with a temperature profile which



is odd (which arises when L ≪ 1) and one which is even. In general the critical Darcy-Rayleigh number

decreases with L, but it does so monotonically only when Ω . 1.

This paper forms an extension to the standard Darcy-Bénard problem since it is concerned with the

additional effect of conducting layers on the sidewalls of a rectangular Darcy-Bénard cavity. We have seen

that their effect is strong and the stability properties have been shown to vary continuously between that of

the classical Darcy-Bénard problem and that of the degenerate system studied recently by Rees and Tyvand

(2004). A similar analysis by Mojtabi and Rees (2011) considered the use of conducting plates above and

below the Darcy-Bénard cell; in that paper it was shown the stability properties also vary greatly, and that

the full range of cases between the classical Darcy-Bénard system and its constant-heat-flux analogue may

be realised. It may therefore be thought that these two studies may be combined easily into one where

conducting plates might be situated along all four sides of a rectangular cavity, and which would represent

even more fully an experimental set-up. While this is perfectly reasonable notion, the basic state whose

stability properties are to be studied will not, in general, consist of horizontal isotherms and therefore

there is also a localised flow field near the four corners of the cavity. An isolated exception to this is

when the conductivities of the porous layer and the side layers are identical, although even that depends

on precisely how one joins the sidelayers to the upper and lower layers. Thus a full stability analysis will

involve numerical solutions of a fully elliptic partial differential eigenvalue problem.

The present paper has considered the experimentally reasonable configuration in which the conducting

sidelayers are identical. We have found that the neutral curves bunch in pairs, the two members of which

correspond to different symmetries. If the two sidelayers were to be different, then these precise symmetries

would be lost. We suspect that the curves within each pair would unfold, so that there would no longer be

such crossings, and, in particular, the lowest neutral curve would be smooth. This prediction would need

to be tested numerically.

Finally, the present analysis represents the first stage in a full understanding of the effect of conducting

sidewalls. It will be necessary to consider the onset of convection in the form of vortices which have axes

in the x-direction. It is intended to report on this aspect in due course.
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Appendix 1

The aim of this Appendix is to provide a two-term analysis of the onset criterion for asymptotically small

values of Ω in order (i) to determine the detailed approach to the degenerate criterion described in Rees

and Tyvand (2014) in which two different modes become unstable simultaneously, and (ii) to explaining

the braiding of the neutral curves shown in Fig. 5.

We begin with Eqs. (34) and (35), which are reproduced below for the sake of completeness,

F ′′ − π2F = RaG′, G′′ − π2G = −F ′, (50)

and the boundary conditions given by Eqs. (37), (40) and (41) as simplified/unified using Eq. (46), and

which may be written in the form,

x = 0 : F = 0, G = ΩG′/π, x = L : F = 0, G = −ΩG′/π. (51)



The following analysis for Ω ≪ 1 is facilitated by a minor coordinate change in order that the porous layer

lies between −L/2 and +L/2, rather than between 0 and L.

The following series expansion for small values of Ω may now be introduced,

F = F0(x) + ΩF1(x) +O(Ω2),

G = G0(x) + ΩG1(x) +O(Ω2),

Ra = Ra0 +ΩRa1 +O(Ω2).

(52)

The equations and boundary conditions for F0 and G0 are given by

F ′′

0 − π2F0 − Ra0G
′

0 = 0, G′′

0 − π2G0 + F ′

0 = 0, (53)

and

F0 = G0 = 0 at x = ±L/2. (54)

Our numerical solutions result in modes which are either even or odd, as given by the symmetry of the

temperature disturbance. For the even mode, the analytical solution given in Rees and Tyvand (2004) may

be written in the form,

F0 = 2πα cos
πx

L
sinαπx, G0 = cos

πx

L
cosαπx, (55)

for which,

Ra0 = 4π2
(

1 +
1

L2

)

≡ 4π2α2, (56)

and where the constant, α, which is introduced for mathematical convenience, is given by,

α =

√

1 +
1

L2
. (57)

For the odd mode the corresponding solution is

F0 = −2πα cos
πx

L
cosαπx, G0 = cos

πx

L
sinαπx, (58)

The equations and boundary conditions for F1 and G1 are given by

F ′′

1 − π2F1 − Ra0G
′

1 = Ra1G
′

0, G′′

1 − π2G1 + F ′

1 = 0, (59)

and

x = −L/2 : F1 = 0, G1 = G′

0, x = L/2 : F1 = 0, G1 = −G′

0. (60)

It is not necessary to solve these equations for F1 and G1 since our focus is on the value of Ra1, which

may be found by applying a standard solvability (or orthogonality) condition. In the present context this

is obtained by multiplying the equation for F1 by F0 and the equation for G1 by Ra0G0, adding the two,

and then integrating that sum over the range x = − 1
2L to x = 1

2L. Thus we have,

∫ L/2

−L/2

[(

F ′′

1 − π2F1 − Ra0G
′

1

)

F0 +
(

G′′

1 − π2G1 + F ′

1

)

Ra0G0

]

dx = Ra1

∫ L/2

−L/2

F0G
′

0 dx. (61)

After some integrations by parts, the use of Eq. (53) to simplify most of the resulting integrals, it is possible

to show that,

Ra1

∫ L/2

−L/2

F0G
′

0 dx =
Ra0
π

[(

G′

0(−L/2)
)2

+
(

G′

0(L/2)
)2]

. (62)



Detailed integrations yield,

even mode: Ra1 = −16π

L3
cos2

(απL

2

)

, odd mode: Ra1 = −16π

L3
sin2

(απL

2

)

. (63)

Therefore the first two terms in the small-Ω series for the critical Darcy-Rayleigh number are,

even mode: Ra = 4π2α2 − Ω
[16π

L3
cos2

(απL

2

)]

+O(Ω2),

odd mode: Ra = 4π2α2 − Ω
[16π

L3
sin2

(απL

2

)]

+O(Ω2).

(64)

Thus small values of Ω serve to destabilise the system compared with that of the degenerate problem of

Rees and Tyvand (2004). The presence of sin2 and cos2 in the O(Ω) terms means that the even and odd

modes will alternate with regard to which one has the lower critical value of Ra. More precisely, we may

identify those values of L for which the two modes have precisely the same value of Ra1. This takes place

when
απL

2
= π/4, 3π/4, 5π/4, · · · . (65)

In other words, we have

L =

√

n2

4
− 1, n = 3, 5, 7, · · · . (66)

This formula compares very well indeed with our numerical computations, as seen in Table 1. Indeed, we

have also displayed the numerical results for a number of values of Ω which show that the application of

Richardson’s extrapolation technique confirms the O(Ω) nature of the numerical solutions, and the Ω → 0

limit itself. Indeed, a first extrapolation using the data for Ω = 0.01 and 0.02 yields a prediction for the

Ω = 0 solution which has an absolute error of a magnitude of roughly 10−6.

Ω 1st 2nd 5th

0 1.11807240 2.29128785 5.40832691

0.01 1.12056102 2.29189265 5.40843564

0.02 1.12304964 2.29249444 5.40854416

0.04 1.12791458 2.29368901 5.40877062

0.08 1.13721501 2.29604210 5.40919113

Table 1: Comparison between numerical and asymptotic values of L for which the Ra1 values coincide for

even and odd modes. The asymptotic data using Eq. (66) are designated by Ω = 0 here. Data is shown for

the first, second and fifth crossings of the neutral curves.

Appendix 2

We are grateful to an anonymous reviewer for pointing out that it is possible for the problem we have

presented here to have a mathematically identical dual. This is based on the degeneracy explored in

detail by Rees and Tyvand (2004) who considered convection in a rectangular porous cavity with perfectly

conducting sidewalls. It was shown there that the streamfunction field and the temperature field satisfies

identical equations and boundary conditions when written in the correct way. Given that the streamfunction

and temperature must have different symmetries, the implication then was that two separate solutions for

(Ψ,Θ) with opposing symmetries corresponds to each value of the critical Rayleigh number. This is the

degeneracy.

Aspects of the analysis of Rees and Tyvand (2004) may be extended easily to the present problem. One

may consider an entirely equivalent problem where the sidelayers are perfectly conducting but are now

permeable. This new perfectly conducting boundary is equivalent to the present impermeable boundary



condition on the sides of the porous medium. A zero value of the streamfunction on the outer boundaries of

the sidelayers in this dual configuration will be equivalent to the present perfectly conducting ones for the

temperature, while a zero gradient of the streamfunction (which is equivalent to a further external passive

reservoir of fluid) would be equivalent to the present insulating case. Although it is difficult to visualise

how this latter might be set up in practice, it is nevertheless mathematically possible. Finally a trivial

rescaling of the present streamfunction with respect to Ra followed by the swapping of the present Ψ and Θ

will yield the dual problem which we have described, and Ω will now be defined in terms of a permeability

ratio instead of a conductivity ratio. Therefore the dual problem will have identical neutral curves to those

presented here.
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Figures
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x̂=−hd 0 hL h(L+d)
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Figure 1: The physical configuration consisting of a central porous layer (depicted in black) with two

conducting solid sidelayers (grey). The left and right hand boundary conditions are either (i) a linear

temperature profile as given by Eq. (10), or (ii) insulated.
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Figure 2: Displaying the temperature disturbance profile when Ω = 1 and L = 1. Continuous lines

correspond to case (a) while dashed lines correspond to case (b). The following values of d were used: 0.1,

0.2, 0.5 and 1.0. The critical Darcy-Rayleigh number is Ra = 56.96696.



0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
- 1 . 5

- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

x

G

Ω=10−4

Ω=104

Figure 3: Displaying the temperature disturbance profile in the porous region for the case, L = 1, and for

different values of Ω: 104, 10, 5, 2, 1 (long dashes), 0.5, 0.2, 0.1 and 10−4 (dotted).
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Figure 4: Displaying the streamfunction disturbance profile in the porous region for the case, L = 1, and

for different values of Ω: 104, 10, 5, 2, 1 (long dashes), 0.5, 0.2, 0.1 and 10−4 (dotted).
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Figure 5: Displaying neutral curves (Ra against L) for different values of Ω.
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Figure 6: Variation of Ra with L corresponding to the primary mode of instability for the following values

of Ω: 100 (lowest curve), 30, 10, 3, 1, 0.3 and 0.1 (uppermost curve). Continuous lines correspond to odd

temperature disturbances while dashed lines correspond to even disturbances. The dotted lines delineate

the transition between odd and even modes.



Reply to Reviewers

The authors would like to thank the reviewers for their kind comments and the various suggestions. The

has been improved as a consequence. Very many thanks. Our changes to the manuscript are typeset in

red.

Reviewer 1.

1. ...Will all these simplifications disappear if the two sidewalls are not identical?...

The simplifications will not disappear; they arise because the temperature field satisfies Laplace’s

equation in the solid regions, and this is not changed by the end regions having different proprties.

However, the computed neutral curves will change. Intuition fails us about whether the neutral curves

will still retain their pairwise braiding property. That said, the cavity will no longer be symmetric,

and it may be the case that each pair of curves might unfold and that crossings won’t appear. This

would need to be computed....

A short note about this has been added to the Conclusions section.

2. ...Will the field inside the porous medium be identical for the two subproblems when we consider equal

values of Ω?

Yes, that is the message of Figure 2. If we have two different configurations which have exactly the

same value of Ω, then, for linear theory at least, the porous region has precisely the same lateral

boundary conditions, and therefore the pertubations are identical. One might even say that the

different fields in the solid sidelayers arise passively, but do not affect the porous region.

3. Optional comment (i). Comparison with some data in Nyg̊ard and Tyvand (2010).

We have rerun our code to try to reproduce some of the data in this paper. We have reproduced

some of these perfectly. Other values in their Table 1 appear to us to correspond to higher modes —

we have computed those values precisely, and they are in agreement, but they do not correspond to

the lowest value of the Darcy-Rayleigh number. We have made a short extra comment just after the

newly numbered Eq. (46) about validating our results against theirs, but we would prefer to leave it

to those authors to decide what to do about some of their data.

4. Optional comment (ii). The ‘twin’ problem.

The reviewer is correct that one may formulate an equivalent problem where the sidelayers are per-

fectly conducting and are now permeable. Although it was only a suggestion, we have added a short

appendix to point this out to the readers.

5. The absence of the definition of the Rayleigh number.

Oops. Fixed at the end of §2. Many thanks. Figure captions updated to include L = 1.

Reviewer 2.

The typo in the reference has now been fixed. Many thanks.


