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ABSTRACT 22 

Social relationships have been shown to significantly impact individual and group success in wild 23 

animal populations, but are largely ignored in farm animal management. There are substantial gaps in 24 

our knowledge of how farm animals respond to their social environment, which varies greatly 25 

between farms but is commonly unstable due to regrouping. Fundamental to addressing these gaps is 26 

an understanding of the social network structure resulting from the patterning of relationships between 27 

individuals in a group. Here, we investigated the social structure of a group of 110 lactating dairy 28 

cows during four one-month periods. Spatial proximity loggers collected data on associations between 29 

cows, allowing us to construct social networks. First we demonstrate that proximity loggers can be 30 

used to measure relationships between cows; proximity data was significantly positively correlated to 31 

affiliative interactions but had no relationship with agonistic interactions. We measured group-level 32 

patterns by testing for community structure, centralisation and repeatability of network structure over 33 

time. We explored individual-level patterns by measuring social differentiation (heterogeneity of 34 

social associations) and assortment of cows in the network by lactation number, breed, gregariousness 35 

and milk production. There was no evidence that cows were subdivided into social communities; 36 

individuals belonged to a single cluster and networks showed significant centralisation. Repeatability 37 

of the social network was low, which may have consequences for animal welfare. Individuals formed 38 

differentiated social relationships and there was evidence of positive assortment by traits; cows 39 

associated more with conspecifics of similar lactation number in all study periods. There was also 40 

positive assortment by breed, gregariousness and milk production in some study periods. There is 41 

growing interest in the farming industry in the impact of social factors on production and welfare; this 42 

study takes an important step towards understanding social dynamics. 43 

 44 

Keywords: Social networks  Group structure  Proximity loggers - Dairy cows  Assortment  45 
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 47 
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INTRODUCTION 48 

 49 

In the UK dairy industry there is considerable diversity in the way animals are grouped and managed; 50 

group sizes and stocking density vary greatly across farms, and regrouping cows during lactation 51 

(based on yield or parity etc.) is common practice. Numerous studies have demonstrated the negative 52 

welfare and productivity consequences of regrouping, including reductions in milk yield, feed intake, 53 

rumination and lying times, and increased aggression between cows (Hasegawa, Nishiwaki, 54 

Sugawara, & Ito, 1997; Hultgren & Svensson, 2009; Raussi et al., 2005; von Keyserlingk, Olenick, & 55 

Weary, 2008).  Agonistic interactions such as threat gestures, chasing and head butting, often result in 56 

displacements from resources, but can  escalate to prolonged (and more injurious) fights. The latter 57 

are  less frequent in stable social groups (Reinhardt & Reinhardt, 1981) as a well-established 58 

dominance hierarchy shortens agonistic events or prevents them through active avoidance, profiting 59 

both dominant and subordinate animals (Gurney & Nisbet, 1979).  60 

Within a stable social group many cows form preferential social bonds, which may differ 61 

between activities such as feeding or social grooming (Gygax, Neisen, & Wechsler, 2010; Reinhardt 62 

& Reinhardt, 1981). Preferred social partners can influence status in the social hierarchy (Reinhardt & 63 

Reinhardt, 1981) and their presence or absence can affect stress responses (McLennan, 2012). Social 64 

grooming can be used as an indicator of affiliative relationships among social animals (Boissy et al., 65 

2007; Wasilewski, 2003), with the strength of social bonds often reflected by the degree of grooming 66 

between individuals. Social grooming is believed to have a calming effect on cows (S. Sato, Sako, & 67 

Maeda, 1991; S. Sato & Tarumizu, 1993), and plays a role in reducing social tension and maintaining 68 

social stability (Benham, 1984; Boissy et al., 2007; Shusuke Sato, Tarumizu, & Hatae, 1993). 69 

Interestingly, social grooming has been linked to production; it has been positively correlated with 70 

both milk yield and weight gain in past studies (Arave & Albright, 1981; S. Sato et al., 1991). The 71 

social preferences of cattle are also reflected in their spatial proximity to others in the group 72 

(Bouissou, Boissy, Le Neindre, & Veissier, 2001), thus the ability to maintain suitable inter-individual 73 
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space is important to cows (Bøe & Færevik, 2003). In fact, Miller and Wood-Gush (1991) suggest the 74 

lower levels of agonistic behaviour exhibited by cows at pasture (compared to indoor-housed cows) is 75 

due to a greater opportunity to avoid others.   76 

As the dairy industry becomes more aware of the impact the social environment can have on 77 

welfare and production, there is growing demand for information on optimal size, stocking density 78 

and composition of dairy cow management groups. In order to begin answering questions on the most 79 

effective social conditions for cattle, we first need to accurately measure and understand their social 80 

dynamics and group structure. Social network analysis (SNA) has been developed to quantitatively 81 

measure and analyse the structure of groups and patterns caused by dyadic social interactions (Croft, 82 

James & Krause, 2008). A network is made up of nodes (individuals; cows in this case) and edges 83 

(interactions; association time in this case). We can calculate statistics for individuals in the network 84 

ty number of shortest 85 

paths between pairs of individuals that pass through a particular individual) (Krause, Lusseau, & 86 

James, 2009).   These methods allow us to study non-random patterns of association, and detect 87 

differences in group structure that may be linked to individual attributes (Croft et al., 2008). SNA is 88 

becoming more popular in the field of animal behaviour, however its potential for improving animal 89 

welfare in captive populations is currently underappreciated, with only a handful of empirical studies 90 

to date (e.g. rhesus macaques; McCowan, Anderson, Heagarty, and Cameron (2008), Atlantic salmon; 91 

Cañon Jones et al. (2010), pigtailed macaques; Flack, Girvan, De Waal, and Krakauer (2006), 92 

domestic chickens (Abeyesinghe, Drewe, Asher, Wathes, & Collins, 2013)). Though few, these 93 

examples establish very promising applications of SNA in animal management and have been centred 94 

on reducing aggression and improving social cohesion. They suggest an important future role for SNA 95 

in animal welfare science (Koene & Ipema, 2014).   96 

In this study, we quantified the social network structure of a group of lactating dairy cows, 97 

collecting association data using spatial proximity loggers. We corroborated this method by 98 

determining how well associations measured by the proximity loggers matched agonistic and 99 

affiliative interactions recorded during behavioural observations. We predicted that data collected by 100 
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the proximity loggers would closely resemble affiliative interactions, but would not resemble 101 

agonistic interactions. Group-level structure was measured by testing for communities, betweenness 102 

centralisation, and assessing network stability over time. We investigated individual-level structure by 103 

determining whether individuals formed socially differentiated relationships, and by assessing the 104 

extent to which cows were assorted by attributes (lactation number, breed, gregariousness and milk 105 

production). 106 

 107 

METHODS 108 

Animals and housing  109 

The study was carried out on a commercial dairy farm in Devon, UK from November 2012 to June 110 

2013, in the form of 4 one-month data collection periods (see table 1). The farm comprises a 1045m2 111 

(approx.) barn with straw yard housing and a voluntary milking system operating two Delaval robotic 112 

milking units. A total mixed ration was fed twice daily (approx. 9am and 5pm) at a feed barrier and 113 

additional concentrate feed was provided during milking and at an out-of-parlour feeder. At any given 114 

time the milking group contained between 106 and 113 lactating cows. Due to year-round calving, 115 

group structure was dynamic with cows entering and leaving depending on calving and drying off 116 

dates, in addition to sale or culling. The total number of unique cows present throughout the study was 117 

134. The group was of mixed breed though the majority were Holstein Friesian (see table 1 for more 118 

details on cows included in the study). A charolais bull was added to the milking group on 07-05-13, 119 

and was therefore present within the fourth period of data collection only.   120 

Although managed and housed as a single milking group, pasture access was regulated (via 121 

 stage of lactation. Cows were restricted to the barn in the early 122 

part of their lactation, however after both testing positive for pregnancy and when milk yield dropped 123 

below a threshold of approximately 26 litres, they were also given free access to pasture. All cows 124 

were thus able to mix when inside the barn, but there were physical constraints to group synchrony 125 

when any cows with access chose to enter the pasture. As this affected some cows to associate, 126 

we incorporated this management factor into all null models used in our analyses.  127 
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Individual attribute data (lactation number, breed, last calving date and milk yield) were 128 

downloaded from the on-farm computer system (Delpro). The number of days in milk (DIM) for each 129 

cow was determined as the number of days from the last calving date to the first day of each data 130 

collection period. We summed the daily milk yield over each data collection period for each 131 

individual.  132 

Spatial proximity loggers  133 

The proximity loggers used in this study were manufactured by Sirtrack Ltd (New Zealand), and are 134 

supplied as ready-made collars to attach around necks (model E2C181C). These devices 135 

broadcast unique identification codes over an ultra-high frequency (UHF) channel while 136 

simultaneously searching for the ID codes of others within a pre-set distance range. Each logger is 137 

able to detect up to eight others simultaneously; recording its ID, the date, start and end time of the 138 

contact and its duration. The detection distance may be altered by users, by adjusting the power 139 

setting of a UHF coefficient range (0 62). The duration that any two loggers need be separated for an 140 

141 

loggers were set to a UHF value of 47 (which logged contacts at 1.5 2m in pilot tests using collared 142 

horses) with a separation time of 120s. Due to memory fill rate we deployed and removed loggers on 143 

four occasions so that data could be downloaded, hence we divided our analyses into four data 144 

collection periods (hereafter referred to as deployments 1-4).  145 

Proximity logger data handling  146 

Data collected by proximity loggers consisted of dyadic associations over time. We summed the 147 

duration of all associations between dyads within each deployment period and these values were used 148 

to construct social networks. As advised in previous studies (Drewe et al., 2012; Prange, Jordan, 149 

Hunter, & Gehrt, 2006) we removed all 1-second contact records from the database prior to analysis, 150 

as these are considered unreliable, occurring sporadically when individuals are at the edge of the 151 

detection range (Drewe et al., 2012; Prange et al., 2006). Only loggers that functioned fully (both 152 

sending and receiving signals) for the whole deployment period were included in analysis. We 153 
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therefore omitted data from broken loggers, and from cows that entered or left the milking group (or 154 

whose loggers fell off) mid-way through a deployment (see table 1 for the number of individuals 155 

included in analyses for each deployment). As a result of this, and the turnover of cows throughout the 156 

study period, group membership differed across the deployments. It is important to note that as battery 157 

power decreases over time (which is expected to  affect logger function - see Drewe et al. (2012)),  we 158 

analysed each deployment separately and did not make any quantitative comparisons between the 159 

deployments.  160 

Logging bias correction  161 

Previous work has shown that spatial proximity loggers can exhibit a sampling bias due to inter-162 

logger variation in performance (Boyland, James, Mlynski, Madden, & Croft, 2013). This is made 163 

evident by association matrices with highly variable dyadic reciprocity; contact durations between 164 

dyads should be mirrored if loggers are functioning uniformly. We  therefore adjusted data using 165 

correction methods from Boyland et al. (2013). This involved scaling all contact durations in an 166 

association matrix relative to the performance of each given logger when compared with the most 167 

under-recorded logger. This was achieved by calculating the percentage difference in contact 168 

durations (e.g. the percentage difference between the total time logger A recorded contact with logger 169 

B, and the total time logger B recorded logger A) between all dyads, then identifying the logger that 170 

was most under-recorded, overall. The total contact duration (all contacts summed over the 171 

deployment period) for each dyad was then reduced according to their logging bias with the most 172 

under-recorded logger. For example, if logger A had a logging bias of 10% when compared to the 173 

most under-recorded logger, the duration that logger A recorded contact with all other loggers would 174 

be reduced by 10%. We thus standardised associations between loggers relative to each other. We used 175 

to calculate the reciprocity between each side of the matrix (about the 176 

diagonal) both before and after application of this correction to assess its efficacy. This resulted in 177 

 0.91, 0.56 to 0.72, and 0.67 to 0.92 (p < 2.2e-16 in 178 

all cases) for deployments 1-4 respectively. We symmetrised the corrected matrix by averaging values 179 

within each dyad (as proximity cannot be directed), before creating social networks.  180 
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Measuring the relationship between proximity data and social interactions 181 

In order to quantify how proximity logger data relates to social relationships, we compared the 182 

association strengths measured by the proximity loggers with measures of observed social interactions 183 

between cows. We undertook 160 hours of behavioural observations in which 10 focal cows (chosen 184 

at random) wearing proximity loggers were observed for 4 hours/day on 4 days (therefore a total 185 

observation duration of 16 hours for each cow), during deployment 4. Focal cows varied in age (2-10 186 

years old), lactation number (1-7), breed and DIM (30-112). During the behavioural observations, 187 

each cow was followed for a total of 4 hours in a day, usually separated by periods of lying (during 188 

which observations were paused). We recorded all agonistic and affiliative interactions (continuous 189 

sampling), including the identity of individuals interacting with the focal cow. Chasing, head butting, 190 

head shaking and threat gestures were considered agonistic interactions and social grooming was 191 

considered an  interaction. When multiple interactions occurred between the same 192 

individuals consecutively (e.g. a cow head butts the focal cow three times), interactions were recorded 193 

as one event provided the time between each interaction was <10 seconds. Additionally, we recorded 194 

nearest neighbour  (or multiple neighbours when there were two or 195 

more cows equidistant to the focal) at 2 minute intervals. The nearest neighbour was identified as the 196 

cow (any part of body) that was closest to the head of the focal cow; if the closest cow was over 5 197 

cow body lengths away from the focal it was not recorded and the focal cow was considered to have 198 

no neighbours. We only included dyads in our analyses that had been recorded as nearest neighbours 199 

>10 times, indicating a level of opportunity to interact during the behavioural observations. We 200 

calculated the correlation coefficient between the association strength measured by 201 

the loggers, and the number of aggressive and affiliative events between dyads. To calculate statistical 202 

significance we permuted (10,000 imputations) association strengths among dyads, while constraining 203 

the identity of the focal individual.  204 

Statistical Analysis  205 
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We used R statistical software version 3.1.0 (R Core Team, 2013)   to prepare and analyse the 206 

(Bates & Maechler, 2014)207 

(Butts, 2014), (Csardi & Nepusz, 2006) (Hadfield, 2010) 208 

(Oksanen et al., 2013). Principal Components Analysis (PCA) was completed in SPSS v.19, and 209 

weighted degree was calculated using UCINET v.6 (Borgatti, Everett, & Freeman, 1999). 210 

Our observed networks were completely saturated (meaning that all possible dyadic 211 

interactions occurred in the data). In a binary sense our network data thus has no structural topology, 212 

as each cow encountered every other. Because of this we focus much of our analysis of network 213 

structure on the edge weights. To reveal social structure at differing edge weights, we use increasing 214 

contact thresholds as an alternative to performing a single test on a saturated weighted network. We 215 

treat our data as dyadic and use a multilevel mixed-effects model to examine patterns of social 216 

assortment.  217 

Generating expected duration matrices 218 

To control for the effect of farm management practices on associations, observed contact durations 219 

between dyads were compared to durations based on whether or not each cow had access 220 

to pasture. Expected values were calculated by separately summing the total duration that each cow 221 

was in contact with all others with and without pasture access, then assigning the mean value to each 222 

dyad (corresponding to pasture access). This was done for each cow individually to account for the 223 

individual differences in total contact time. Therefore each expected matrix estimates the associations 224 

between each dyad if cows showed no social preference.  225 

Group-level patterns 226 

Community structure  227 

We tested for evidence of community structure, i.e. subsets of individuals that are more closely 228 

 229 

algorithm (Newman, 2006a, 2006b). This method finds the most parsimonious partitioning of a 230 
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network, in which the number and weights of edges are maximised within communities, and 231 

mini best  partitioning of a network is the one that maximises the 232 

modularity coefficient, Q, resulting in individuals belonging to one or more clusters (Lusseau, 233 

Whitehead, & Gero, 2009). We tested for community structure at increasing contact thresholds as an 234 

alternative to performing a single test on a saturated weighted network.  We filtered networks to 235 

contain only associations that were 0-3.25 (in intervals of .25) times the expected value for each dyad, 236 

and then binarised the connections that remained. We compared the maximum modularity value for 237 

each of our filtered observed networks with a suite of values generated by 4999 null networks; each 238 

null network was made by randomising (within individuals) the filtered and binarised networks. We 239 

included the observed maximum Q in the distribution of null networks as it could have arisen by 240 

chance, thus n=5000. We used Equation 1 to calculate a p-value (one-tailed).  241 

Equation 1:   242 

Centralisation 243 

We tested for significant centralisation in the networks, using betweenness centralisation as a test 244 

statistic (Freeman, 1979), and performed this on the observed and 4999 null networks with isolates 245 

removed. Betweenness centralisation is a measure of the individual variation in betweenness 246 

centrality within the network; a star network would be an example of perfect centralisation (c=1). We 247 

compared the observed betweenness centralisation of our observed networks with betweenness 248 

centralisation of null networks (as described above for community structure). Again, networks were 249 

tested at increasing filter thresholds (0-3.25 x expected, at .25 intervals).  250 

Network stability 251 

We examined the stability of associations through time at the group level. Each one-month association 252 

matrix was divided into 4 week long periods, which were compared with each other. To determine the 253 

correlation between two given matrices (with the same actors) we calculated a 254 

correlation coefficient. We generated a p-value by comparing the observed coefficient to a distribution 255 
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of coefficients produced by a null model. Edge-level permutations in the null matrices were stratified 256 

according to pasture access; values were permuted between those dyads that had pasture access, 257 

dyads that did not have pasture access, and dyads in which one cow had pasture access and the other 258 

did not. 259 

Individual-level patterns 260 

Social differentiation  261 

To assess whether associations between cows were more heterogeneous than we would expect given a 262 

null hypothesis that all cows associate uniformly (while accounting for pasture access), we calculated 263 

the following statistic for social differentiation using Equation 2 (based on Whitehead (2008); 264 

appendix 9.4). 265 

Equation 2:   266 

In this equation the difference between the observed value and the expected value is summed for each 267 

dyad, and then divided by the total number of dyads.  268 

Assortment 269 

In order to test for assortment of individuals based on known attributes, we fit mixed-effect models 270 

using a Markov Chain Monte Carlo (MCMC) framework. We tested for significant relationships 271 

between the dependent variable, association strength, and the following fixed factors: gregariousness, 272 

lactation number, pasture access, breed and milk production. To measure milk production, we 273 

quantified DIM and milk yield. Because these variables were highly correlated, we used the principal 274 

component between the two as a variable. This component accounted for a considerable proportion of 275 

the total variance: 82.4%, 80.4%, 78.2%, and 68.1% for deployments 1-4 respectively. We used the 276 

weighted degree of each node in a network, which is the sum of the strength of edges connected to 277 

each node (Croft et al., 2008) (in this case, the total duration of time each cow spent in proximity to 278 

other cows), as a basic measure of individual gregariousness. We calculated the absolute difference in 279 
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value between all dyads for each explanatory variable. For example, if cow A was in her 2nd lactation 280 

and cow B was in her 5th lac281 

Because breed is a categorical variable, we award 0  of 1282 

if they were of different breed.   if dyads had the same 283 

 We included cow ID as a random effect in all models. The multi-284 

membership modelling capacity of the MCMCglmm package (Hadfield, 2010) accounts for the 285 

undirected nature of association measures that result in each cow ID appearing as both individual A 286 

and individual B in a dyad. To satisfy assumptions of normality, we log-transformed the dependent 287 

variable. As our network is completely saturated, we have made the assumption that transitivity (if A 288 

and B are connected and B and C are connected, then there is a greater chance of A and C being 289 

connected) in our network is negligible (see Snijders (2011)). Using a Bayesian approach, we ran 290 

MCMCglmm models with all possible combinations of fixed factors (gregariousness, lactation 291 

number, breed, and pasture access), then identified the best fitting model as the one with the lowest 292 

deviance information criterion (DIC) (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). As milk 293 

production determines pasture access, fixed factors could not be included together in the models. We 294 

therefore ran additional models to test for assortment by milk production, using a subset of cows that 295 

did not have pasture access (as a greater proportion of cows did not have pasture access). 296 

 297 

RESULTS 298 

 299 

Measuring the relationship between proximity data and social interactions 300 

we were only able to include 301 

data from eight of the focal cows in this analysis. There was no relationship between the association 302 

strength recorded by the proximity loggers and the number of aggressive events between cows (r= 303 

0.07, n=63, p=0.51, fig. 1a). In contrast, we found a significant positive relationship between the 304 
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association strength recorded by loggers and the number of affiliative (grooming) events between 305 

cows (r=0.51, n=63, p<0.0001, fig. 1b). 306 

Group-level patterns 307 

Community structure 308 

There was no evidence of community structure at any contact threshold (fig. 2) in the four deployment 309 

networks (fig. 3). 310 

Centralisation 311 

In all four deployments, networks filtered above and including 0.25 times the expected association 312 

showed significant centralisation (fig. 4), p=0.0002 in all cases (excluding deployment 2 at a threshold 313 

of 2.75 times the expected association).  314 

Network stability 315 

All week long association matrices (within a given deployment) were significantly positively 316 

correlated (table 2). The effect size of correlations between consecutive matrices ranged from R2= 317 

0.176 to R2= 0.576. 318 

Individual-level patterns 319 

Social differentiation 320 

There was significant social differentiation in all four deployment networks (table 3); cows associated 321 

with some individuals more and other individuals less, than would be expected by chance (p < 0.001 322 

for all 4 deployments). 323 

Assortment 324 

For all deployments, the model that best predicted the association strength contained all four 325 

variables: gregariousness, lactation number, pasture access and breed (table 4). Across all 326 

deployments there was significant positive assortment by lactation number. Significant positive 327 
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assortment by breed was found in deployments 1-3. Cows were significantly positively assorted by 328 

gregariousness in deployments 1 and 2, and significantly negatively assorted by gregariousness in 329 

deployment 3. In deployment 4 there was a trend for negative assortment by gregariousness and 330 

positive assortment by breed, but these were not significant. A second model showed there was also 331 

positive assortment by milk production for cows without pasture access in all deployments; this 332 

pattern was significant for deployments 1 (post. mean= -0.016, p= 0.026) and 2 (post. mean= -0.03, 333 

p<0.001) but not for deployments 3 (post. mean= -0.012, p= 0.302) and 4 (post. mean= -0.003, p= 334 

0.762). 335 

DISCUSSION 336 

In the current study, we investigated the social network structure of a dynamic group of lactating dairy 337 

cows at two social scales. At the group level, we found significant network centralisation and no 338 

evidence of community sub-structure. At the individual level, we found evidence for differentiated 339 

social relationships and association strength between cows being related to attribute similarity. We 340 

tested whether our spatial proximity networks were reflective of social interactions between 341 

individuals: an important assumption to validate when using this type of data (Farine, 2015). There 342 

was a significant positive correlation between the association strength measured by the proximity 343 

loggers, and the number of social grooming events recorded during behavioural observations. This 344 

supports the use of this method for measuring social preferences and relationships between cattle, and 345 

corresponds to findings of previous studies (Val-Laillet, Guesdon, von Keyserlingk, de Passillé, and 346 

Rushen (2009).  347 

The absence of substructure in the current study  is consistent with findings by Gygax et al. 348 

(2010) who analysed six herds of 24-43 individuals and found that each network was connected as a 349 

single component. Stocking density in this study was 9.5m2/cow (assuming an average group size of 350 

110 cows and that all cows were inside the barn) which is just over current Red Tractor Assurance 351 

guidelines (10m2/cow for a 700-799g cow in a straw bedded system; Red Tractor Farm Assurance 352 

Dairy Scheme, 2014). This may have  limited the potential for cows to avoid other individuals and for 353 
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the formation of spatial divisions. In fact, space was further reduced during routine husbandry: cows 354 

were restricted to one half of the barn during the distribution of straw bedding (for approximately 45 355 

minutes, twice a day) and when bedding areas were scraped out (for approximately 3 hours on every 356 

10th day). Maintaining suitable inter-individual distance according to partner preferences and social 357 

status reduces conflict between cattle, and thus decreases social stress (Miller & Wood-Gush, 1991; 358 

O'Connell, Giller, & Meaney, 1989). Further research into the effects of space allowance on social 359 

structure would be particularly beneficial. 360 

Significant network centralisation suggests that a few key cows may be particularly 361 

influential in terms of social structure, and by consequence these individuals may have 362 

disproportionate influence over the rate of disease spread, and the maintenance of group stability. 363 

Furthermore, betweenness centralisation can be important for a  regrouping 364 

(Makagon, McCowan, & Mench, 2012). Assessing social instability and its consequences is crucial to 365 

the dairy industry, as group perturbation is known to have negative effects on the welfare and 366 

production of cows (Bouissou et al., 2001; Hasegawa et al., 1997; Hultgren & Svensson, 2009; Raussi 367 

et al., 2005; von Keyserlingk et al., 2008). At the group level, cows showed some consistency in their 368 

social associations. Our results suggest that up to 57% of the social structure in one week is repeated 369 

in the following week. However in some cases the amount of repeated structure is as low as 17% for 370 

consecutive weeks, indicating a substantial (83%) change in network structure. Though we only 371 

analysed a subset of the cows in the milking group (those present for the entirety of a deployment), we 372 

remind readers that group composition was dynamic. During deployments, a number of cows that 373 

were not included in analyses were moved into and out of the milking group, which likely had some 374 

effect on the relationships between cows that were included in the analyses.  375 

Correlations indicating network stability for deployment 3 were markedly lower than that of 376 

other deployments; this is not easily accounted for by group movements, which were not noticeably 377 

different for deployment 3. A potential explanation is that although the number of individuals moved 378 

in deployment 3 does not appear particularly conspicuous, the identity of those individuals differed, 379 

which may be significant. Individuals occupying certain network positions can have more influence 380 
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on network structure than others, and so their introduction or removal from a group can have a greater 381 

impact (Makagon et al., 2012). ailed 382 

macaques (Macaca nemestrina) carried out by Flack et al. (2006) revealed that network structure was 383 

largely influenced by a  small subset of individuals who performed a specific role in conflict 384 

management. T Pruitt and Keiser (2014)) can be 385 

characterised in some animal groups by factors such as dominance (e.g. in lekking species; Robel and 386 

Ballard (1974)), status (e.g. in species with a highly developed class system; Aron, Passera, and 387 

Keller (1994)) and personality (Pruitt & Keiser, 2014). We encourage further research to investigate 388 

this effect in farm animals, including the characteristics and/or roles of individuals that hold positions 389 

in the network deemed particularly important for network stability. Conclusions from such studies 390 

could be applied in husbandry to increase animal welfare and production. 391 

There was significant social differentiation in the relationships between cows; individuals 392 

associated more or less with some individuals than would be expected if social associations occurred 393 

at random. This supports previous findings that cows interact non-uniformly, often forming 394 

preferential relationships with some while avoiding other individuals (Gygax et al., 2010; Reinhardt & 395 

Reinhardt, 1981; Wasilewski, 2003).  We explored some factors that could account for the non-396 

random associations observed in the networks, testing for network assortment: a measure of the 397 

tendency of individuals to associate with others that share their characteristics (Wolf, Mawdsley, 398 

Trillmich, & James, 2007). This is commonly observed in human groups, with association due to 399 

similar race, ethnicity, age, religion etc. having a huge impact on social preferences (McPherson, 400 

Smith-Lovin, & Cook, 2001). The benefits of assortative mixing can be explained by group synchrony 401 

because, in order for a group to function efficiently, activities such as foraging, travelling and resting 402 

should be coordinated (Conradt & Roper, 2000). Variation in classes such as age, sex or size may 403 

result in differences in energy requirements and motivation (e.g. larger individuals may require longer 404 

or more frequent foraging bouts than smaller individuals) and deviation from an  optimal 405 

activity budget may come at some cost. This may lead to individuals associating more with others that 406 

are similar to themselves.  Assortativity can lead to group segregation (Conradt & Roper, 2000), as 407 
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observed in some wild ungulates such as bighorn sheep (Ovis canadensis) (Conradt, 1998) and red 408 

deer (Cervus elaphus) (Ruckstuhl & Neuhaus, 2002) who spend most of their lives in all-male or all-409 

female groups that only re-join periodically, such as during the breeding season. There is also 410 

evidence of assortment by kin in some animal societies (Silk, Altmann, & Alberts, 2006; Ward & 411 

Hart, 2003; Wiszniewski, Lusseau, & Möller, 2010).  412 

The influence of assortment on network structure has been investigated in previous studies 413 

(e.g. trinidadian guppies (Croft et al., 2005); pigtailed macaques (Flack et al., 2006); bottlenose 414 

dolphins (Lusseau & Newman, 2004)) but this study is the first  to 415 

investigate these patterns in a farm animal species. Behavioural synchrony has been observed in 416 

cattle, and synchronised lying has been used as a welfare indicator (Fregonesi & Leaver, 2001). Stoye, 417 

Porter, and Stamp Dawkins (2012) found that cows were more synchronised with their nearest 418 

neighbours (than other randomly selected individuals in the group) and suggest that postural 419 

synchronisation in cattle is the result of both social facilitation and concurrent activity cycles. In this 420 

study, we found significant patterns of assortative mixing by breed, milk production, pasture access, 421 

lactation number and gregariousness. Cows associated more with those of the same breed to 422 

themselves (significant for deployments 1-3).  The different breeds in the study group may be 423 

reflective of body mass and energy requirements (and by extension, activity budget). For example, 424 

most Holstein-Friesian cows were notably larger than most Ayrshire cows. Cows associated more with 425 

those similar in milk production in all deployments, and these patterns were statistically significant for 426 

deployments 1 and 2. Assortative mixing by milk production may also be related to energy 427 

requirements, which vary with stage of lactation/pregnancy and yield (Coulon & Rémond, 1991). 428 

Additionally, DIM is a measure of how long a cow has been present in the milking group and thus is a 429 

measure of the opportunity for social contact and bond formation. Cows associated significantly more 430 

with others of similar lactation number. This measure reflects age, which may affect energy demands 431 

to some extent, but is likely to be more significant in terms of familiarity between individuals; the 432 

amount of previous experience of conspecifics may be directly related to strength of bonds. Indeed, 433 

familiarity has been identified as an important factor for social relationships in previous studies 434 
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(Gygax et al., 2010; Takeda, Sato, & Sugawara, 2003; Wikberg, Ting, & Sicotte, 2014). In a study by 435 

Gygax et al. (2010), synchronicity was significantly affected by whether or not cows were reared 436 

together and/or had been together during the latest dry period.  437 

Individuals were significantly assorted by gregariousness in all four networks. However the 438 

direction of the effect differed, highlighting the advantage of repeated data periods in this study. In 439 

deployments 1 and 2 cows associated significantly more with those with similar gregariousness values 440 

to themselves, while in deployments 3 and 4 cows associated less with others of similar 441 

gregariousness (this pattern was significant in deployment 3). Further work is required to determine 442 

which factors drive temporal dynamics in the social networks of dairy cattle. Assortment by 443 

gregariousness has been reported in other species (Croft et al., 2005; Lusseau et al., 2006) . It infers 444 

association with others of access to similar social resources (Flack et al., 2006) and may have 445 

implications for the spread of disease and information (Croft et al., 2005). Although significant 446 

assortment was found in the networks, these relationships were surprisingly weak; the variables we 447 

tested accounted for only a small amount of variation in the observed association patterns. In addition 448 

to the removal of cows for culling or selling, cows in this herd calve all year round, resulting in 449 

regular change in  450 

more temporary bonds forming due to factors not accounted for here.  The dominance hierarchy is 451 

likely to influence mixing patterns, as it determines 452 

implications for space use and proximity to others. For example, when resources such as lying areas 453 

are limited and of unequal quality, more dominant individuals will gain access to more favourable 454 

positions, perhaps resulting in these cows lying in closer proximity. At the study farm, cows 455 

voluntarily enter a waiting area when they are due to be milked, and then compete for entry to one of 456 

two milking units. As cows cannot leave the waiting area until they have been milked, the time spent 457 

in this small space is largely determined by dominance, therefore prolonged proximity between 458 

subordinates may be inevitable in some cases. As such, mixing patterns can help identify problems in 459 

farm animal groups, such as when high avoidance patterns lead to uneven distribution of resources 460 

(Koene & Ipema, 2014) 461 
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 462 

Conclusions  463 

Fundamental to investigations into the social components of welfare and productivity, is a thorough 464 

understanding of the structure in which social mechanisms occur. Our results shed light on the factors 465 

affecting the social network structure of dairy cows in a commercial farm setting. Networks did not 466 

indicate any community structure; however we found significant centralisation in all deployment 467 

periods. Relationships between individuals were differentiated, with cows associating non-randomly, 468 

and there was assortative mixing based on lactation number, breed, gregariousness and milk 469 

production. Analyses revealed relatively low network stability which may have implications for 470 

welfare and productivity via social stress. This study demonstrates the use of innovative automated 471 

tools and social network analysis for understanding social relationships in farm animal groups, both of 472 

which are likely to play an important role in the future of animal welfare science.  473 
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 650 

FIGURE CAPTIONS 651 

Figure 1. Correlation between the association strength recorded by the proximity loggers and the 652 

number of (a) aggressive (r= 0.07, n=63, p=0.51) and (b) affiliative (r=0.51, n=63, p<0.0001) events 653 

observed between cows during behavioural observations (p-values are based on permutation tests) 654 

 655 

Figure 2. Patterns of community structure during the four logger deployments. There was no 656 

significant community structure found at any filter threshold for deployments 1-4 (a-d). Empty circles 657 

indicate the observed maximum modularity for each network. Solid circles indicate the maximum 658 

modularity generated by the null model, with arrows specifying 95% confidence intervals 659 

 660 

Figure 3. Visualisation of cow social networks that have been filtered to only include total 661 

associations that were 2 (a), 2.5 (b) or 3 (c) times longer than expected based on networks generated 662 

by a null model (controlling for pasture access), for deployments 1-4 663 

 664 

Figure 4. Network betweenness centralisation at increasing filter thresholds for deployments 1-4 (a-d). 665 

Empty circles indicate the observed mean betweenness centralisation in each network. Solid circles 666 

indicate the mean betweenness centralisation generated by the null model, with arrows specifying 667 
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95% confidence intervals. Filtered networks showed significant betweenness centralisation, except for 668 

deployment 2 at a threshold of 2.75 (p=0.1) 669 

 670 



Table 1. Descriptive statistics of cows included in analyses and others in the milking group during each deployment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deployment 1 2 3 4 

Data period 08/11/12  
to 06/12/12 

22/12/12  
to 18/01/13 

14/03/13  
to 09/04/13 

13/05/13  
to 09/06/13 

 N 94 73 59 64 

Cows included 
in analyses 

Breed: 
Ayrshire 
British Friesian 
Brown Swiss Cross  
Holstein Friesian 
Holstein Friesian Cross 
Holstein 
Holstein Cross  
British Shorthorn 
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Pasture access - Y  
Pasture access - N 
 

 
59 
35 
 

 
69 
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45 
28 

 

48 
16 

All cows in 
milking group 

Total N 125 114 114 117 

N calved 9 6 8 4 

N dried off 9 5 3 6 
N given pasture access 
within deployment 2 1 6 6 





Table 2. orrelations between each week-long matrix, measuring network stability for deployments 

1-4. Significance was calculated using a null model with edge-level permutations, 

access 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Week-long matrices 
Deployment 

1 2 3 4 

1 and  2 R2=.421*  R2=.415*  R2=.26*  R2=.501*  

2 and  3 R22=.424*  R2=.368*  R2=.198*  R2=.524*  

3 and  4 R2=.462*  R2=.327*  R2=.176*  R2=.576*  

1 and  3 R2=.378*  R2=.332*  R2=.173*  R2=.433*  

2 and  4 R2=.378*  R2=.401*  R2=.112*  R2=.482*  

1 and  4 R2=.377*  R2=.371*  R2=.034**  R2=.416*  

 *p=.0002, **p=.031 



Table 3. The social differentiation measured in deployments 1-4, indicates that cows were significantly more 

heterogeneous than we would expect given a null hypothesis that all cows associate uniformly (while accounting for 

pasture access) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deployment 

Social differentiation 

 

95% quantile 

of null 

distribution 

p value 

Observed Median of Nulls 

1 30274488 
 

998195.5 
 

1027177 
 0.0002 

2 29276011 
 

965649.8 
 

999924.9 
 0.0002 

3 31105959 1100702 1148958 0.0002 
 

4 39014159 953668.4 995659.7 0.0002 



 

Table 4. Results of best fitting model (indicated by lowest deviance information criterion) from mixed model 

regression, measuring assortment of cows by traits in deployments 1-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deployment Factor Posterior mean l-95% CI u-95% CI p 

1 

(Intercept) 3.996 3.938 4.065 <0.001 
 

Degree 
 

-0.0004 -0.0007 -0.0002 <0.001 
 

Lactation 
number -0.019 -0.024 -0.015 <0.001 

 
Pasture 
access -0.13 -0.142 -0.117 <0.001 

 
Breed -0.048 -0.034 -0.061 <0.001 

     

2 

(Intercept) 3.969 3.912 4.037 <.001 
 

Degree -0.0006 -0.001 -0.0002 0.002 
 

Lactation 
number -0.021 -0.026 -0.016 <0.001 

 
Pasture 
access -0.087 -0.146 -0.022 0.004 

 
Breed -0.031 -0.011 -0.049 -0.002 

     

3 

(Intercept) 4.031 3.965 4.09 <0.001 
 

Degree 0.0013 0.009 0.0019 <0.001 
 

Lactation 
number -0.014 -0.019 -0.008 <0.001 
Pasture 
access -0.013 -0.027 0.004 0.098 

 
Breed -0.024 -0.004 -0.048 0.036 

     

4 

(Intercept) 3.925 3.834 4.02 <0.001 
 

Degree 0.0004 0.0001 0.0008 0.094 
 

Lactation 
number -0.018 -0.023 -0.013 <0.001 

 
Pasture 
access -0.287 -0.308 -0.267 <0.001 

 
Breed -0.022 -0.002 -0.048 0.11 
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Figure 2  
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