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Abstract We consider the effect of suddenly applying a uniform heat flux to a vertical wall bounding a

porous medium which is saturated by a Bingham fluid. We consider both an infinite porous domain and a

vertical channel of finite width. Initially, the evolving temperature field provides too little buoyancy force

to overcome the yield threshold of the fluid. For the infinite domain convection will always eventually arise,

but this does not necessarily happen in the vertical channel. We show (i) how the presence of yield surfaces

alters the classical results for Newtonian flows and (ii) the manner in which the locations of the yield surfaces

change as time progresses.

Keywords Porous media · Boundary layer · Unsteady flow · Convection · Bingham fluid · Yield

stress
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Nomenclature

Latin letters

D equal to ln δ

F (Rb) location of the yield surface

g gravity

G threshold body force

K permeability

L length scale

p pressure

px pressure gradient in the x-direction

Q total vertical velocity flux

Ra Darcy-Rayleigh number

Rb Rees-Bingham number

t time

T temperature (dimensional)

T0 ambient (cold) temperature

T1 temperature of heated surface

u vertical Darcy velocity

x vertical coordinate

y horizontal coordinate

z dummy variable

Greek letters

α thermal diffusivity

β coefficient of cubical expansion

η similarity variation

ηy location of yield surface

θ temperature (nondimensional)

µ dynamic viscosity

ρ reference density

σ heat capacity ratio

Other symbols

dimensional quantities

1 Introduction

Bingham fluids are an example of a yield stress fluid. Unlike Herschel-Bulkeley and Casson fluids, they

exhibit a linear stress-strain relationship once the yield stress is exceeded. They arise in a wide variety of

situations both in the environment and industry, and examples of the very many natural and man-made

fluids which exhibit a yield stress have been collated and prsented in the chapter [1].

The aim of the present short paper is to investigate the manner in which convection arises when a Bingham

fluid saturates a porous medium. There already exist some papers on this type of topic, but they are

concerned with the equivalent fluid problem, i.e. there is no porous matrix present. We refer to the analyses
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by Yang and Yeh [2] and Bayazitoglu et al. [3] who studied free convection in a sidewall-heated channel.

They find that steady convection will only arise whenever the Rayleigh number is sufficiently large that the

buoyancy force is then able to overcome the yield stress. When flow occurs the velocity profile consists of five

regions, with three regions of flow alternating with two of plug flow (i.e. constant velocity with no shear).

The plug flow regions are themselves moving and are placed at equal distances either side of the centreline

of the channel. Other papers which consider variations on this theme are those by Patel and Ingham [4] who

consider a mixed convection with the combination of buoyancy and a driving pressure gradient, Barletta and

Magyari [5] who consider a free convection variant on vertical Couette flow, and Karimfazli and Frigaard [6]

whose study of free convection when the boundary temperatures vary linearly with distance up the walls.

The unsteady analysis of Kleppe and Marner [7] is also important because it considers the evolution of the

temperature and velocity profiles in a vertical channel after an sudden change in temperature of one of the

vertical walls.

The present paper considers the unsteady unidirection convection which is set up by suddenly changing

the boundary heat flux of a vertical surface. This is a natural extension to the work of Rees and Bassom [8]

who studied an impulisive change in the boundary temperature. We will see that the final outcome here has

many qualititative differences from those found in [8]. Again, we will consider both a semi-infinite domain

(i.e. bounded by a single vertical wall), and a vertical channel of constant thickness. As in [8] buoyancy forces

spread into the porous medium due to the diffusion of heat from the heated surface. We find that convection

does not happen at first, but that there is an onset time after which convection persists. We present detailed

exact solutions for the locations of the yield surfaces and overall velocity flux, and an asymptotic analysis

yields highly accurate data for large times.

2 Governing Equations

We follow the early paper by Pascal [X] which employed a threshold gradient model to model the one-

dimensional flow of a Bingham fluid in a porous medium:

u =







−K

µ

[

1− G

|px|
]

px when |px| > G,

0 otherwise,
(1)

where G denotes the threshold gradient (or, more generally, the threshold body force) above which the fluid

yields. When buoyancy is included as an extra body force, the threshold model becomes,

u =











−K

µ

[

1− G

|px − ρgβ(T − T0)|

]

(

px − ρgβ(T − T0)
)

when |px − ρgβ(T − T0)| > G,

0 otherwise,

(2)

where x is now the vertical coordinate and u is the corresponding Darcy velocity. We have assumed that the

Boussinesq approximation applies when writing down the buoyancy term, and T0 is the initial temperature

of the porous medium. If a heated vertical surface is of infinite extent in both the positive and negative

x-directions, then there will be no horizontal fluid velocity, and therefore v = 0. We may allow both u and T

to be functions only of the horizontal coordinate, y, and time, t, and so the equation of continuity is satisfied

and the heat transport equation is,

σTt = αTy y, (3)

where σ is heat capacity ratio between the porous medium and the saturating fluid, and α is the thermal

diffusivity of the porous medium. At t = 0 a uniform and steady heat flux, q, is applied to the vertical

bounding surface:

k
∂T

∂y
= −q, (4)

where k is the thermal conductivity of the medium.

3



Equations (2) and (3) may be nondimensionalised using the scalings,

(x, y) = L(x, y), u =
α

L
u, p =

αµ

K
p, T = T0 +

qL

k
θ, t =

σL2

α
t, G =

αµ

KL
Rb, (5)

and we obtain,

u =















Ra θ − px − Rb, Rb < Ra θ − px,

0, −Rb < Ra θ − px < Rb,

Ra θ − px +Rb, Ra θ − px < −Rb,

(6)

and

θt = θyy. (7)

In the above the Darcy-Rayleigh number is given by

Ra =
ρgβqKL2

kµα
, (8)

and the parameter,

Rb =
KL

µα
G. (9)

This latter parameter is a scaled version of the yield pressure gradient, G, and might be referred to as a

porous convective Bingham number; hereinafter it is termed the Rees-Bingham number.

The lengthscale, L, which was introduced in Eq. (5), will be taken to be the dimensional width of the

vertical channel when that configuration is being studied. But when the porous medium occupies a semi-

infinite domain there is no natural external lengthscale that may be used. Therefore we set the Darcy-

Rayleigh number to a unit value, which will then automatically define a natural lengthscale, L, in terms of

the properties of the medium; thus we have,

L =
µα

ρgβ(T1 − T0)K
. (10)

The initial condition in nondimensional form is simply that θ = 0 at t = 0. For both the infinite domain

and the vertical channel we have ∂θ/∂y = −1 at y = 0, whereas we have θ → 0 as y → ∞ for the infinite

domain, and either θ = 0 at y = 1 (case (i)) or ∂θ/∂y = 0 at y = 1 (case (ii)) for the vertical channel.

3 The semi-infinite domain

We consider first the heat transfer and flow which is caused by suddenly imposing a unit heat flux to the

vertical bounding surface at y = 0, i.e. the boundary condition,

∂θ

∂y
= −1, (11)

applies there, and we expect that θ → 0 as y → ∞. As has already been discussed we are setting Ra = 1 in

this semi-infinite case.

Equation (7) for θ is well-known to possess a self-similar solution of the form,

θ = t1/2f(η) where η =
y

2
√
t
, (12)

and where

f ′′ + 2ηf ′ = 2f, f ′(0) = −1, f → 0 as η → ∞. (13)

The solution is

f = 2 ierfc η = 2

∫

∞

η

erfc ξ dξ =
2√
π
e−η2 − 2η erfc η, (14)
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and this profile is shown in Fig. 1.

When the domain is infinite this developing thermal field will generate only upward flows, and therefore

the hydrostatic gradient, px, which is seen in Eq. (6), must take zero values when one considers conditions

in the ambient medium. Therefore Eq. (6) simplifies to,

u =

{

θ − Rb when Rb < θ

0 when θ < Rb.
(15)

From this we see that flow arises only when θ takes values which are above Rb. Therefore there will always

be an interval of time during which no flow is induced. Given that, at any instant of time, the highest

temperature in the domain is at η = 0, Eq. (14) shows that the time at which convection begins is when

t1/2f(0) = Rb, or

t =
πRb2

4
. (16)

At later times convection takes place in the near-surface sublayer of the thermal boundary layer and there

is no motion outside of the yield surface where θ = Rb. If we denote the location of this yield surface by ηy,

then
2√
π
e−ηy

2 − 2ηy erfc ηy =
Rb√
t
. (17)

The variation of ηy with t/Rb2 is shown in Fig. 2.

We may now determine the total velocity flux as a function of both Rb and time. First we let,

t = Rb2τ, (18)

and therefore the total velocity flux is now given by

Q =

∫

∞

0

u dy = 2
√
τ Rb

∫ ηy

0

Rb
[√

τf(ξ)− 1
]

dξ = Rb2τ erf ηy = t erf ηy. (19)

Given that Q/t is a function solely of ηy which is, in turn, a function of τ , we display the variation of Q/t

with log10 4τ/π in Figure 3. Convection begins when τ = π/4, and the curve given in Fig. 3 may also be

interpreted as the total velocity flux compared with that of a Newtonian fluid.

4 The vertical channel

We now consider convection within a tall cavity with unit nondimensional width, and therefore the Darcy-

Rayleigh number now appears as a parameter, as discussed earlier. As in Rees and Bassom [*] we assume

that the flow, when it arises, will be parallel and dependent solely on y and t; there will exist turning regions

at the upper and lower extremities of the channel within which there will be further x-dependence. One

major consequence of this is that there is now no mean flow up the cavity at any time.

Beginning with θ = 0 everywhere, heat transport is induced by suddenly imposing θy = −1 on y = 0. We

will consider two cases corresponding to the following boundary conditions on the second wall:

Case 1: θ = 0

Case 2: θy = 0

}

on y = 1. (20)

Case 1 corresponds to maintaining the right hand wall at the original ambient temperature and therefore

one would expect the temperature eventually to tend towards a steady state. On the other hand, Case 2

admits no heat loss, and therefore the mean temperature of the channel will rise linearly in time.

The two respective solutions of (7) are found using a Laplace transform in time; we find that,

Case 1: θ =
∞
∑

n=0

2t1/2(−1)n
[

ierfc
(

η +
n√
t

)

− ierfc
(n+ 1√

t
− η

)]

, (21)
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Case 2: θ =

∞
∑

n=0

2t1/2
[

ierfc
(

η +
n√
t

)

+ ierfc
(n+ 1√

t
− η

)]

, (22)

When t ≪ 1 it is clear that these two solutions reproduce (14) corrsponding to the infinite domain because

the thermal boundary layer is very thin at such early times.

Some temperature profiles at selected times are shown in Figures 4 and 5. For both cases the early-time

solutions display the ierfc profile which grows in amplitude with time. For Case 1 (Fig. 4) the evolution

towards the ultimate state where

θ = 1− y (23)

is essentially complete by t = 2. For Case 2 (Fig. 5) the final state is

θ = t+ 1
2y

2 − y + 1
3 , (24)

and the exact profile at t = 0.5 is seen to have a very small error; the dotted lines in Fig. 5 depict the

asymptotic state.

It is necessary now to determine conditions under which convection will occur. At sufficiently early times

the fluid remains stagnant because insufficient heat has passed into the channel and buoyancy forces are too

weak. Bearing in mind the form of (6), incipient convection must correspond to

Ra θmax − px = Rb and (25)

and

Ra θmin − px = −Rb. (26)

Therefore convection arises when

θmax − θmin = 2
Rb

Ra
, (27)

and the corresponding hydrostatic pressure gradient is

px =
Ra(θmax + θmin)

2
. (28)

As noted in Rees and Bassom (2014) a zero net upward fluid flux cannot be sustained by allowing px to

be zero for all time, as is the case for the infinite domain, and therefore the value of px must vary in time

in order to maintain the zero-vertical-flux condition. Such a variation in the hydrostatic pressure gradient

is a direct physical consequence of the rising mean temperature of the porous medium coupled with the

requirement of zero mean flow. It may be viewed as a readjustment of the hydrostatic pressure due to the

changing environment. Given the above expressions, (23) and (24), the long-term values of Rb above which

there is no convection are given by,

Case 1: Rb = 1
2Ra, Case 2: Rb = 1

4Ra. (29)

At earlier times we may calculate the values of θmax and θmin from Eqs. (21) and (22) to find the times at

which convection starts, and the result of these computations are shown in Fig. 6. For a chosen value of

Rb/Ra the fluid is stagnant until the appropriate curve is crossed after which convection ensues. The Figure

confirms the bounds given in Eq. (29) which give the maximum values of Rb above which the fluid remains

stagnant.

It is essential to determine where the yield surfaces are as a function of time. If we write those locations

in terms of η, then Eq. (6) gives the following two conditions:

θ(η1, t) =
px
Ra

+
Rb

Ra
, (30)

and

θ(η2, t) =
px
Ra

− Rb

Ra
, (31)
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where η1 and η2 are the locations and where η1 < η2. The condition of zero fluid flux up the layer means

that the following condition must be satisfied:

∫ η1

0

[

θ − px
Ra

− Rb

Ra

]

dη +

∫ η3

η2

[

θ − px
Ra

+
Rb

Ra

]

dη = 0. (32)

This becomes,

2t1/2
∞
∑

n=0

An

[

i2erfc
( n√

t

)

− i2erfc
(

η1 +
n√
t

)

+ i2erfc
(

η2 +
n√
t

)

− i2erfc
(

η3 +
n√
t

)]

−2t1/2
∞
∑

n=0

Bn

[

i2erfc
(n+ 1√

t

)

− i2erfc
(n+ 1√

t
− η1

)

+ i2erfc
(n+ 1√

t
− η2

)

− i2erfc
(n+ 1√

t
− η3

)]

−(η1 − η2 + η3)
px
Ra

− (η1 + η2 − η3)
Rb

Ra

=0,

(33)

where η3 = 1/(2
√
t), which is equivalent to y = 1, and where the new coefficents, An and Bn are given by,

Case 1: An = (−1)n, Bn = (−1)n+1, Case 2: An = Bn = 1. (34)

Equations (30), (31) and (33) may be solved for η1, η2 and px/Ra using a straightforward Newton-Raphson

solver and the results obtained are essentially exact to near machine accuracy.

Figures 7 and 8 show the evolution with time of the yield surface locations for a selection of values of

Rb/Ra and for Cases 1 and 2, respectively. In both Figures the abscissae are log10 t in order to view the

evolution over three orders of magnitude. In addition each Figure has two curves corresponding to each

value of Rb/Ra; the channel is delineated into three regions the middle one of which is stagnant, while the

one neighbouring the hot (cold) surface corresponds to upward (downward) flow. Thus, in Fig. 7 and for

Rb/Ra, the whole channel is stagnant until t = 0.0078540 (i.e. log10 t = −2.10491) after which the centreline

of the stagnant plug moves rapidly towards the heated surface and then moves back towards the centre of

the channel. For larger values of Rb/Ra the initial movement of the centre of the plug becomes less rapid,

but in all cases the yield surfaces are symmetrically placed about y = 1
2 when t is sufficiently large. More

specifically they are located at

y = 1
2 ± Rb

Ra
. (35)

This Figure also shows clearly the increasing delay before convection sets in as Rb/Ra increases.

In Fig. 8 it is clear that there is almost no difference between Cases 1 and 2 at early times, and while the

yield surfaces move more quickly to their ultimate positions within the channel for Case 2 when compared

with Case 1, they are no longer located symmetrically about the centreline since the temperature profile is

quadratic rather than linear.

Figures 9 and 10 display information on how the hydrostatic gradient varies with time. For Case 1, which

is shown in Fig. 9, we show the variation of px. For each value of Rb/Ra the value of px is precisely equal

to Rb/Ra, and this arises because Eq. (26) must be satisfied and θmin = 0. As the mean temperature in

the channel rises so does the hydrostatic pressure gradient, and eventually it tends towards 1/2Ra. On the

other hand such a simple analysis for Case 2 cannot be made because θmin is no longer zero, but eventually

rises linearly with time. As the overall temperature profile continues to rise, so does the value of px, and

therefore we have plotted the evolution with time of (px − t)/Ra in Fig. 10.

Finally, we turn to the induced velocity within the layer, and Figs. 11 and 12 show how the maximum and

minimum velocities (which correspond to the boundaries, y = 0 and y = 1, respectively) vary with time.

For both cases we see clearly that flow up the heated surface is greater in magnitude than the flow down

the other surface soon after convection begins. And, for relatively small values of Rb/Ra, the initial velocity

of the flow down the cooler wall is much weaker than its warmer counterpart. As time progresses umax and
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umin tend towards the same magnitude for Case 1, which again reflects the symmetry of the final velocity

profile. There remains a distinct asymmetry at late times for the Case 2 profiles. In these Figures we have

also included the corresponding curves for Newtonian fluids for comparison.

5 Conclusions

We have studied the effect of the presence of a yield threshold on convection which is induced by suddenly

heating a vertical surface bounding a porous medium with a uniform heat flux. Three cases were considered,

namely a infinitely wide domain, and two different channels which are distinguished by having either a fixed

cold temperature or an insulated boundary condition.

The temperature profile evolves in time in a manner which is independent of any fluid flow and these have

been presented. By virtue of the fact that heat is being supplied contiuously to the porous medium the fluid

remains stagnant at early times because the resulting buoyancy forces are too weak to overcome the yield

threshold.

For the infinite domain convection will always happen eventually since the boundary temperature is

proportional to t1/2 and therefore buoyancy forces also rise without limit. On the other hand convection

will arise only if Rb < 1
2Ra for Case 1 and if Rb < 1

4Ra for Case2. These results are somewhat different

from those obtained in Rees and Bassom (2015) where the analogous cases were considered where the heated

surface was held at a fixed temperature (though not the equivalent of the present Case 2). There it was

found that there is a restriction on the value of Rb/Ra even for the infinite domain. It was also found that

convection, if it does arise, will begin immediately.
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Appendix

The aim here is to solve (17) for ηy for large values of t. Using the substitution (18), Eq.(17) becomes,

2√
π
e−η2

y − 2ηy erfc ηy =
1√
τ
. (36)

We omit the details of our analysis, which follows closely that of [8], we eventually obtain the following series:

ηy = δ−1/2
[

1 + (12D)δ − 1
8 (D

2 + 4D + 6)δ2 + 1
16 (D

3 + 8D2 + 26D+ 33)δ3 + · · ·
]

. (37)

Evaluation of the scaled mass flux given in Eq. (19) requires the evaluation of erf ηy. We find that,

Q/t = 1− 1

2(τδ)1/2

[

2 + (D + 2)δ − (14D
2 + 2D + 9

2 )δ
2 + · · ·

]

. (38)

In these two expressions we have defined δ and D according to

e−1/δ =

√

π

τ

(

or δ = 2/ ln(τ/π)
)

and D = ln δ. (39)
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Figure 1: Showing the self-similar temperature profile, f(η), for the infinite domain.
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Figure 2: The variation in the location of the yield surface for the infintie domain.
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Figure 3: The variation in a scaled total mass flux with time for the infinite domain.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

θ

y

Figure 4: Temperature profiles for the tall channel (Case 1) at t = 0.0001, 0.001, 0.01, 0.02, 0.05, 0.1, 0.2,

0.5, 1, 2, and as t → ∞ (dotted line).
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Figure 5: Temperature profiles for the tall channel (Case 2) at t = 0.0001, 0.001, 0.01, 0.02, 0.05, 0.1, 0.2

and 0.5. Also shown as dotted lines are the large-t profiles given by Eqs. (23) and (24) but evaluated at

t = 0.2 and 0.5.
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Figure 6: Showing the time at which convection first arises; points below the curves correspond to stagnant

fluid. Case 1 corresponds to teh continuous line and Case 2 to the dotted line.
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Figure 7: Locations of the yield surfaces as functions of time for Rb/Ra = 0.02 (dotted lines), 0.05, 0.1, 0.2,

0.3, 0.4, 0.45 and 0.49 (dashed lines). Each value of Rb has two yield surfaces, and the fluid is stationary

between these two surfaces. Case 1.
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Figure 8: Locations of the yield surfaces as functions of time for Rb/Ra = 0.02 (dotted lines), 0.05, 0.1, 0.15,

0.2, 0.225, 0.24 and 0.245 (dashed lines). Each value of Rb has two yield surfaces, and the fluid is stationary

between these two surfaces. Case 2.
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Figure 9: Variation with time of the value of px/Ra; for Rb/Ra = 0.02 (dotted line), 0.05, 0.1, 0.2, 0.3, 0.4

and 0.45 (dashed line).
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Figure 10: Variation with time of the value of (px − t)/Ra; for Rb/Ra = 0.02 (dotted line), 0.05, 0.1, 0.15,

0.2, 0.225, 0.24 and 0.245 (dashed line).
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Figure 11: Variation with time of the maximum and minimum fluid velocities for Rb/Ra = 0 (dashed line)

0.02 (dotted lines), 0.05, 0.1, 0.2, 0.3, 0.4, 0.45 and 0.49 (short dashes). Curves which lie above the line,

u = 0, represent the maxima while those below represent the minima. Case 1.
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Figure 12: Variation with time of the maximum and minimum fluid velocities for Rb/Ra = 0 (dashed line)

0.02 (dotted lines), 0.05, 0.1, 0.15, 0.2, 0.225, 0.245 and 0.245 (short dashes). Curves which lie above the

line, u = 0, represent the maxima while those below represent the minima. Case 2.
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