

Citation for published version:
Beasley, A, Walker, L & Clarke, C 2015, 'Developing and Implementing Dynamic Partial Reconfiguration for Pre-
Emptible Context Switching and Continuous End-To-End Dataflow Applications' Paper presented at Altera SoC
Developers Forum, Frankfurt, UK United Kingdom, 14/10/15 - 14/10/15, .

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161915405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/developing-and-implementing-dynamic-partial-reconfiguration-for-preemptible-context-switching-and-continuous-endtoend-dataflow-applications(a1950829-2246-4231-8db8-4d2b3f84d599).html

Developing and Implementing Dynamic Partial
Reconfiguration for Pre-Emptible Context
Switching and Continuous End-To-End Dataflow
Applications

Alex Beasley1, Luke Walker, Dr. Chris Clarke

1 A.E.Beasley@bath.ac.uk

Department of Electrical and Electronic Engineering, University of Bath

Abstract:

This study explores the benefits of the Dynamic Partial Reconfiguration (DPR) on Field Programmable Gate Array
(FPGA) based System on Chip (SoC) architectures. Consideration is given to the constraints imposed by the
implementation of partial reconfiguration on both pre-emptible context switching and continuous end-to-end
dataflow applications. Skeleton structure systems that permit the insertion and removal of ‘blocks’ into the
overall FPGA floorplan have been developed. These can be reconfigured dynamically by the on chip system host
even during data processing. In pre-emptible context switching maintaining the execution state of a design before
switching away from it becomes of paramount importance; this work presents a new Pre-emptible Flip Flop (PFF)
design that is used as a basis for a Task Specific Access Structure (TSAS) for FPGA designs and then proposes an
algorithm to automate the insertion of these PFF’s into a synthesised design. Expanding into continuous dataflow
application design allows the system host to re-route signals during the partial reconfiguration process and then
re-establish the processing chain with the new configuration hence maintaining a continuous uninterrupted
dataflow.

The design flow used in this work makes use of non-standard IP and tools that are not supported by Altera for the
Cyclone V SoC. However, as this paper shows, partial reconfiguration is possible inside the Cyclone V SoC device.
For further information please contact the authors.

i. Introduction

The development of System on Chip Field Programmable Gate Arrays (FPGA-SoC) have brought about significant
increase in functionality from the traditional FPGA. The combination of the dedicated silicon processor alongside the
FPGA fabric on the same chip has superseded the previous method of instantiating “soft core” processors out of the
FPGA fabric to provide support for software routines that can interact with the FPGA along a low latency bus.
Embedding a dedicated processor (Hard Processor System — HPS) provides greater system flexibility such as the
opportunity to dynamically reconfigure the FPGA at run-time. Dynamic reconfiguration of the FPGA fabric allows the
realisation of adaptable, software-like, designs to be instantiated and executed on the FPGA. Thus making full use of
the advantages of using dedicated hardware without the massive overhead that comes with implementing all
possible algorithms at once that a system may need in its lifecycle.

This paper explores and develops two potential applications of this technology: pre-emptive switching between
complete systems including hardware accelerators and the on-the-fly modification of data or signal pipelines.
Modern CPUs achieve multitasking by switching between software tasks pre-emptively; requiring saving the context
(‘state’) of the current task so that it may be restored later. Based on this methodology a similar system can be
achieved on an FPGA by saving and restoring the context of the registers [1]. Unlike the context of a software
program (which consists of a small number of registers) the context of an FPGA design can be large; including the
values stored by all flip-flops and registers, as well as any memory. This is the first type of system to be explored. The

mailto:A.E.Beasley@bath.ac.uk

second type of system brings about even more challenges as it requires the system output to remain functioning
even while the partial reconfiguration of the pipeline is occurring.

On some FPGA devices context saving or loading may be performed via a Configuration Port [2],[3],[4]; however this
is not present on all devices and can result in a large amount of redundant context data being saved or loaded [5].
Task Specific Access Structures (TSAS) provide a more generic solution to this problem which can provide the frame
work to be able to save and load data as required for a pre-emptible context switching design. They trade of an
increase in the amount of resources needed to implement them with a reduction in system redundancy.

Dynamic Partial Reconfiguration (DPR) is the basis for implementing these new structures on FPGAs. Since this
technology allows for on-the-fly reconfiguration of the FPGA it is possible to dynamically alter the systems behaviour
or even change the system running all together while the device is active in the field. In order to achieve this
skeleton structures had to be developed that allow the implementation of both context switchable designs and
partially reconfigurable pipelines without the need for the FPGA to be reconfigured by the manufacturing process.
For the context switchable designs this entailed the need to design a new pre-emptible flip flop (PFF) design to build
a TSAS from and in the case of the task pipeline the structure had to be able to provide a continuous output that isn’t
disturbed the reconfiguration process.

The contributions of this paper are the development of dynamically reconfigurable systems for FPGAs in which their
benefits and implications are explored. From the development of these systems a new PFF design has been created
based on the system explored in [6] and a method to convert non-context switchable implementations to context
switchable implementations automatically. Further to this, systems are created that dynamically alter the behaviour
of a pipeline that has been implemented on an FPGA while maintaining a constant output.

The structure of the remaining part of this article is as follows: Section 2 details how dynamic reconfiguration of an
FPGA is accomplished and the two types: full and partial reconfiguration. Section 3 discusses the new pre-emptive
flip-flop for the context switchable systems and proposes a system for the automatic implementation of this system.
Section 4 describes a dynamically reconfigurable pipeline that maintains the systems output at all times. Section 5
demonstrates the feasibility by comparing the save/restore performance as well as the resources used with and
without scan-path structures in two HAS tasks on an Altera Cyclone V SoC. Finally Section 6 presents the Conclusions
and Future Work.

ii. Dynamic Reconfiguration

Dynamic Reconfiguration of an FPGA is the re-assignment of the FPGAs configuration at run time. This means the
device remains operational before, during and after the process and there is no need for power cycling to bring the
new configuration online. This takes two forms: Full Dynamic Reconfiguration (FDR), used to change the entire
system, and Partial Dynamic Reconfiguration (PDR), acts upon a portion of the FPGA lay out while allowing the rest of
the device to function as normal. FDR prevents the FPGA from providing the user with an output while the
reconfiguration is taking place however it is easier to implement and has a reduced risk of causing Single Event
Upsets (SEU) as the entire device configuration is scrubbed prior to loading the new configuration. PDR requires the
design of a wrapper around the reconfigurable region that holds the input signals during the reconfiguration process
to prevent operation in that region and limit the potential for SEUs.

Both full and partial reconfiguration requires the synthesis of the design files prior to having the system operate. The
design environment is used to create the configurations files required for the FPGA for both full and partial
reconfiguration. The types of files required for the operations differ: full reconfiguration replaces the entire
configuration of the FPGA it uses a standard SRAM object file (.sof) as would usually be used to configure an FPGA,
which is then converted to an object file which is usable by the internal host to configure the device. By contrast the
partial reconfiguration is only concerned with a section of the FPGA fabric and requires a raw bit stream (.rbf)
generated from partial mask SRAM object files (.pmsf). The design flow for partially reconfigurable designs differs
from a standard design as the partial reconfigurability utilises design partitioning for the reconfigurable regions and
logic locking which prevents the compiler from using the space in the reconfigurable design region for other parts of
the design and confines the reconfigurable part of the design to a specific region. Once the logic locked design
regions are created reconfigurable design revisions must be created in which the design files may be manipulated to
reflect the changes made to the design when partial reconfiguration is initialised. Another type of design revision

that may be used is the aggregate revision which is used for timing analysis of the design with the different revisions
in place [7]. The design flow is detailed in Figure 1.

Figure 1 - Design flow for partially reconfigurable systems

Partial Reconfiguration creates regions of ‘reconfigurable’ logic that sit in pre-designated areas within the FPGA
floorplan, these must then be connected to the static logic surrounding them Figure 2. The most practical way to do
so is by means of a standard interface that is coherent for each configuration as it important to remember the ports
in the static logic cannot be altered once configured. By keeping a consistent interface to each re-configuration there
is a reduction in unnecessary port declarations leading to wasted interconnect usage.

Figure 2 - Connection between static and reconfigurable FPGA regions

Currently the process of dynamic reconfiguration takes milliseconds to achieve which may limit its potential
applications. The advantages of on the fly reconfiguration outweigh this current limitation. The device becomes
infinitely more flexible than it used to be allowing them to become a feasible alternative to a processor to perform
traditional processor tasks. They have been proven to be significantly faster than GPPs, CPUs or DSPs to perform
certain tasks (i.e. take fewer clock cycles) [8], making them more efficient and quicker to complete a task leading to
higher system throughput. There is the potential for less system overhead compared to designs that have previously
been implemented on more than one FPGA device to provide the necessary floor space. FPGA designs also tend to
be more deterministic than equivalent processor designs meaning the arrival of the system output is more consistent
and less likely to cause a system to ‘hang’.

Figure 3 - Pre-emptible Flip-Flop Connections

iii. Context switching design
The specific details of the PFFs used in the context switchable HAS differ slightly from those presented by others [6]
The PFFs implemented in this design require two new signals: HOLD and SCAN. The HOLD signal is shared with each
flip-flop, when it is held high the operation of the flip-flop is stopped. It must be noted that as this is a shared single
bus for this signal that proper system timing considerations must be considered when designing the system so that
the HOLD signal for every flip flop is the same on each clock edge. This method only considers single clock domain
systems close to the HPS fabric as asynchronous systems by their very nature cannot be stopped on a single clock
edge. The SCAN signal is controlled by the HPS and used to control the propagation of the state of each PFF along the
scan chain.

The developed PFF operates as follows: while the HOLD and SCAN lines are low the flip-flop operates as normal; if
the SCAN line is high during this time, then this does not affect the flip-flop behaviour. When the HOLD line goes high
the flip-flop is halted, and no longer under the control of the clock, reset and enable lines. If the SCAN line is high
during this time, then positive clock edges cause the value on the PFF to shift its value along to the next PFF in the
scan-path.

The implementation could be achieved using similar methods to scan chain insertion for ASIC testing [9], permitting
automation in the FPGA design flow. This will allow designers to take existing FPGA designs and convert them to
context switchable designs to work as part of HAS. It is therefore important that the design of the PFF only enhances
the behaviour of the original flip-flop without compromising functionality. Based on these requirements, the PFF is
modelled upon a standard D-type flip-flop with 4 additional ports: scan-in; scan-out; HOLD and SCAN Figure 4 . Scan
paths are constructed by connecting the scan-in and scan-out ports on neighbouring flip-flops Figure 5 . Internally the
scan-in port and the D port may be multiplexed together to the original flip-flop’s D port; the scan-out port and Q
port may both be internally connected to the Q output of the original flip-flop, however for ease of demonstration a
port has been added to represent the behaviour while the design is halted.

Figure 4 - Scan-chain connected to ports on HPS [6]

The current implementation of the PFF has been achieved by manually inserting the modified flip-flop at a
behavioural level using a Hardware Descriptive Language (HDL). SystemVerilog provides a new interface feature that
can be used to connect modules together in a quick and consistent manner. This was used to connect the new HOLD,
SCAN, scan-in and scan-out ports which could then be passed through the module port-list to the next level in the
design. This process is repeated until the top-level module, where the Interface structures are instantiated and
connected together. At the top level of the design the flip-flop chain are connected to the save and load ports of the
HPS, and additional controller modules are instantiated to connect the SCAN and HOLD controls to the HPS. Flip-flop
chains must be instantiated as multiples of 32 parallel chains to enable the context to be saved as quickly as possible
through a 32-bit Lightweight AXI bridge to the HPS. When a design is unable to divisible the number of flip-flops by
32, additional padding flip-flops are added to create the complete scan-path.

Manual insertion at the behavioural level is naturally a slow and laborious implementation: human nature could
cause context storage elements can be overlooked as well as leading to more verbose code. An automated method
of conversion between non-context switchable and context switchable designs is therefore proposed. The PFF has
been designed so that its connections simply augment the original flip-flop design, therefore after synthesis the gate-
level netlist could be parsed to search for flip-flops / structures which will hold the state of an FPGA design.
Essentially this creates an automated process operating at the gate-level. A parser is able to identify the flip-flops
that need converting and replace them with the PFF then automatically link the additional scan- ports together. The
automated process would also add-in any controlling modules to the top-level module. This process could even be
included as part of the synthesis engine.

Figure 5 - Flow chart potential automatic insertion system for new PFF's

Figure 6 demonstrates the automated process as a flow chart — a program parses the net list and checks each
module instantiation against a list of context storage elements. If a match is found, the old flip-flop is replaced with a
new PFF maintaining the original connections. Once the end of the file has been reached, the total number of PFFs is
known, padding may be added as required with the inputs connected to ground. Next the SCAN and HOLD ports can
be connected to the required drivers and the scan-in and out ports can be connected together. In order to make this
process independent of the specific FPGAs architecture the new file will then undergo re-synthesis for the target
device.

iv. Pipelined Data Processing Systems

Pipeline processing breaks down a large task into a series of sub-tasks [10], each one fed by its predecessor, such
that the output of the system is the same as performing the operation as one. Data pipelining is traditionally applied
to streamed data, for instance in the case of multimedia, networking, digital security, scientific processing etc. by
embedded processor. Nawinne et al. looked at applying this in a Multiple-Processor System on Chip (MPSoC)
architecture in [10] but with the advancements in FPGA-SoC devices and the ability to perform partial
reconfiguration on the fly, it is now possible to implement this technology on FPGA’s. The dynamic partial
reconfiguration capability of the FPGA device means it can be viewed as a more “software algorithm” friendly device
where hardware implementations of software processes can be realised, thus making use of the FPGA’s speed at
performing tasks and more deterministic output while maintaining the flexibility to change the pipeline based on the
needs of the user.

Figure 6 - Pipeline system

The ability to keep reconfigure the pipeline while keeping the system output constant affords greater opportunities
for where this could be implemented, for example in the case of live audio or video processing, such that the end
user does not notice the transition from one system to another. A frame work has been created that works in
conjunction with the systems embedded host to manipulate the dataflow around the area undergoing
reconfiguration and then re-establish the data flow path with the new configuration, which has been demonstrated
pictorially in Figure 8.

Figure 7 - Flow diagram of the partial reconfiguration process of a single stage in a pipeline

Figure 8 - Example skeleton structure for a partially reconfigurable pipeline with interfacing and bypass chains

Figure 9 - Example skeleton structure for a partially reconfigurable pipeline with interfacing and paired reconfigurable regions

There are a multitude of different potential ways the system can be configured with the reconfigurable regions
depending on the end application. Figure 9 shows each reconfigurable region with a bypass path that adds delay to
the data path such that while reconfiguration is in progress the data is passed through the delay channel and
samples aren’t lost. This works well for a system where having a few milliseconds of samples that aren’t processed
doesn’t matter in the end result, such as live audio processing. However there are also applications where it is
important to ensure the data is always subject to being processed at each point of the pipeline, Figure 10
demonstrates a method to ensure this is the case. Here the reconfigurable regions are arranged as pairs but only one
in each pair is used at a time, leaving the other to be reconfigured when it is necessary. Once the reconfiguration has
been complete the regions are switched so the new configuration is used. It is important to note that if a block or
process in the pipeline that is being switched has inherent delay, this delay is compensated for during the switching
to achieve a seamless output of the system.

The system is configured with an internal partial reconfiguration manager, based on the Altera Corp. IP for Stratix V
devices, used in conjunction with the embedded ARM core to provide reconfigurability. Configuration files for the
device are stored on off chip memory in the form of a micro SD card and a FAT32 driver was written to allow the
ARM core to interact with the memory and load new configuration files from it. A wrapper ensures that the signals
into the partial reconfiguration region remain static during the process to reduce the risk of SEUs.

v. Experimentation
A. Setup

Both the context switching and the pipelined designs were implemented on a DE1-SoC Development Board
(TerASIC), consisting of a Cyclone V SoC (Altera) device and peripherals. To test the performance and functionality of
the systems the times to achieve both full and partial dynamic reconfiguration from the embedded ARM core where
measured as well as the save and load times for the new pre-emptive flip-flop structure. It was deemed sensible to
create several different programs to test the context switching design as the configuration size of an implementation
effects the time taken to perform a save or load operation: an MD5 hashing system (MD5) and a LED Patterning
design (LEDP), which also had software counterparts which that ran on the HPS portion of the SoC, to measure the
effect of hardware acceleration.

TABLE I
ALMS USED BEFORE AND AFTER CONVERSION

Design Original ALMs Context Switchable ALMs
MD5 6136.7 7397.7
LEDP 89.2 92.0

TABLE II
SAVE AND RESTORE TIMES FOR VARIOUS FPGA DESIGNS

Design Configuration
Size (kB)

Save Time (µs) Load Time (µs)

MD5 48 13158 7289
LEDP 0.096 356 20

Reference 0 334 7

FPGA designs were created using behavioural level SystemVerilog in Quartus II Design Software (Altera), with the
software counterpart created using C in ARM Design Suite 5 (DS5) Altera Edition. Design verification was provided by
both ModelSIM logic simulation and real world testing. Once both dual software/hardware tasks had been verified,
they were converted to use the PFF and the behaviour was re-evaluated using the same methods. Table I shows the
FPGA ALMs used both before and after the conversion to PFFs. In the case of the MD5 hashing design approximately
20% more ALMs were required, but only 3% for LEDP design. The difference in percentage increase may have been
because the former design previously used memory blocks, which had to be resynthesized using Logic Array Blocks
(LABs). As there are two different types of memory: Random Access Memory (RAM) or Read Only Memory (ROM),
methods for dealing with these will differ. RAM will require the scan chain to save the data from the system when a
reconfiguration occurs ready to be loaded back when the system is restored. This requires a wrapper to incorporate
scan chain removal of the data. ROM cannot be written to during operation by a given configuration; therefore if a
system consists of ROM there would be no need to save the context when switching away from the configuration;
only to load the fixed configuration back when the system is restored.

B. Performance

Tests were carried out on the ability of both the software and hardware implementations to save and restore their
context, Table II, along with a zero context design used as a reference example. It can be seen from Table II that the
time taken to load and save the context of the tasks is significant, however despite this the save and restore times
are comparable to those reported by Jozwik et al [3] for TSAS per kB. Jozwik et al achieved times per kB of
approximately 266.3µs and 175.1µs respectively compared to the 274.1µs and 151.9µs respectively reported for this
system.

Two factors may increase the save and restore times recorded: non-optimised code and non-optimised FPGA
communication. At present the code used to save and restore the tasks has undergone no manual or compiler
optimisations. Furthermore the save and restore is done through PIO cores provided by Altera mapped via a
Lightweight AXI Bridge to the HPS, which has been selected for ease of use, rather than low latency performance.
Improvements or changes to either of these factors may yield decreased save and restore times.

TABLE III
Full Dynamic Reconfiguration time for compressed MD5 hashing FPGA design

Design Time without
DMA (ms)

Time with
DMA (ms)

MD5 Hashing
algorithm

476 51

Device reconfiguration times were also measured and show in Tables III (full dynamic reconfiguration) and IV (partial
dynamic reconfiguration). For the full dynamic reconfiguration the FPGA image was compressed resulting in a file
size of ~2.5MB and the FPGA configuration was set to FPP x16, compression: enabled, encryption: optional and POR
delay: fast. The times taken to perform the full dynamic reconfiguration of the cyclone V device using the FPGA
manager both with and without the Direct Memory Access have been evaluated. Although the times taken to
perform the full reconfiguration are in the order of milliseconds the effect of adding the DMA results in a substantial
approximately 10 times increase on the speed of the reconfiguration process.

TABLE IV
Partial Dynamic Reconfiguration times for uncompressed images of FPGA designs
Design ALMs Combinatorial

LUTs
Dedicated

Logic
Registers

Time (ms)

5x5 2D Swap
Median Filter

5784.5 3206 19621 7064

Audio Delay
with LED
counter

396.5 704 91 1783

Audio Delay
with LED
Flasher

(On/Off)

177 251 85 1667

The times taken to perform partial dynamic reconfiguration over the AXI/Avalon bus are then detailed in table IV,
these FPGA bit streams are uncompressed due to a limitation of the Quartus II environment not supporting partial
bitstream compression for the cyclone V devices. As can be seen here increasing the size of the design to be partially
reconfigured results in a much greater reconfiguration time, from 1.7 seconds to just over 7 seconds for the median
filter. If a system was required to perform multiple reconfiguration tasks in a short period of time this solution would
be inappropriate, however for configurations that will be implemented for extended periods of time the few seconds
required to perform the reconfiguration are less of an issue.

While currently this technology is in its infancy, this speed increase between a system without DMA and with DMA
proves promising that further developments will significantly improve the time taken to dynamically reconfigure an
FPGA. Being able to compress partial binary bit streams would also improve performance for the cyclone V partial
reconfiguration time.

vi. Conclusions and further work

It has been shown that FPGA-SoCs are very capable and flexible with their embedded process it is possible to design
systems that can reconfigure themselves, both fully and partially on the fly. The paper explored the implications of
this flexibility and presented two cases: pre-emptive context switching and continuous end-to-end pipelines. The
reconfigurable ability of the devices allows hardware implementations of software algorithms without confining the
system to one design or the need for massive overhead to accommodate multiple algorithms that can be switched in
and out. Further work will explore methods to decrease the reconfiguration time and to perform comparisons of the
time taken to perform dynamic reconfiguration on other Altera products.

REFERENCES

1. Levinson, L., et al. Preemptive multitasking on FPGAs. in Field-Programmable Custom Computing Machines,
2000 IEEE Symposium on. 2000.

2. Gong, L.K., O. Diessel, and Acm, Functionally Verifying State Saving and Restoration in Dynamically
Reconfigurable Systems. Fpga 12: Proceedings of the 2012 Acm-Sigda International Symposium on Field
Programmable Gate Arrays. 2012, New York: Assoc Computing Machinery. 241-244.

3. Jozwik, K., et al., Comparison of Preemption Schemes for Partially Reconfigurable FPGAs. Embedded Systems
Letters, IEEE, 2012. 4(2): p. 45-48.

4. Blodget, B., S. McMillan, and P. Lysaght. A lightweight approach for embedded reconfiguration of FPGAs. in
Design, Automation and Test in Europe Conference and Exhibition, 2003. 2003.

5. Kalte, H. and M. Porrmann. Context saving and restoring for multitasking in reconfigurable systems. in Field
Programmable Logic and Applications, 2005. International Conference on. 2005.

6. Jovanovic, S., C. Tanougast, and S. Weber. A Hardware Preemptive Multitasking Mechanism Based on Scan-
path Register Structure for FPGA-based Reconfigurable Systems. in Adaptive Hardware and Systems, 2007.
AHS 2007. Second NASA/ESA Conference on. 2007.

7. Altera. Performing Partial Reconfiguration. 2013 [cited 2015 25/08/2015]; Available from:
http://quartushelp.altera.com/13.1/mergedProjects/comp/comp/comp_pro_part_reconfig.htm.

http://quartushelp.altera.com/13.1/mergedProjects/comp/comp/comp_pro_part_reconfig.htm

8. Chauhan, A., A. Rajawat, and R. Patel. Reconfiguration of FPGA for Domain Specific Applications Using
Embedded System Approach. in 2009 International Conference on Signal Processing Systems. 2009.

9. Zaourar, L., Y. Kieffer, and C. Aktouf. An Innovative Methodology for Scan Chain Insertion and Analysis at RTL.
in Test Symposium (ATS), 2011 20th Asian. 2011.

10. Nawinne, I.B., et al. Heterogeneous processor pipeline for a product cipher application. in Industrial and
Information Systems (ICIIS), 2011 6th IEEE International Conference on. 2011.

	iii. Context switching design
	TABLE I

