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We present a minimal model to describe the onset of collective motion seen when a population of locusts are
placed in an annular arena. At low densities motion is disordered, while at high densities locusts march in a
common direction, which may reverse during the experiment. The data are well captured by an individual-based
model, in which demographic noise leads to the observed density-dependent effects. By fitting the model
parameters to equation-free coefficients, we give a quantitative comparison, showing time series, stationary
distributions, and the mean switching times between states.
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I. INTRODUCTION

Locusts and other migrating insects can form cohesive
swarms at large population densities, which subsequently
travel over huge distances and can have a devastating effect
on agriculture. It is therefore important to understand the
mechanisms governing how the population decides collec-
tively on the direction of migration and the population
density at which this occurs. Stochastic models of collective
migration can be used to study the population-level effects
of individual-level decisions and can demonstrate sudden
changes in collective motion at increased group sizes [1–4].
Investigating the information that an individual may have
within a population is an area of active research and is used
in modeling efforts [5,6]. Although many existing models
produce motion which is qualitatively similar to a variety of
forms of collective behavior [1,2,7–13] (swarming, schooling,
flocking, etc.), very few provide a quantitative comparison to
experimental data [14–18].

To investigate the effects of population density on the
swarming of locusts, Buhl et al. [19] performed a series of
experiments, placing different numbers of locusts in a ring-
shaped arena. They recorded the alignment z(t), which essen-
tially gives the proportion of anticlockwise-moving individuals
(x2) subtracted from the proportion of clockwise-moving
individuals (x1). Thus z = 1 (or z = −1) would indicate
that all individuals are moving clockwise (or anticlock-
wise, respectively), while z = 0 represents equal numbers
of clockwise-moving and anticlockwise-moving individuals.
The authors observed a rapid transition from disordered to
ordered movement as the group size was increased. At low
population densities movement is highly disordered [Fig. 1(a)].
At intermediate densities the population displays long periods
of coherent marching in one direction, punctuated by occa-
sional fast changes in direction [Fig. 1(b)]. At high densities
no direction changes can be seen during the experiment
[Fig. 1(c)].

*Refer to the last sentence of the Acknowledgments.
†Corresponding author: c.yates@bath.ac.uk

Using an equation-free method [13,20,21] Yates et al. [13]
numerically derived the drift and diffusion coefficients of an
assumed underlying stochastic differential equation (SDE)
from the experimental data of Buhl et al. [19]. The diffusion
coefficient was found to be smaller when the locusts were more
aligned (i.e., close to z = ±1). The authors adapted a self-
propelled particle (SPP) model [2] to include this effect and
demonstrated that the adapted model displayed qualitatively
similar population-level behavior to the experimental data.
Subsequently Bode et al. [22] proposed another SPP model
incorporating particle attraction as well as alignment. This
model inherently generated qualitatively similar drift and
diffusion coefficients.

Recently Biancalani et al. [3] used an individual-based
model (IBM) to describe bistability in foraging ant colonies.
This model demonstrates a kind of bistability where the
intrinsic system noise does not simply cause transitions be-
tween stable states present in the deterministic formulation but
instead actively constructs the states themselves. In particular,
using a model with two types of individual, who may recruit
individuals of the opposing type or change type at random,
the intrinsic noise present in the system is found to be greatest
when there are equal numbers of each type of individual and
at a minimum when one or other type of individual dominates
the population. The authors analytically derive an SDE from
the IBM, in which the diffusion coefficient is reduced at the
extremes of the domain, similarly to the diffusion coefficient
found by Yates et al. [13] from the data of Buhl et al. [19].

In this paper we formulate a minimal model that describes
the locust experiment [19], following the approach employed
by Biancalani et al. [3]. Using a variant of the Kramers-Moyal
expansion [23], we analytically derive an SDE directly from
this model and thus give formulas for the explicit dependence
of the drift and diffusion coefficients on the total number
of individuals. These coefficients indicate that in order to
match the experimental data, model locusts must effectively
interact with at least two neighbours simultaneously. Using
a revised coefficient estimation approach we can also derive
drift and diffusion coefficients for the experimental data, and
we use these to estimate model reaction rates consistent with
the experimental data. Interestingly, we find that it is not
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FIG. 1. (Color online) Change in alignment, z(t), over time
demonstrates disorder for five locusts [(a), (d) and (g)], collective
motion with switching between states for 20 locusts [(b), (e) and (h)],
and more persistent collective motion for 35 locusts [(c), (f) and (i)].
Experimental data are displayed in (a)–(c), and equivalent simulations
are shown in (d)–(f) [using reaction rates, given in Table I, fitted
for each value of N ] and (g)–(i) (using reaction rates, r1 = 0.0225,
r2 = 0.0453, r3 = 0.1664, fitted to the averaged data; see below).

necessary to explicitly incorporate space in our model in
order to reproduce the experimentally derived coefficients.
This suggests that the switching behavior of the locusts is
an inherent property of the way they interact with each
other and the frequency of those interactions, rather than
being a consequence of the particular spatial geometry of
the arena. Thus the effect is driven by the density of locusts
and their individual interactions. We quantitatively compare
our model against the experimental data by deriving the
stationary probability distributions (SPDs) and mean first
passage times (MFPTs) between clockwise and anticlockwise
coherent movement.

II. COARSE GRAINING THE
INDIVIDUAL-BASED MODEL

We consider a population of N individuals, split into
clockwise-moving (X1) and anticlockwise-moving (X2) pop-
ulations. Individuals may change direction spontaneously or
decide to change direction as the result of interactions with one
or two locusts traveling in the opposite direction. The model
may be summarized in the following system of interactions:

X1
r̂1→ X2, X2

r̂1→ X1, (1)

X1 + X2
r̂2→ 2X1, X1 + X2

r̂2→ 2X2, (2)

2X1 + X2
r̂3→ 3X1, X1 + 2X2

r̂3→ 3X2. (3)

Thus the rate of transitioning from state b to state a, T (a|b) is
given by

T +(x1) ≡ T

(
x1 + 1

N

∣∣∣∣x1

)
=

3∑
i=1

rix
i−1
1 (1 − x1), (4)

T −(x1) ≡ T

(
x1 − 1

N

∣∣∣∣x1

)
=

3∑
i=1

rix1(1 − x1)i−1, (5)

where we have rescaled the rates ri = r̂i/N
i for i = 1,2,3

when converting between locust numbers, X1, and locust
proportions, x1 = X1/N . Using these transition rates we can
write down the master equation for the probability density
function P (x1,t) [24]:

∂P

∂t
(x1,t) =

∑
x ′

1 �=x1

[T (x1|x ′
1)P (x ′

1,t) − T (x ′
1|x1)P (x1,t)]. (6)

Introducing the step operators, ε±, which represent the creation
or destruction of an individual of species X1 we can Taylor
expand in 1/N , the inverse of the population size [24]:

ε±f (x1) = f

(
x1 ± 1

N

)
≈

(
1 ± 1

N
∂x1 + 1

2N2
∂2
x1

)
f (x1),

(7)

where f (x1) is a general function of the fraction of the species,
x1. The master equation (6) can be rewritten using the step
operators and subsequently approximated using Eq. (7) to give

∂P

∂t
(x1,t) = [(ε− − 1)T + + (ε+

1 − 1)T −]P (x1,t)

≈ − 1

N

∂

∂x1
[(T + − T −)P (x1,t)]

+ 1

2N2

∂2

∂x2
1

[(T + + T −)P (x1,t)], (8)

neglecting terms of O(1/N3).
Rescaling time using t/N → t and inserting the expres-

sions for the transition rates [Eqs. (4) and (5)] gives the
Fokker-Planck equation

∂P

∂t
(x1,t) = − ∂

∂x1
[AP (x1,t)] + 1

2N

∂2

∂x2
1

[BP (x1,t)], (9)

where A = r1(1 − 2x1) + r3x1(1 − x1)(2x1 − 1) and B =
r1 + 2r2x1(1 − x1) + r3x1(1 − x1). Or, in terms of z = 2x1 − 1,

∂P

∂t
(z,t) = − ∂

∂z
[F (z)P (z,t)] + ∂2

∂z2
[D(z)P (z,t)], (10)

for

F (z) = −2r1z + r3z(1 − z2)/2, (11)

D(z) = 2[r1 + (2r2 + r3)(1 − z2)/4]/N. (12)

This FPE corresponds to the Itô SDE

ż = F (z) +
√

2D(z)η(t), (13)

where η(t) is Gaussian white noise with zero mean and
correlator 〈η(t)η(t ′)〉 = δ(t − t ′).
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TABLE I. Parameter values fitted for each value of N (see
Supplemental Material).

N 5 6 7 10 15 20 25 30 35 40

r1 0.004 0.009 0.006 0.009 0.025 0.014 0.016 0.031 0.035 0.042
r2 0.036 0.011 0.046 0.073 0.000 0.099 0.189 0.011 0.088 0.102
r3 0.009 0.017 0.002 0.022 0.143 0.090 0.064 0.289 0.400 0.413

For r3 = 0 this gives the model studied by Biancalani
et al. [3], which displays bistability at for small populations
but not for large populations. In contrast, in our system as
N increases in size, so that F (z) is the dominant term in the
equation, there is an additional pair of nonzero steady states
at z = ±√

1 − 4r1/r3 in the analogous deterministic system.
Hence higher-order interactions between locusts (i.e., the r3

interaction) are required in order for the model to demonstrate
the observed coherent motion: long periods of clockwise or
anticlockwise movement. Note that including higher-order
interactions does not change the qualitative population-level
phenomena observed here.

III. EQUATION-FREE COEFFICIENTS

To quantitatively compare the model with data we estimate
the value of the coefficients [F (z) and D(z)] using a modified
version of the equation-free method used by Yates et al. [13]
(see Supplemental Material [25] for a more detailed descrip-
tion of the implementation of the equation-free technique in
this context). The modified method makes use of the symmetry
of the system, since we do not expect fundamental differences
between clockwise-moving and anticlockwise-moving locusts
and requires initial preprocessing (as used in Refs. [13,19]) to
smooth the data. The initial preprocessing used is a moving
time average with a window of two seconds and is required to
avoid the method becoming overwhelmed with high-frequency
oscillations that likely arise from problems in video tracking
of the individual locusts.

For each group size, we find that the estimated diffusion
[Fig. 2(b)–2(f)] and drift coefficients [Fig. 2(a)–2(e)] are
consistent with the functional forms found by our analysis.
We estimate the parameter values, r1 to r3, by fitting Eqs. (11)
and (12) to the equation-free derived coefficients using the
non-negative least squares method (see Appendix A). The
value of the interaction rates resultant from the least squares
fitting are given in Table I.

Allowing the parameter values to vary with N allows an
extremely good fit to the data (Fig. 2, red lines), and simulating
the IBM with these parameter values gives a good qualitative
agreement to the original time series data [Fig. 1(d)–1(f)]. We
may also rescale the experimental data by N , so that we can fit
all experiments together to give one “average” value for each
of the parameters r1 to r3. This gives a less good fit to the data
(Fig. 2, black lines) but still shows reasonable agreement with
far fewer total parameters. The average parameters also give a
good qualitative agreement to the time series data [Fig. 1(g)–
1(i)]. Comparisons for a wider range of values of N are given
in Supplemental Material Fig. S2.
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FIG. 2. (Color online) Experimentally derived drift [F (z), (a), (c)
and (e)] and diffusion coefficients [D(z), (b), (d) and (f)] compared
to those generated by our model for 5 [(a) and (b)], 20 [(c) and (d)],
and 35 locusts [(e) and (f)]. In each figure the noisy blue (light gray)
curve is the experimentally derived coefficient, the red (smooth light
gray) curve uses individually fitted parameter values (see Table I),
and the black curve uses fitted parameter values averaged over all the
experiments (see Fig. 1 for rates.)

In both cases the equation-free-generated parameter values
capture the large-scale switching behavior, showing disorder at
small populations sizes [Fig. 1(a), 1(d), and 1(g)], long periods
of coherent motion, switching between z = ±1 at intermediate
population sizes [Fig. 1(b), 1(e), and 1(h)], and sustained
clockwise or anticlockwise movement of the population at
high densities [Fig. 1(c), 1(f), and 1(i)]. The high-frequency
fluctuations are not captured by this technique, due to the
necessity of smoothing the initial data and the sensitivity of
the equation-free method to the degree of “discreteness” in the
underlying data. This sensitivity arises from the underlying
assumption when deriving the FPE (and thus when deriving
the equation-free method) that z is a continuous variable. This
assumption is clearly more valid at higher population densities;
however, we have shown that the large-scale population
dynamics are still well captured even at lower densities.

IV. STATIONARY PROBABILITY DISTRIBUTIONS

To test the quantitative fit of our model more systematically,
we calculate the SPD. This is found analytically by setting

052708-3
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FIG. 3. (Color online) The stationary probability distribution de-
rived analytically and calculated by long-run individual-based sim-
ulations for N = 20 locusts. The black curve corresponds to the
analytical solution [see Eq. (16)] and the blue (light gray) histograms
to the results of the simulation. In both scenarios we take reaction
rates, r1 = 0.0225, r2 = 0.0453, r3 = 0.1664, which correspond to
the rates derived from fitting our analytical expressions for drift and
diffusion to the averaged data.

∂P (z,t)/∂t = 0 in Eq. (9) and solving the resulting ordinary
differential equation (ODE):

d2

dz2
[D(z)Ps(z)] − d

dz
[F (z)Ps(z)] = 0. (14)

This can simply be integrated once with respect to z to leave
us with the first order ODE

d

dz
[D(z)Ps(z)] − F (z)Ps(z) = C. (15)

The constant of integration C is set to zero (assuming there
are no sources or sinks of probability), leaving us with a
homogeneous first order ODE which can be solved by means
of an integrating factor: exp[− ∫ {F (z)/D(z)} dz] to give

Ps(z) = c[4r1 + (2r2 + r3)(1 − z2)]
4Nr1(r2+r3)

(2r2+r3)2
−1

e
r3z2N

2(2r2+r3) , (16)

where c is a normalization constant for the probability density
function.

In order to corroborate our theoretically derived stationary
probability distribution we have carried out an individual-level
simulation. By recording the alignment values at appropriately
spaced time points we have determined a simulation-based
SPD with which we compare our analytically derived SPD in
Fig. 3.

In a similar manner we may also compare this analytically
derived SPD with the fitted parameters to the histograms of
the experimental data for each value of N (Fig. 4). As before,
we show the analytical result for both the reaction rates fitted
for each N (red lines) and for the “averaged” reaction rates
(black lines). The analytical result fits well in both cases, with
the least good fit at the lowest population size [Fig. 4(a)],
where the assumption that z is a continuous variable is least
reasonable. Figure 4 shows the progression from an disordered
population to one that spends the majority of the time with most
individuals moving in the same direction. Comparisons for a
wider range of values of N are given in Supplemental Material
Fig. S3.
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FIG. 4. (Color online) Experimentally observed stationary prob-
ability distributions (bars) compared to analytically predicted distri-
butions with fitted parameters [red (light gray) lines] and averaged
fitted parameters (black lines) for (a) 5, (b) 20 and (c) 35 locusts. See
Table I and Fig. 1 for reaction rates.

V. MEAN FIRST PASSAGE TIMES

The time courses generated by our IBM seem to display
similar periods of time spent in each state as those found in the
experimental data (Fig. 1). To compare these quantitatively we
calculate the MFPT between the two maximum values of the
SPD, found numerically for the data. The maxima are given
analytically [using Eq. (16)] as

z = ±zm = ±
√

4r2 + 2r3 + N (r3 − 4r1)

Nr3
. (17)

To find the MFPT [23] we then solve

F (z)
dT

dz
+ D(z)

d2T

dz2
= −1, (18)

numerically, subject to a reflecting boundary condition
(dT/dz = 0) at z = −1 and an absorbing boundary at the
position of the positive maximum (T (zm) = 0). Equation (18)
is derived from the backwards FPE, which gives the oc-
cupancy probability conditioned on the initial position (see
Appendix B). The average time taken for the system to move
from z = −zm to z = zm is then given by T (−zm). The MFPT
and the position of the maxima are shown in Fig. 5. Analytical
predictions fit the general trend of the experimental data well,
demonstrating that the demographic noise present in our model
successfully reproduces the density-dependent effects seen in
the data. We note that the experimental SPDs are very flat
at low population densities [as seen in Fig. 4(a)], which may
account for the discrepancy in maximum positions seen in
Fig. 5(b).
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FIG. 5. (Color online) (a) Experimentally observed mean first
passage time (dotted blue line) compared to analytically predicted
distributions with individually fitted parameters (red line) and
averaged fitted parameters (black line) for a range of values of N .
(b) Position of maximum (zm) for experimental data (dotted blue
line) and the model with individually fitted parameters (red line) and
averaged fitted parameters (black line) for a range of values of N . See
Table I and Fig. 1 for reaction rates.

VI. DISCUSSION

In this paper we have introduced a minimal model to
describe the onset of cohesive motion of a group of locusts
as the group size increases. We demonstrate that collective
behavior can be initiated through simple individual-based
interactions and show that there is an explicit dependence on
the size of the group considered. Our model implies that it is
necessary to include third-order interactions between locusts
(i.e., nonzero r3), in order to have the directional coherence
at large population sizes that is generated by the exponential
term in Eq. (16). We note that this model will display switches
between clockwise-moving and anticlockwise moving popu-
lations for a wide range of parameter values and is generic in
systems of this kind.

We have tested our model quantitatively against experimen-
tal data, by first using the equation-free method [13] to fit for
the parameter values r1 to r3, and then comparing our analytic
predictions against the SPD and MFPT found experimentally
as the number of individuals varies. We note that, as has
been studied for the model by Biancalani et al. [26,27], it
is possible to consider the master equation directly, to derive
exact, but complicated, formulas. These do not add to our
intuition about the model. While our model does not replicate
exactly the high-frequency oscillations found in the original
data, it does capture large-scale population-level behaviors
such as the existence of coherent steady states near z = ±1
and the time scale of switching between these states.
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APPENDIX A: FITTING THE ESTIMATED COEFFICIENTS

Using a least squares formulation it is possible to fit the
model parameters r1,r2, and r3 in order to simultaneously
match the drift and diffusion coefficients of the model to
those of the data. Denoting the discretized forms of the

experimentally derived drift and diffusion coefficients by the
vectors F = (F0, . . . ,FM ) and D = (D0, . . . ,DM ) and the
discrete alignment vector z = (z0, . . . ,zM ), the appropriate
formulation of the least squares problem is as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0

...

FM

D0

...

DM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−z0 0 z0
(
1 − z2

0

)/
4

−z1 0 z1
(
1 − z2

1

)
/4

...
...

...

−zM 0 zM

(
1 − z2

M

)/
4

1/2
(
1 − z2

0

)/
4

(
1 − z2

0

)/
8

1/2
(
1 − z2

1

)/
4

(
1 − z2

1

)/
8

...
...

...

1/2
(
1 − z2

M

)/
4

(
1 − z2

M

)/
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

r1

r2

r3

⎤
⎥⎦.

(A1)
Averaged rates are found by a similar method, but we

first scale the diffusion coefficient D(z) by the number of
locusts, N , so that all the experimental data may be used
together to find just one set of averaged rates. Figure S2 of
the Supplemental Material demonstrates comparison between
the experimentally derived drift and diffusion coefficients
and the fitted coefficients produced by our model for a range
of values of N . We have the additional constraint that none
of our rates can be negative, which requires us to employ
non-negative least squares [28]. We solve the least squares
problem for each value of N using the active set algorithm as
implemented in MATLAB’s non-negative least squares optimizer
lsqnonneg.

Note that although our model does not explicitly incorpo-
rate space, space is implicitly taken account of by our reactions
rates.

APPENDIX B: DERIVATION OF THE MEAN FIRST
PASSAGE TIME

We wish to find the mean time taken for a locust swarm
completely aligned in one direction to become completely
aligned in the opposite direction. In short we are interested
in the mean time for the system, starting at z = −zm or
z = zm, to arrive at z = zm or z = −zm respectively. Clearly,
by employing the individual-based model, we can calculate
this quantity by averaging over many appropriately initialised
simulations or through one long simulation run, recording the
times taken for the system to move from z � −zm to z � zm

and vice versa. We may also calculate the mean first passage
time by employing the coarse-grained version of the model.
The method is standard [23], and we also give it here for
completeness.

We begin by considering the backward Fokker-Planck
(or Kolmogorov) equation. This describes the evolution of
Q(y,t |z,s), the probability of the system having alignment y

at time t , given that the system was at alignment z at an earlier
time, s. The backward FPE differs to the forward FPE in that
it considers changes with respect to the initial conditions, and
is given by

∂Q

∂s
(y,t |z,s) = −F (z)

∂Q

∂z
(y,t |z,s) − D(z)

∂2Q

∂z2
(y,t |z,s).

(B1)
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The probability that the system is still in the region of interest
after time t , starting at position z is

G(z,t) =
∫ zm

−1
Q(y,t |z,0) dz, (B2)

and, since the system is time homogeneous, Q(y,t |z,0) =
Q(y,0|z,−t), the backward Fokker-Planck equation becomes

∂Q

∂t
(y,t |z,0) = F (z)

∂Q

∂z
(y,t |z,0) + D(z)

∂2Q

∂z2
(y,t |z,0).

(B3)
Integrating this equation over y ∈ [−1,zm], we obtain an
evolution equation for the probability that the system remains
in the interval [−1,zm] at time t , given the system started at
z ∈ [−1,zm]:

∂G

∂t
= F (z)

∂G

∂z
+ D(z)

∂2G

∂z2
. (B4)

We must specify the appropriate initial and boundary condi-
tions for this equation. Since we start in the required region at
position z, we have the initial condition

G(z,0) = 1. (B5)

Since, without loss of generality, we are interested in the first
exit time at z = zm we will specify an absorbing boundary
condition there,

G(zm,t) = 0, (B6)

and since there is no flux of probability at z = −1 we
implement a reflecting boundary [23] there,

∂G

∂z

∣∣∣∣
z=−1

= 0. (B7)

Now, the probability that the process first leaves [−1,1]
is given by −∂G/∂t , and so the mean time, T (z), for this to
happen, as a function of the initial position z is given by

T (z) = −
∫ ∞

0
t
∂G

∂t
dt,

=
∫ ∞

0
G(z,t) dt, (B8)

using integration by parts, the initial condition (B5), and the
assumption that all processes will eventually reach z = 1.

Integrating equation (B4) [and employing the initial con-
dition (B5)] and the associated boundary conditions (B6)
and (B7) over all time leaves us with a second-order ordinary
differential equation for the mean first passage time

F (z)
dT

dz
+ D(z)

d2T

dz2
= −1 (B9)

and boundary conditions

dT

dz

∣∣∣∣
z=−1

= 0 (B10)

and

T (zm) = 0, (B11)

which specify a well-posed boundary value problem. The mean
time for the system to move from z = −zm to z = zm is now
given by T (−zm).
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[11] S. Stöcker, Math. Biosci. 156, 167 (1999).
[12] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E.

Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A.
Procaccini et al., Proc. Natl. Acad. Sci. USA 105, 1232
(2008).

[13] C. A. Yates, R. Erban, C. Escudero, I. D. Couzin, J. Buhl, I. G.
Kevrekidis, P. K. Maini, and D. J. T. Sumpter, Proc. Natl. Acad.
Sci. USA 106, 5464 (2009).

[14] I. D. Couzin and J. Krause, Adv. Stud. Behav. 32, 1 (2003).
[15] D. Sumpter, J. Buhl, D. Biro, and I. Couzin, Theor. Biosci. 127,

177 (2008).
[16] A. Berdahl, C. J. Torney, C. C. Ioannou, J. J. Faria, and I. D.

Couzin, Science 339, 574 (2013).
[17] R. P. Mann, A. Perna, D. Strömbom, R. Garnett, J. E. Herbert-
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