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Survival of homogeneous fragmentation processes with killing

Robert Knobloch∗and Andreas E. Kyprianou†

August 20, 2012

Abstract

We consider a homogeneous fragmentation process with killing at an exponential barrier.
With the help of two families of martingales we analyse the decay of the largest fragment for
parameter values that allow for survival. In this respect the present paper is also concerned
with the probability of extinction of the killed process.

AMS 2000 Mathematics Subject Classification: 60J25, 60G09.

Keywords and phrases: homogeneous fragmentation, scale functions, additive martingales, mul-
tiplicative martingales, largest fragment.

1 Introduction and main results

This paper is concerned with a homogeneous fragmentation process in which there is an additional
killing upon crossing a certain space-time barrier (this killing mechanism is defined rigorously in
Section 1.2). In particular, we consider the decay of the largest fragment in this process with killing.

The motivation for the killing procedure that we introduce in the present paper, partly stems from
its relation to the Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP) equation. In the context of
fragmentation processes this connection is studied in [18]. The role an analogous killing plays with
regard to solutions of the FKPP equation in the setting of branching Brownian motions (BBM)
was investigated in [15]. Furthermore, this kind of killing for random multi-particle systems was
considered also in various other contexts and in the literature there is some interesting recent
activity in this regard. The killing of BBM at a linear space-time barrier was also studied in [14] and
recently in [2], where a relation of the killed BBM and its genealogy to continuous-state branching
processes and the Bolthausen-Sznitman coalescent was revealed. Regarding similar killing schemes
for branching random walks we refer e.g. to [1], [10], [11] and [13]. In the context of fragmentation
processes such a killing mechanism has not been considered so far. However, the above-mentioned
papers which are concerned with related types of spatial branching processes suggest that this kind
of killing has interesting applications.
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We begin our exposition by briefly reviewing what is meant by a homogeneous fragmentation
process, thereby introducing some notation.

1.1 homogeneous fragmentation processes

Below we give a brief overview of the definition and structure of a homogeneous fragmentation
process. The reader is referred to Bertoin [6] for a more detailed overview. Let P be the space
of partitions of the natural numbers. Here a partition of N is a sequence π = (π1, π2, · · · ) of
disjoint sets, called blocks, such that

⋃
i∈N πi = N. The blocks of a partition are enumerated in

the increasing order of their least element, that is to say minπi ≤ minπj when i ≤ j (with the
convention that min ∅ =∞). Now consider the measure µ on P, given by

µ(dπ) =

∫

S
̺s(dπ)ν(ds),

where ̺s is the law of Kingman’s paint-box based on s ∈ S (cf. page 98 of Bertoin [6]) with

S :=

{
s = (s1, s2, · · · ) : s1 ≥ s2 ≥ · · · ≥ 0,

∞∑

i=1

si ≤ 1

}
,

and the so-called dislocation measure ν 6= 0 is a measure on S such that

ν(s ∈ S : s2 = 0) = 0 (1)

as well as ∫

S
(1− s1)ν(ds) <∞. (2)

It is known that µ is an exchangeable partition measure, meaning that it is invariant under the
action of finite permutations on P. It is also known (cf. Chapter 3 of Bertoin [6]) that it is possible
to construct a fragmentation process on the space of partitions P with the help of a Poisson point
process {(π(t), k(t)) : t ≥ 0} on P × N which has intensity measure µ ⊗ ♯, where ♯ is the counting
measure. The aforementioned P-valued fragmentation process is a Markov process which we denote
by Π = {Π(t) : t ≥ 0}, where Π(t) = (Π1(t),Π2(t), · · · ) ∈ P is such that at all times t ≥ 0 for which
an atom (π(t), k(t)) occurs in (P\(N, ∅, . . .))× N, Π(t) is obtained from Π(t−) by partitioning the
k(t)-th block into the sub-blocks (Πk(t)(t−)∩ πj(t) : j = 1, 2, · · · ). When ν is a finite measure each
block experiences an exponential holding time before it fragments.

Thanks to the properties of the exchangeable partition measure µ it can be shown that for each t ≥ 0
the distribution of Π(t) is exchangeable and that the blocks of Π(t) have asymptotic frequencies in
the sense that for each i ∈ N the limit

|Πi(t)| := lim
n→∞

1

n
♯{Πi(t) ∩ {1, · · · , n}}

exists almost surely. Moreover, Bertoin showed that |Πi(t)| exists P–a.s. simultaneously for all
t ≥ 0 and i ∈ N.

We denote the countable random jump times of Π by I ⊆ R
+
0 . Further, let F := (Ft)t∈R+

0
denote

the filtration generated by Π. In addition, let G := (Gt)t∈R+
0
be the sub–filtration generated by the

asymptotic frequencies of Π and let F1 := (F1
t )t∈R+

0
denote the filtration generated by (Π1(t))t∈R+

0
.
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Let us define ξ(t) := − log |Π1(t)| for every t ≥ 0, with the convention − log 0 := ∞. Resorting to
the Poissonian construction of the fragmentation process, Bertoin proved that ξ = {ξ(t) : t ≥ 0} is
a killed subordinator with cemetery state ∞ and killing rate

κ :=

∫

S

(
1−

∑

k∈N

sk

)
ν(ds). (3)

Moreover, it is well known that its Laplace exponent Φ, given by

e−Φ(p) := E(e−pξ(1)),

can be characterised over an appropriate domain of p through the dislocation measure ν as follows.
Define the constant

p = inf

{
p ∈ R :

∫

S

∣∣∣∣∣1−
∞∑

i=1

s1+pi

∣∣∣∣∣ ν(ds) <∞
}

which is necessarily in [−1, 0]. Then

Φ(p) =

∫

S

(
1−

∞∑

i=1

s1+pi

)
ν(ds)

for all p > p (and we understand Φ(p) = Φ(p+)). The tagged fragment Π1, and in particular its
Laplace exponent Φ, can be used to extract information about the decay and spatial distribution
of blocks in the fragmentation process. A case in point concerns the asymptotic rate of decay of
the largest block

λ1(t) := sup
n∈N
|Πn(t)|, t ≥ 0.

To this end, note that Φ is strictly increasing, concave and differentiable. We shall assume that

(p+ 1)Φ′(p) > Φ(p) for some p ∈ (p,∞). (4)

This assumption is automatically satisfied if there exists some p∗ ≥ p with Φ(p∗) = 0, hence in
particular in the conservative case where ν(s ∈ S :

∑
k∈N sk < 1) = 0 and thus p∗ = 0. Following

the reasoning in the proof of Lemma 1 in [5] one may proceed with (4) in hand to show that there
exists a unique maximal value of the function

p 7→ cp :=
Φ(p)

p+ 1

in (p,∞), which is achieved at some p̄ > p and which is also equal to Φ′(p̄). This maximal value
turns out to characterise the asymptotic rate of decay of the largest block, as shown in the following
proposition that is lifted from Bertoin [6].

Proposition 1 (cf. Corollary 1.4 of [6]). We have

lim
t→∞

− log λ1(t)

t
= cp̄

P–almost surely.

In Corollary 1.4 of [6] Bertoin proves this result for fragmentation chains, but in view of Lemma 1.35
of [17] the same line of argument works for fragmentation processes.
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1.2 Killed homogeneous fragmentation processes

Now let c > 0 and x ∈ R
+
0 . We want to introduce killing of Π upon hitting the space–time barrier

{
(y, t) ∈ R

+
0 × R

+
0 : y < e−(x+ct)

}

as follows. A block Πn(t) is killed at the moment of its creation t ∈ I if |Πn(t)| < e−(x+ct), see
Figure 1. Here, killing a block means that it is sent to a cemetery state, which we shall identify by
∅.
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(a) Realisation of a fragmentation process with-
out killing.
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(b) Realisation of the killed fragmentation process
corresponding to (a).

Figure 1: Realisation of a fragmentation process with finite dislocation measure without killing, in
(a), and with killing, in (b).

Suppose that for t ≥ 0 we define N x
t to be the index set of the blocks in (Πn(t))n∈N that are not

yet killed by time t. It is important to note that Nx
t := card(N x

t ) is finite for each t. Indeed, as∑
n∈N |Πn(t)| ≤ 1 we infer that |Πn(t)| ≥ e

−(x+ct) for at most ex+ct–many n ∈ N. That is

Nx
t ≤ e

x+ct

for all t ∈ R
+
0 . Denote by Πx := (Πx(t) : t ≥ 0), where Πx(t) = (Πn(t))n∈Nx

t
, the resulting killed

fragmentation process and note that Πx is not P-valued.

For each n ∈ N the block of Πx containing n has a killing time that may be finite or infinite. Note
that the killed fragmentation process Πx also depends on the constant c > 0. However, in order to
keep the notation as simple as possible we do not include the parameter c in the notation as this
constant does not change within the results or proofs of this paper.

In this paper we shall answer the question whether it is possible that the supremum over all the
aforementioned respective individual killing times, which is henceforth denoted by ζx, is finite. We
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say that Πx becomes extinct if {ζx < ∞}. Note that ζx > 0 P–a.s., that is to say almost surely
instantaneous extinction is not possible, on account of the fact that the spectrally negative Lévy
process {ct + log |Π1(t)| : t ≥ 0} is irregular for (−∞, 0) when issued from the origin. Our first
main result in this respect is the following.

Theorem 2. For all c ≤ cp̄ we have P(ζx <∞) = 1 for every x ∈ R
+
0 . If c > cp̄, then x 7→ P(ζx <

∞) is a nonincreasing, (0, 1)–valued function on R
+
0 .

In the case that extinction does not occur with probability 1, we shall give two qualitative results
concerning the evolution of the process on survival. The first result shows that the total number
of fragments in the surviving process explodes.

Theorem 3. Let c > cp̄. Then we have that

lim sup
t→∞

Nx
t =∞

holds P(·|ζx =∞)–a.s. for any x ∈ R
+
0 .

The second result shows that the asymptotic exponential rate of decay of the largest fragment,

λx1(t) := max
n∈N
|Πxn(t)|, t ≥ 0,

is the same as when the killing scheme is not in effect, cf. Proposition 1.

Theorem 4. Let c > cp̄ and x ∈ R
+
0 . Then we have

lim
t→∞

− log λx1(t)

t
= cp̄

P(·|ζx =∞)–almost surely.

What lies fundamentally behind the proofs of our main results is a detailed study of the interaction
between two classes of martingales.

The outline of this paper is as follows. In the next section we provide some general notions that
are used in the subsequent parts of the present paper and in particular we employ the connection
between fragmentations and Lévy processes. Section 3 is concerned with the proof of Theorem 2 and
in Section 4 we provide the proof of Theorem 3 . Then, in Section 5, we introduce a multiplicative
process and examine when this process is a martingale. The object under consideration in Section 6
is an additive process which also turns out to be a martingale and whose limit we study with regard
to strict positivity. In the final section of this paper we prove Theorem 4.

2 Preliminaries

Let Bn(t), t ∈ R
+
0 , denote the block in Π(t) that contains the element n ∈ N and recall from (3)

that under P the process ξn = (− log |Bn(t)|)t∈R+
0
is a killed subordinator (with cemetery state +∞

and killing rate κ).
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Definition 5. For every n ∈ N let the process Xn := (Xn(t))t∈R+
0
be defined by

Xn(t) := ct− ξn(t)

for all t ∈ R
+
0 .

Notice that under P the dynamics of the process Xn are those of a killed spectrally negative Lévy
process of bounded variation (with cemetery state −∞ and killing rate κ). Moreover, the jump
times of Xn, henceforth denoted by the countably infinite set, In ⊆ R

+, are the set of dislocation
times of (Bn(t))t∈R+

0
. That is, Xn jumps exactly when the subordinator ξn jumps. For any n ∈ N

and x ∈ R
+
0 consider the following F–stopping times:

τ+n,x := inf{t ∈ R
+
0 : Xn(t) > x} as well as τ−n,x := inf{t ∈ R

+
0 : Xn(t) < −x}.

For any p ∈ (p,∞) consider the change of measure given by

dP(p)

dP

∣∣∣∣∣
Ft

= eΦ(p)t−pξ(t) = epX1(t)−ψ(p)t, (5)

where

ψ(p) =
1

t
logE(epX1(t)) = cp −Φ(p)

is the Laplace exponent of X1. Moreover, considering the projection of (5) onto the sub–filtration
G results in

dP(p)

dP

∣∣∣∣∣
Gt

=Mt(p) :=
∑

n∈N

|Πn(t)|
1+peΦ(p)t,

for all p ∈ (p,∞) and t ∈ R
+
0 .

Remark 6. Let p ∈ (p, p̄) and denote by M∞(p) the P–a.s. limit of the nonnegative martingale
M(p) := (Mt(p))t∈R+

0
. According to Theorem 1 of [7] (cf. also Theorem 4 of [8] for the conservative

case) the unit–mean martingale M(p) is uniformly integrable. Hence, E(M∞(p)) = 1 and thus P(p)

is a probability measure on G∞ :=
⋃
t∈R+

0
Gt. Moreover, using that E(M∞(p)) > 0 one obtains

that M∞(p) > 0 P–a.s., see Lemma 1.35 of [17] (or Theorem 2 of [5] for the conservative case).
Consequently, restricted to the σ–algebra G∞, the measures P(p) and P are equivalent. ♦

Corollary 3.10 in [19] shows that under the measure P
(p) the process X1 is again a spectrally

negative Lévy process such that

ψp(λ) :=
1

t
logE(p)(eλX1(t)) = ψ(λ+ p)− ψ(p) = cλ− Φ(λ+ p) + Φ(p) (6)

for all λ > p − p. Let Wp be the scale function of the spectrally negative Lévy process X1 under

P
(p). That is to say, Wp is the unique increasing and continuous function on (0,∞) that is defined

through the Laplace transform
∫ ∞

0
e−λxWp(x)dx =

1

ψp(λ)
,

6



for all λ > p− p.

A fundamental identity involving the scale functionWp that we shall appeal to later is the following
result taken from Theorem 8.1, equation (8.7), in [19]:

P
(p)(τ−1,x =∞) = (ψ′

p(0+) ∨ 0)Wp(x) (7)

for all x > 0. Another important fact that we shall also use concerns the value of Wp at zero.
Indeed, thanks to the fact that X1 has paths of bounded variation, it turns out that for all p ≥ 0,
Wp(0+) = 1/c. See for example Lemma 8.6 in [19].

An important role in what follows will be played by Xn killed upon hitting (−∞,−x) for n ∈ N

and x ∈ R
+
0 . For t ∈ R

+
0 set

Xx
n(t) := (Xn(t) + x)1{τ−n,x>t}

= (x+ ct+ log |Bn(t)|)1{τ−n,x>t}
.

3 Properties of the extinction probability

In this section we prove Theorem 2 by dealing with the cases c ∈ (0, cp̄] and c > cp̄ as two separate
lemmas. The first lemma below deals with the easier, but less interesting, case that c ∈ (0, cp̄].

Lemma 7. Let c ∈ (0, cp̄]. Then P(ζx <∞) = 1 for all x ∈ R
+
0 .

Proof. Using stochastic monotonicity it suffices to consider the case that c = cp̄ = Φ(p̄)/(1 + p̄). It
was shown in Theorem 4 in [8] (cf. also Theorem 1 in [7]) that Mt(p̄)→ 0 P–a.s. as t→∞. Since
Mt(p̄) ≥ e

Φ(p̄)tλ1+p̄1 (t) for all t ∈ R
+
0 , we thus deduce that

(cp̄t+ log(λ1(t)))→ −∞

as t→∞ and hence P(ζx <∞) = 1 for all x ∈ R
+
0 . 2

Notice that the statement of the previous lemma is obvious for c ∈ (0, cp̄) as the asymptotic decay
of the largest fragment in the non–killed setting is given by cp̄, see Proposition 1, and thus the
fragmentation process eventually crosses the killing line almost surely. However, for the critical
value c = cp̄ this argument does not work as one needs to rule out the possibility that the largest
fragment could approach the killing line without intersecting it.

The following result deals with the more interesting case that c > cp̄.

Lemma 8. Let c > cp̄. Then
P(ζx <∞) ∈ (0, 1)

for all x ∈ R
+
0 .

Proof. The proof is divided into two parts. The first part shows that P(ζx < ∞) < 1 and the
second part proves that P(ζx <∞) > 0 for all x ∈ R

+
0 .
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Part I. Note that c > cp̄ = Φ′(p̄) and hence, since Φ′ is continuous, we may always choose p ∈ (p, p̄)
such that c > Φ′(p). In that case ψ′

p(0+) = ψ′(p) = c − Φ′(p) > 0. Hence, by means of the

nondecreasingness of P(ζ(·) =∞), we deduce from (7) that

P
(p)(ζx =∞) ≥ P

(p)(τ−1,0 =∞) = ψ′
p(0+)Wp(0+) =

ψ′
p(0+)

c
∈ (0, 1)

for all x ∈ R
+
0 . According to Remark 6 this results in

P(ζx =∞) > 0, i.e. P(ζx <∞) < 1.

Part II. Let x ∈ R
+
0 . In order to show that P(ζx < ∞) > 0 we fix some a > x and some

y0 ∈ (1/2 ∨ (1− e−a), 1) such that

q := µ(π ∈ P : |π1| ∈ (0, y0]) ∈ (0,∞).

The last inclusion is possible since, on the one hand, µ(π ∈ P : |π1| ∈ (0, y0]) = µ(π ∈ P :
− log |π1| ≥ − log y0) is the tail of the jump measure of the subordinator ξ which is necessarily
finite. On the other hand, there exists some x ∈ (0, 1) such that

µ(π ∈ P : |π1| ∈ (0, x]) > 0,

as otherwise the Lévy measure of ξ has no mass in (0,∞) which contradicts the fact that ξ is a
subordinator.

Recall that {π(t) : t ∈ I1} are the atoms of the Poisson point process on P that determines
ξ. Further, denote the (possibly infinite) killing time of ξ by τξ and recall from (3) that τξ is
independent of the dynamics of the process ξ, up to its moment of killing, and exponentially
distributed with parameter κ. Moreover, by means of Proposition 2 in Section 0.5 of [4] we have
that τ(y0) := inf{t ∈ I1 : |π1(t)| ∈ (0, y0]} is exponentially distributed with parameter q. It is
straightforward to check that every block which does not contain 1 and which is produced at some
dislocation before the time τ(y0) ∧ τξ of the block containing 1 will be no larger than a proportion
e−a of its parent. This follows directly from the inequality that for all t ∈ I1 with t < τ(u0) and
all j ∈ N\{1},

|πj(t)| ≤
∑

n∈N\{1}

|πn(t)| ≤ 1− |π1(t)| ≤ 1− y0 ≤ e
−a.

The classical Thinning Theorem for Poisson point processes (e.g. Proposition 2 in Section 0.5 of
[4]) allows us to conclude that (Xx

1 (u))u∈[0,τ(y0)∧τξ) has the law of a Lévy process, say X̃x
1 , which is

the difference of a linear drift with constant rate c and a driftless subordinator with Lévy measure
µ(π ∈ P : − log |π1| ∈ dx)|(0,− log y0], sampled up to a time which is the minimum of two independent
and exponentially distributed random times, say eq and eκ, with respective rates q and κ.

Now define

R(q+κ)(a, x,dy) =

∫ ∞

0
e−(q+κ)tdt · P

(
X̃x

1 (t) ∈ dy, sup
s≤t

X̃x
1 (s) ≤ a, inf

s≤t
X̃x

1 (s) ≥ 0

)
, y ∈ (0, a).

Theorem 8.7 in [19] shows that R(q+κ)(a, x,dy) is absolutely continuous with strictly positive
Lebesgue density in the neighbourhood of the origin (this is at least immediately obvious for
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y ∈ (0, x) by inspecting the expression for the resolvent in the aforementioned theorem). A
little thought in light of the above remarks reveals that, on the event {sups<τ(y0)∧τξ X

x
1 (s) ≤

a, infs<τ(y0)∧τξ X
x
1 (s) ≥ 0}, the process (Xx

1 (u))u∈[0,τ(y0)∧τξ) describes (on the negative-logarithmic
scale and relative to the killing barrier) the only surviving block in the process Πx over the time
horizon [0, τ(y0) ∧ τξ).

Using these facts, as well as the observation that τ(y0) is almost surely not a jump time for X̃x
1 ,

we now have the estimate

P(ζx <∞) ≥ P

(
Xx

1 (τ(y0)−) ∈ [0,− log (y0)) , sup
s<τ(y0)

Xx
1 (s) ≤ a, inf

s<τ(y0)
Xx

1 (s) ≥ 0, τ(y0) < τξ

)

≥ P

(
X̃x

1 (eq−) ∈ [0,− log (y0)) , sup
s<eq

X̃x
1 (s) ≤ a, inf

s<eq

X̃x
1 (s) ≥ 0, eq < eκ

)

≥ E

(
e−κeq ; X̃x

1 (eq−) ∈ [0,− log (y0)) , sup
s<eq

X̃x
1 (s) ≤ a, inf

s<eq

X̃x
1 (s) ≥ 0

)

= qR(q+κ) (a, x, [0,− log (y0))) > 0

as required. 2

4 Explosion of the number of blocks on survival

In this section we provide the proof of Theorem 3. To this end, we shall use the following auxiliary
lemma which states that for any n ∈ N there exists a time such that with positive probability the
fragmentation process has at least n blocks. More precisely, we have the following result.

Lemma 9. Let c > cp̄. Then for any n ∈ N there exists a t > 0 such that

P
(
N0
t ≥ n

)
> 0. (8)

Proof. In the first part of the proof we show that the probability of the event {N0
t ≥ 2} is positive

for some t ∈ R
+
0 and in the second part we use this in conjunction with an induction argument to

prove the assertion.

Part I. Let us first show that there exists some z0 ∈ (1/2, 1) such that

µ(π ∈ P : |π|↓2 ≥ 1− z0, |π1| > 0) > 0, (9)

where {|π|↓i : i ≥ 1} represents the asymptotic frequencies of π ∈ P when ranked in descending

order. To this end, assume µ(π ∈ P : |π|↓2 ≥ a, |π1| > 0) = 0 for all a ∈ (0, 1). This assumption

implies that µ(π ∈ P : |π|↓2 6= 0, |π1| > 0) = 0, which in view of (1) results in µ(π ∈ P : |π1| > 0) = 0
and thus contradicts ν 6= 0. Consequently, there exists some z0 ∈ (1/2, 1) such that (9) holds. Next

note that, on account of the inequality |π|↓1 + |π|
↓
2 ≤ 1,

p := µ(π ∈ P : |π|↓1 ≤ z0, |π1| > 0) ≥ µ(π ∈ P : |π|↓2 ≥ 1− z0, |π1| > 0) > 0.
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Observe that ν(s ∈ S : s1 ∈ (0, z0]) <∞, as otherwise
∫

S
(1− s1)ν(ds) ≥

∫

{s∈S:s1∈(0,z0]}
(1− s1)ν(ds) ≥ (1− z0)ν(s ∈ S : s1 ∈ (0, z0]) =∞,

which contradicts (2). Therefore, we infer from formula (3) in [16] that

p ≤ µ(π ∈ P : |π|↓1 ≤ z0) ≤ ν(s ∈ S : s1 ∈ (0, z0]) <∞.

Now let η(z0) := inf{t ∈ I1 : |π(t)|
↓
1 ≤ z0, |π1(t)| > 0}. The classical Thinning Theorem for Poisson

point processes shows that |π(η(z0))|
↓ and η(z0) are independent and that

P

(
|π(η(z0))|

↓
2 ≥ 1− z0

)
=
µ(π ∈ P : |π|↓2 ≥ 1− z0, |π1| > 0)

µ(π ∈ P : |π|↓1 ≤ z0, |π1| > 0)
> 0. (10)

Moreover |π(η(z0))|
↓ and (Xx

1 (u))u∈[0,η(z0)) are independent and η(z0) is exponentially distributed

with parameter p. Now let X̂x
1 be a spectrally negative Lévy process, shifted by x ∈ R

+
0 , which is

written as the difference of a linear drift with rate c and a driftless subordinator with Lévy measure
µ(π ∈ P : |π|↓1 > z0; − log |π1| ∈ dy), y > 0, which is independent of all other previously mentioned
random objects.

We want to work with its resolvent on the half line

R(p+κ)(x,dy) :=

∫ ∞

0
e−(p+κ)tdt · P(X̂x

1 (t) ∈ dy, inf
s≤t

X̂x
1 (s) ≥ 0), y > 0

which is known to have a strictly positive density for all x ≥ 0, cf. Corollary 8.8 of [19]. Note that
in the case x = 0 the process X̂x

1 will take a strictly positive amount of time to exit the domain
[0,∞) on account of path irregularity, see the introduction of Chapter 8 of [19]. Let ep and eκ be
two independent (of everything) exponentially distributed random variables with respective rates
p and κ. Since almost surely neither ep nor eκ is a jump time for X̂0

1 , it follows from (10) that

P

(
N0
η(z0)

≥ 2
)

≥ P

(
X0

1 (η(z0)−) > − log(1− z0), |π(η(z0))|
↓
2 ≥ 1− z0, η(z0) < τξ

)

= E

(
e−κep ; X̂0

1 (ep−) > − log(1− z0), inf
s<ep

X̂0
1 (s) ≥ 0

)
P

(
|π(η(z0))|

↓
2 ≥ 1− z0

)

= pR(p+κ) (0, (− log(1− z0),∞))
µ(π ∈ P : |π|↓2 ≥ 1− z0, |π1| > 0)

µ(π ∈ P : |π|↓1 ≤ z0, |π1| > 0)
> 0.

Given that η(z0) is exponentially distributed, it is now a standard argument to deduce that there
must exist a t > 0 such that

P
(
N0
t ≥ 2

)
> 0. (11)

Part II. We prove (8) by resorting to the principle of mathematical induction. To this end, let
n ∈ N, fix some u0 > 0 such that (11) holds and, as the induction hypothesis, assume that

P(N0
nu0 ≥ n+ 1) > 0.
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To provide an estimate for P(N0
(n+1)u0

≥ n+2) note that the event {N0
(n+1)u0

≥ n+2} contains the

event that N0
nu0 ≥ n + 1 and subsequently n of the blocks alive at time nu0 survive for a further

u0 units of time, whilst one of the blocks at time nu0 succeeds in fragmenting further to produce
at least two further particles u0 units of time later. A lower bound on the probability of the latter
event that makes use of the fragmentation property and the monotonicity in x of P(Nx

nu0 ≥ n+ 1)
and P (ζx > u0), produces the estimate,

P

(
N0

(n+1)u0
≥ n+ 2

)
≥ P

(
N0
nu0 ≥ n+ 1

)
P
(
N0
u0 ≥ 2

)
P
(
ζ0 > u0

)n
> 0.

Coupled with (11), which closes the argument by induction, the proof of the lemma is complete. 2

Having established the previous lemma we are now in a position to tackle the proof of Theorem 3.

Proof of Theorem 3. By Lemma 9, fix some k ∈ N as well as t0 > 0 such that P
(
N0
t0 ≥ k

)
> 0 and

for every n ∈ N and x ∈ R
+
0 define

Exn :=
{
ω ∈ Ω : Nx

nt0(ω) ≥ k
}
.

By means of the fragmentation property and the monotonicity in x of P
(
Nx
t0 ≥ k

)

P
(
Exn
∣∣F(n−1)t0

)
≥ P(N0

t0 ≥ k) > 0 (12)

on {ζx =∞}. As a consequence of (12) we obtain that

∑

n∈N

P
(
Exn| F(n−1)t0

)
=∞ (13)

P–a.s. on {ζx =∞} for any x ∈ R
+
0 .

Since Exn is Fnt0–measurable, we can apply the extended Borel–Cantelli lemma (see e.g. Corollary
(3.2) in Chapter 4 of [12] or Corollary 5.29 in [9]) to deduce that

{Exn happens infinitely often} =

{
∑

n∈N

P
(
Exn| F(n−1)t0

)
=∞

}
,

and thus (13) shows that on the event {ζx =∞}, x ∈ R
+
0 , the event E

x
n happens for infinitely many

n ∈ N. Consequently, we infer by monotonicity in x of Nx
t that

P

(
lim sup
t→∞

Nx
t ≥ k

∣∣∣∣ ζ
x =∞

)
= 1,

which proves the assertion on account of the fact that k may be taken arbitrarily large. �
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5 Multiplicative martingales

Like many different types of spatial branching processes, the probability of extinction of our killed
fragmentation process turns out to be intimately related to certain product martingales which we
now introduce.

More specifically, the object under consideration in the present section is the stochastic process
defined as follows. For any function f : R → [0, 1] and x ∈ R

+
0 let Zx,f := {Zx,ft : t ≥ 0} be given

by

Zx,ft =
∏

n∈Nx
t

f (x+ ct+ log |Πxn(t)|) , t ≥ 0.

We are interested in understanding which functions f make the above process a martingale. In
that case we refer to Zx,f as a multiplicative martingale. The following theorem shows that within
the class of nonincreasing functions which are valued zero at ∞, there is a unique choice of f .

Theorem 10. Let c > cp̄ and let f : R → [0, 1] be a monotone function. Then the following two
statements are equivalent.

(i) For any x ∈ R
+
0 the process Zx,f is a martingale with respect to the filtration F and

lim
x→∞

f(x) = 0.

(ii) For all x ∈ R
+
0 :

f(x) = P (ζx <∞) .

For any c > cp̄ and t, x ∈ R
+
0 define

Rx1(t) = x+ ct+ log λ1(t).

In order to prove Theorem 10 we shall use the following lemma which states that on survival of the
killed fragmentation process the process (Rx1(t))t∈R+

0
is unbounded.

Lemma 11. Let c > cp̄ and x ∈ R
+
0 . Then we have

lim sup
t→∞

Rx1(t) =∞

P(·|ζx =∞)–almost surely.

Proof. Let z > x and set

Γxz := {ω ∈ Ω : inf{t ∈ R
+
0 : Xx

n(t)(ω) 6∈ [0, z)} =∞∀n ∈ N}.

Theorem 12 in Section VI.3 of [4] shows that the probability that a spectrally negative Lévy process
never leaves the interval (0, z) when started in its interior is zero. Consequently, we have that

τ−n,x < τ+n,z−x =∞ on Γxz .
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For each n ∈ N set
σn := inf{t ∈ R

+
0 : Nx

t ≥ n}

and note that Theorem 3 implies that σn is a P–a.s. finite stopping time on {ζx = ∞}. Let
Ñ x
t = {n ∈ N : Xx

n(t) ≥ 0} and introduce the equivalence relation ∼ on Ñ x
t such that n ∼ m

when n ∈ Bm(t). The cardinality of Ñ x
t / ∼ is equal to Nx

t . Further, let p ∈ (p, p̄). By means
of Lemma 8.6 of [19], we then infer from the strong fragmentation property and equation (8.8) of
Theorem 8.1 of [19] that

P
(p)(Γxz |Fσn) ≤

∏

k∈Ñx
σn
/∼

P
(p)(Γyz)

∣∣∣
y=Xx

k
(σn)

=
∏

k∈Ñx
σn
/∼

P
(p)(τ−k,y < τ+k,z−y)

∣∣∣
y=Xx

k
(σn)

=
∏

k∈Ñx
σn
/∼

(
1−

Wp(X
x
k (σk))

Wp(z)

)

≤

(
1−

1

cWp(z)

)Nx
σn

≤

(
1−

1

cWp(z)

)n

P
(p)–a.s. on {ζx =∞} for any n ∈ N. Therefore, since {Rx1(s) < z ∀ s ∈ R

+
0 } = Γxz ,we have

P
(p)

({
sup
s∈R+

0

Rx1(s) < z

}
∩ {ζx =∞}

)
= P

(p) (Γxz ∩ {ζ
x =∞})

= lim
n→∞

E
(p)
(
P
(p) (Γxz ∩ {ζ

x =∞}|Fσn

))

= E
(p)
(
lim
n→∞

P
(p) (Γxz ∩ {ζ

x =∞}|Fσn

))

= 0.

From this last equality and the fact that z > x is arbitrary, one readily deduces that

P
(p)

({
lim sup
s→∞

Rx1(s) <∞

}
∩ {ζx =∞}

)
= 0.

Since both events {lim sups→∞Rx1(s) < ∞} and {ζ
x = ∞} are G∞-measurable, we therefore infer

from Remark 6 that

P

({
lim sup
s→∞

Rx1(s) <∞

}
∩ {ζx =∞}

)
= 0,

which proves the assertion. 2
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Let us now tackle the proof of Theorem 10.

Proof of Theorem 10. The proof is guided by a similar result in Harris et al. [15] for branching
Brownian motion. We divide the proof into two parts. The first part proves the uniqueness of
monotone functions f satisfying limy→∞ f(y) = 0 for which Zx,f is a martingale. Part II of the
proof shows that the probability of extinction constitutes a function that makes Zx,f a martingale.

Part I. By the martingale convergence theorem we have that Zx,f being a nonnegative martingale
implies that Zx,f∞ := limt→∞ Zx,ft exists P–almost surely. Since the empty product equals 1 it is
immediately clear that

Zx,f∞ = 1 (14)

holds P–a.s. on {ζx <∞}. Moreover, according to Lemma 11 we have that lim supt→∞Rx1(t) =∞
P–a.s. on {ζx =∞}. Since limy→∞ f(y) = 0, we thus deduce that

0 ≤ Zx,f∞ ≤ lim inf
t→∞

f(Rx1(t)) = 0 (15)

P–a.s. on {ζx =∞}. Hence, in view of (14) and (15) we infer that

Zx,f∞ = 1{ζx<∞} (16)

holds true P–almost surely. As a consequence of Zx,f being a bounded, and hence uniformly
integrable, martingale we conclude from (16) that

f(x) = E(Zx,f0 ) = E(Zx,f∞ ) = P(ζx <∞).

Part II. Recalling Lemma 8, let g : R→ (0, 1) be given by g(x) = P(ζx <∞). Since g is monotone
and bounded, the limit g(+∞) := limx→∞ g(x) exists in [0, 1). Furthermore, for any t ∈ R

+
0 we

have limx→∞ 1Nx
t
(n) = 1 P–a.s. for every n ∈ N. In addition, we have that Xx

n(t)→∞ P–a.s. for
any n ∈ N and t ∈ R

+
0 as x→∞. Resorting to the fragmentation property of Π we deduce that

g(x) = E (P (ζx <∞|Ft)) = E



∏

n∈Nx
t

g (x+ ct+ log |Πxn(t)|)


 = E (Zx,gt ) (17)

holds for all t ∈ R
+
0 . By means of the fragmentation property we thus have that

E
(
Zx,gt+s

∣∣Ft
)
=
∏

n∈Nx
t

g(x + ct+ log |Πxn(t)|) = Zx,gt

P–almost surely. Hence, Zx,g is a P–martingale. Moreover, by the Dominated Converge Theorem,
we deduce from (17) that

g(+∞) = lim
x→∞

E



∏

n∈Nx
t

g(x+ ct+ log |Πxn(t)|)




= E


 lim
y→∞

∏

n∈N y
t

lim
x→∞

g(x)
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= E

(
lim
y→∞

lim
x→∞

g(x)N
y
t

)
.

Consequently, g(+∞) ∈ {0, 1}. Since g is decreasing and g(x) ∈ (0, 1) for all x ∈ R
+
0 , this forces us

to choose g(+∞) = 0. �

6 Additive martingales

In this section we deal with an additive stochastic process Mx(p) := (Mx
t (p))t∈R+

0
, p ∈ (p,∞), that

for c > cp̄ and x ∈ R
+
0 , is given by

Mx
t (p) =

∑

n∈Nx
t

Wp (x+ ct+ log |Πxn(t)|) e
Φ(p)t|Πxn(t)|

1+p.

The main result of this section is the following theorem.

Theorem 12. Let c > cp̄ and let p ∈ (p, p̄) be such that c > Φ′(p). Then the process Mx(p) is a
nonnegative F–martingale with P–a.s. limit Mx

∞(p). Moreover, this martingale limit satisfies

P ({Mx
∞(p) = 0}△{ζx <∞}) = 0,

where △ denotes the symmetric difference.

The following lemma is a version of the so-called many-to-one identity. To state it, let us introduce,

for each n ∈ N and t ≥ 0, the notation {
←−
Πn(s) : s ≤ t} to mean ancestral evolution of the block

Πi(t). That is to say, if Πn(t) is the block containing k ∈ N, then {
←−
Πn(s) : s ≤ t} = {Bk(s) : s ≤ t}.

Lemma 13. We have

E

(
∑

n∈N

|Πn(t)|f({|
←−
Πn(s)| : s ≤ t})

)
= E (f({|Π1(s)| : s ≤ t}))

for every t ∈ R
+
0 and f : RCLL([0, t], [0, 1]) → R

+
0 , where RCLL denotes the space of càdlàg

functions.

Proof. The proof follows directly as a consequence of the fact that Π1(t) has the law of a size-biased
pick from Π(t). See for example Lemma 2 of Berestycki et al. [3]. 2

The next lemma establishes the first assertion of Theorem 12 in that it shows that under P the
process Mx(p) is a martingale for suitable c and p.

Lemma 14. Let c > cp̄ and let p ∈ (p, p̄) be such that c > Φ′(p). Further, let x ∈ R
+
0 . Then the

process Mx(p) is a P–martingale with respect to the filtration F .
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Proof. Let us first show that for any t ∈ R
+
0 the process (Wp(X

x
1 (s))1{s<τ−1,x}

)s∈R+
0

is a P
(p)–

martingale with respect to F . It is a straightforward exercise using (6) to show that ψ′
p(0+) =

c−Φ′(p) > 0. By the Markov property of X1 under P(p) we thus infer from (7) that

E
(p)
(
1{τ−1,x=∞}

∣∣∣Fs
)

= P
(p)
(
τ−1,y =∞

)∣∣∣
y=x+X1(s)

1{s<τ−1,x}

= ψ′
p(0+)Wp(x+X1(s))1{s<τ−1,x}

(18)

holds P(p)–a.s. for any s ∈ R
+
0 . Note that the left–hand side of (18) defines a closed P

(p)–martingale.
Further, observe that x+X1(s) = Xx

1 (s) on the event {s < τ−1,x}.

By means of Lemma 13 we deduce that

E (Mx
t (p)) = eΦ(p)s

E



∑

n∈Nx
t

Wp (x+ ct+ log |Πxn(t)|) e
Φ(p)t|Πxn(t)|

1+p




= E

(
Wp(X

x
1 (t))1{t<τ−1,x}

eΦ(p)t−pξ(t)
)

= E
(p)
(
Wp(X

x
1 (t))1{t<τ−1,x}

)

=Wp(x) (19)

for all t ∈ R
+
0 , where the final equality is a consequence of the above–mentioned martingale property

of (Wp(X
x
1 (s))1{s<τ−1,x}

)s∈R+
0
. In view of (19) we infer from the fragmentation property of Π that

E
(
Mx
t+s(p)

∣∣Ft
)
=
∑

n∈Nx
t

eΦ(p)t|Πxn(t)|
1+p

E

(
M (n)

∣∣∣Ft
)

=
∑

n∈Nx
t

eΦ(p)t|Πxn(t)|
1+pWp(x+ ct+ log |Πxn(t)|)

=Mx
t (p)

P–a.s. for all s, t ∈ R
+
0 , where conditional on Ft the M (n) are independent and satisfy

P

(
M (n) ∈ ·

∣∣∣Ft
)
= P (My

s (p) ∈ ·)|y=x+ct+log |Πx
n(t)|

P–almost surely. 2

Let us now turn to the proof of Theorem 12. The main ingredient in the proof of Theorem 12 turns
out to be Theorem 10, which deals with the product martingale Zx,f .

Proof of Theorem 12. According to Lemma 14 we have thatMx(p) is a nonnegative martingale and
by the Martingale Convergence Theorem it follows that Mx

∞(p) := limt→∞Mx
t (p) exists P–almost

surely. It remains to show that the symmetric difference {Mx
∞(p) = 0}△{ζx <∞} is a P–null set.

Define the function gp : R
+
0 → [0, 1] given by

gp(x) = P(Mx
∞(p) = 0)
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for any x ∈ R
+
0 . Resorting to the fragmentation property we deduce that

P(Mx
∞(p) = 0|Ft) =

∏

n∈Nx
t

gp (x+ ct+ log |Πxn(t)|) = Z
x,gp
t

holds P-almost surely for all t ∈ R
+
0 . Therefore, Z

x,gp is a P–martingale. Note also that, thanks to
the fact that both N x

t and Wp(x) are monotone increasing in x, for all ǫ > 0, Mx+ǫ
∞ (p) ≥ Mx

∞(p)
and hence gp(·) is a monotone function. It follows that gp(+∞) exists in [0,1] and moreover, by
taking the expectation and then the limit as x→∞ in (23), we infer that

gp(+∞) ∈ {0, 1} (20)

as otherwise we are led to the contradictory statement that gp(+∞) < gp(+∞). Recall the
martingale M(p) that we defined in Remark 6. Taking account of (7) we have that Mx

∞(p) ≤
M∞(p)/ψ′

p(0+). Hence, since M(p) is an Lq-convergent martingale (cf. Theorem 2 of [5] and
Proposition 3.5 of [17]) for some q > 1, it follows that Mx(p) is too. Coupled with the stochastic
monotonicity of Mx

∞(p) in x, this implies in view of (20) that necessarily gp(+∞) = 0.

We may now apply Theorem 10 and infer that gp(x) = P(ζx <∞). Since {ζx <∞} ⊆ {Mx
∞(p) = 0}

for each x > 0 this implies that

P ({ζx <∞}△{Mx
∞(p) = 0}) = 0

for every x > 0 as required. �

7 Exponential decay rate of the largest fragment

The final section of this paper is devoted to the proof of Theorem 4. That is, in this section we
deal with the asymptotic behaviour of the largest fragment in the killed fragmentation process.

Proof of Theorem 4. Our approach is based on the method of proof for Corollary 1.4 in [6] and
makes use of the martingale Mx(p) that we considered in the previous section.

First note that since λx1(t) ≤ λ1(t), it follows from Proposition 1 that P–a.s.,

lim sup
t→∞

1

t
log(λx1(t)) ≤ cp̄. (21)

Recall that we are assuming c > cp̄. In order to deal with the liminf set

p̂ := inf
{
p ∈ (p, p̄) : Φ′(p) < c

}
,

and let p ∈ (p̂, p̄) as well as ǫ ∈ (0, p − p̂). Since

ψ′
p(0+) = c− Φ′(p) > ψ′

p−ǫ(0+) = c− Φ′(p− ǫ) > c− Φ′(p̂) ≥ 0,

where Φ′(−∞) := 0, we infer from (7) that the scale functionsWp andWp−ǫ are uniformly bounded
from above by 1/ψ′

p(0+) and 1/ψ′
p−ǫ(0+), respectively. Moreover, according to Lemma 8.6 in [19]
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we have Wp(0+) = Wp−ǫ(0+) = c−1. Hence, there exists a constant K > 0 such that Wp(y) ≤
KWp−ǫ(y) for all y ≥ 0. Observe that

Mx
t (p) =

∑

n∈Nx
t

Wp (x+ ct+ log |Πxn(t)|) e
Φ(p)t|Πxn(t)|

1+p

≤ Ke(Φ(p)−Φ(p−ǫ))t[λx1(t)]
ǫeΦ(p−ǫ)t

∑

n∈Nx
t

Wp−ǫ (x+ ct+ log |Πxn(t)|) |Π
x
n(t)|

1+p−ǫ

= Ke(Φ(p)−Φ(p−ǫ))t[λx1(t)]
ǫMx

t (p − ǫ). (22)

According to Theorem 12 we have that bothMx
∞(p−ǫ) andMx

∞(p) are (0,∞)-valued P(·|ζx =∞)–
almost surely. Consequently, taking the logarithm, dividing by t and taking the limit inferior as
t→∞ we thus deduce from (22) that

lim inf
t→∞

1

t
log(λx1(t)) ≥ −

Φ(p)− Φ(p− ǫ)

ǫ

P(·|ζx =∞)–almost surely. Therefore, we have

lim inf
t→∞

1

t
log(λx1(t)) ≥ − lim

ε→0

Φ(p)− Φ(p− ε)

ε
= −Φ′(p) (23)

P(·|ζx =∞)–almost surely. Letting p→ p̄ and resorting to the fact that Φ is the Laplace exponent
of ξ, which ensures the continuity of Φ′, (23) results in

lim inf
t→∞

1

t
log(λx1(t)) ≥ −Φ

′(p̄) (24)

P(·|ζx =∞)–almost surely.

Recalling that cp̄ = Φ′(p̄), (21) and (24) imply the assertion of the theorem. �
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