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Experimental Observation of Multistability and Dynamic Attractors in Silicon Central
Pattern Generators

Le Zhao* and Alain Nogaretf
Department of Physics, University of Bath, Bath BA2 7AY, UK

We report on the multistability of chaotic networks of silicon neurons and demonstrate how spa-
tiotemporal sequences of voltage oscillations are selected with timed current stimuli. A 3 neuron
central pattern generator was built by interconnecting Hodgkin-Huxley neurons with mutually in-
hibitory links mimicking gap junctions. By systematically varying the timing of current stimuli
applied to individual neurons, we generate the phase lag maps of neuronal oscillators and study
their dependence on the network connectivity. We identify up to 6 attractors consisting of triphasic
sequences of unevenly spaced pulses propagating clockwise and anti-clockwise. While confirming
theoretical predictions, our experiments reveal more complex oscillatory patterns shaped by the
ratio of the pulse width to the oscillation period. Our work contributes to validating the command

neuron hypothesis.

PACS numbers: 02.30.Z2,05.45.Tp,87.19.L-

I. INTRODUCTION

Central pattern generators (CPGs) are small neural
networks that provide the rhythms and coordination se-
quences which are essential for life. CPGs control heart
rate [1, 2], respiration [2, 3], digestion [4, 5], circadian
rhythm [6], locomotion [7, 8], escape mechanisms [9],
coughing and sneezing [10]. A key challenge for non-
linear science is to understand how networks of com-
peting neurons adapt to physiological feedback [11] to
produce useful rhythmic patterns. One way in which
this can be done is through changes in network connec-
tivity. Experiments on the stomatogastric ganglion of
the lobster [12, 13] have shown that the frequency of
network oscillations is finely tuned by neuromodulatory
substances which control synaptic delays. The release
of ”cocktails” of neurotransmitters can modify the net-
work connectivity to a degree where new rhythms are in-
duced [14]. Adaptation through network reconfiguration
has been modelled in hardware by Nakada et al. [15] who
succeeded in reproducing different gaits using a modular
network architecture. It has separately been suggested
that CPGs may use the multistability of coupled non-
linear oscillators [16] to produce different rhythmic pat-
terns [17, 18]. Within this picture, stable spatiotemporal
sequences evolve from initial conditions imparted by the
timing of current stimuli. An experimental proof of stim-
ulus induced switching would substantiate the hypothesis
that Nature has evolved the ability to use currents input
by sensory receptors and command neurons to generate
different rhythmic sequences [17, 18]. The direct obser-
vation of stimulus induced switching in biological exper-
iments is complicated by the large number of variables
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and unknown parameters which often require a statisti-
cal treatment. Numerical simulations in contrast have
successfully mapped switching and multistability in in-
hibitory networks but these have been restricted to net-
works of small size [16, 19, 20]. Canavier et al [16] re-
duced the multivariate problem of the three neuron net-
work to a two-dimensional problem allowing phase por-
traits to be mapped as a function of the dephasing be-
tween two neurons and the third neuron. Three stable
attractors were identified as clockwise and anticlockwise
firing sequences, supplemented by a third state where
all three neurons fire in phase. Wojcik et al [19, 20]
have examined the dependence of the phase maps on
network connectivity and predicted the formation of up
to 5 attractors including clockwise and anticlockwise se-
quences, and three further modes having two neurons
firing in phase with each other but out of phase with
the third. Electrically induced switching by networks
of competing neurons is a plausible mechanism for ex-
plaining the reflex locomotor response observed in escape
mechanisms [9] and in the switching between different
gaits [21, 22]. These rhythmic patterns are robust against
perturbations and noise as they rely on the propagation
of neuronal activity along stable heteroclinic orbits sur-
rounded by large basins of attraction.

Here we report on the realization of a chaotic network
of silicon neurons and the experimental study of its os-
cillations. Multiple attractors form which are associated
with stable firing sequences. By applying timed current
stimuli to individual neurons, we are able to switch the
state of the network. Our CPG consists of three neurons,
modelling the Na, K and leakage channels [23]. These
neurons compete through reciprocally inhibitory links.
By systematically varying the time delay between cur-
rent steps, we map the phase response trajectories em-
anating from every point in phase space. The transient
state is found to evolve towards dynamic limit cycles con-
sisting of triphasic sequences carrying clockwise or anti-
clockwise momentum. State degeneracy is further lifted
by the non isochronous firing of neurons within the cy-
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FIG. 1. (color online) (a) Electrical circuit of the silicon neu-
ron. C is the membrane capacitance; gy, grx, and g1 are
the Na, K and leakage conductances; Fn, and Ex are the
reversal potentials. The injection of a depolarizing current,
Istim, induces oscillations of the membrane voltage V. (b)
Membrane voltage oscillations evoked by current stimulation
of amplitude 60A (black curve, labelled 1), 80uA (red curve,
2), 100pA (blue curve, 3). Main panel: excitatory response
with current threshold: I;5, = 86uA.

cle. We find that rhythmic sequences self-organize into
stable patterns of two consecutive pulses firing out of
phase with the third. As a result, rhythms are shaped by
the ratio of the pulse width to the oscillation period. We
study the stability of the different attractors as a function
of the network connectivity and the amplitude of input
currents. The clockwise basin of attraction is found to ex-
pand when anticlockwise projecting inhibition increases
relative to clockwise inhibition and vice versa.

Our work shows that analog networks provide an al-
ternative to numerical simulations for investigating the
properties of winnerless competition networks [24, 25].
In particular, the properties of larger networks which are
difficult to simulate numerically [26] are more easily ac-
cessible in experimental networks which compute in real
time according to the laws of Physics. Our findings pave
the way to devices that make constructive use of chaotic
dynamics to achieve intelligent neurostimulation [27, 28]
and motor coordination.

Following this introduction (section I), we report on
the methodology (section II) and on the results (sec-

tion IIT) before discussing the significance of the results
in relation to existing theories (section V).

II. EXPERIMENTAL

Our silicon neuron models the electrical equivalent cir-
cuit of the neuron membrane (Fig.1(a)). Kirchoff current
and voltage laws allow to write the dependence of the
membrane voltage V' on the stimulation current I, as:

dv
C— = gnalEna=V) g (Bx = V) + 90V + Lgim (1)

where C' is the membrane capacitance, Fy, and Ex are
the reversal potentials of sodium and potassium ions.
The leakage reversal potential [29] is omitted as here
it only adds a correction to the membrane resting po-
tential from chloride and other ion species and has no
effect on dynamical properties. The circuits emulating
the sodium and potassium conductances, gn.(V,t) and
gk (V,t), are described by Mahowald and Douglas [23].
These circuits model the gate variables m,h and n of the
Hodgkin-Huxley model [29] with three gate currents I,,,,
I, and I,, which control the conductances of two Metal
Oxide Field Effect Transistors representing gno(Im, In)
and gg(I,). The sodium activation gate opens with
probability m when V increases above threshold volt-
age V;,. The inactivation gate closes with probability
1 —h when V increases above threshold voltage V},. The
potassium activation gate opens with probability n when
V increases above threshold V,,. The activation and in-
activation curves are modelled by differential transistor
pairs which give the sigmoid voltage dependence:

L(Vig) = Tx% [1 + tanh <M)] .z ={m, hn}
(2)

dv,

The maximum current I, passing through the differential
pair sets the maximum value of the ionic conductances
Ine and G in the Hodgkin-Huxley model. The exper-
imenter controls this current with the gate voltage of a
current source transistor. The V.., variable is effectively
a time delayed membrane voltage which, within Eq.2, ac-
counts for the delayed opening of gate x. This delay is
implemented in VLSI by a low pass filter which integrates
the membrane voltage according to:

dVTac V- VTQ?
= - 3)

dt T

This equation is equivalent to:

dr(Vit)  wo(V)— (V1) _
FTE p , x={m,h,n} (4)

in the Hodgkin-Huxley model. 7,,, 7, and 7,, are the gate
time delays; moo(V), hoo(V) and no (V) are the gate



TABLE I. Analogue neuron parameters

Parameter Description Value
C Membrane capacitance  10nF
OINa Max. Na conductance 0.40mS
K Max. K conductance 0.32mS
gL Leak conductance 0.10mS
Ena Na potential 5V
FEx K potential ov
Tm Na activation delay Oms
Th Na inactivation delay  0.02ms
Tn K activation delay 0.10ms
Vi Na activation threshold 1.52V
Vi Na inactivation threshold 4.76V
Vi K activation threshold 1.26V
dVim Na activation width +0.6V
A%S Na inactivation width -0.6V
A% K activation width +0.6V

variables in the steady state. Neuron gate thresholds V,
time delays 7, and maximum ion conductances are thus
controlled with the gate voltages of MOSFETsSs.

We set these parameters to the values listed in Table
I. The width of the gate opening region dV,, has a fixed
value determined by the structural parameters of our field
effect transistors (ALD1106 and ALD1107), namely the
gate width, gate length, and gate oxide capacitance per
unit area. dV, is positive for ionic activation gates and
negative for inactivation gates (Table I).

A depolarizing current I, is injected through the
neuron circuit to probe its excitatory response - see
Fig.1(b). Current stimulation shifts the membrane rest-
ing potential SePaetosbs by b which in
turn causes the voltage gated conductances gy, (V) and
gk (V) to increase. The sodium gate opens first which
drives V' towards En, as gne > 9K,gr- When the
sodium inactivation gate closes and the potassium gate
begins to open, gx > gna,g9r and V tends towards Fr.
Under constant current stimulation, the membrane volt-
age oscillates between Fy, and Ex. We measure the on-
set of these oscillations by stimulating the neuron with
currents of increasing magnitude. The oscillation thresh-
old is I, = 86uA. The frequency of neuron oscillations
increases when current stimulation increases above the
threshold (Fig.1(b)).

Neurons are interconnected with the VLSI differen-
tial transconductance amplifiers shown in Fig.2(a) which
inject a post-synaptic current proportional to the volt-
age difference between the pre- and post-synaptic neu-
rons. The interconnect in Fig.2(a) is inhibitory as it in-
jects a hyperpolarizing post-synaptic current when the
pre-synaptic neuron depolarizes. This is shown in the
I-V curves of Fig.2(b) which have a linear central re-
gion given by: Inost = 9(Vinax) Vpost — Vpre) [30]. This
coupling may be likened to a gap junction [31]. We
were able to tune its conductance g(V;,q4.) in the range
0 to 900uS with Vines (Fig.2(c)). Our inhibitory links
are used in all networks studied below. However for
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FIG. 2. (color online) (a) Inhibitory link injecting a hyper-
polarizing current Ipost = ¢(Vinaz)(Vpost — Vpre) in the post-
synaptic neuron. (b) Experimental dependence of the post-
synaptic current on Vpost — Vpre at different values of Vinas.
(c) Dependence of the link conductance on Vpqz. (d) Oscilla-
tions of a neuron pair coupled via reciprocally excitatory (top)
and reciprocally inhibitory links (bottom). Istim = 100uA,
giz2 = 23.5[18, g21 = 37.2”8.

the sake of completeness, we also verified that swapping
Vpre and Vpost in Fig.2(a) gives excitatory action through
Inost = 9(Vinaz) Vpre — Vpost). Fig.2(d) compares the os-
cillations of two neurons coupled via mutually excitatory
links (top) and mutually inhibitory links (bottom). Neu-
ron oscillations are found to synchronize in-phase when
coupling is excitatory and out-of-phase when it is in-
hibitory confirming the mechanism of action of our in-
terconnects [32]. We used conductances g12 = 23.5uS
and g1 = 37.2uS.

We then built the CPG of Fig.3 by interconnecting 3
neurons with pairs of reciprocally inhibitory links g;;,
1,7 = 1,2,3. In addition to post-synaptic currents,
neurons receive external stimulation from timed current
steps whose time delays Atio and Aty3 set the initial
conditions for network oscillations. Current stimulation
was applied by a data acquisition card (NI PCI6259)
controlled by a computer. The current amplitude was
set just above the threshold at I, =100pA to induce
low frequency voltage oscillations. This was important
to maximize the number of phase lag data points that
could be acquired during the time interval of transient
oscillations. The computer systematically varied Atio
and Aty3 between 0 and the period of oscillations 7" in
steps of 0.057". After each current delay was applied, the
computer recorded the transient oscillations of individual
neurons over approximately 50 periods. In this way we
probed the network dynamics for all initial conditions.

The network connectivity was chosen to induce chaotic
dynamics which was necessary to allow attractors to
form. This required reciprocally inhibitory links to have
asymmetric conductances as otherwise neurons oscilla-
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FIG. 3.

(color online) (a) Timed current steps applied to
neurons 1, 2 and 3. Neurons also receive postsynaptic currents
from the reciprocally inhibitory links interconnecting them.
(b) Circuit board.

tions synchronize [33]. The following set of conductances
G12 = 923 = gz = 1645, g21 = g13 = gz2 = 45uS
was chosen which project inhibition predominantly in the
anti-clockwise direction.

III. RESULTS

We next construct the phase lag maps of the CPG
by recording the dephasing of neuron 2 (®5;) and neu-
ron 3 (®31) relative to neuron 1. Labelling the inter-
spike intervals of neuron 1, n = 1,2,3... from the first
oscillation onwards, the state of coordinates (®91,P31)
follows a trajectory in phase space beginning from the
unstable initial state prepared by timed current steps at
n = 1, and ending in the stable final state correspond-
ing to steady state oscillations at n — oco. A typical
set of neuron oscillations is shown in Fig.4(a) for initial
conditions: At = 0.67, At13 = 0.77. Transient oscil-

4

lations are observed during the first 17ms (n < 6) fol-
lowed by steady state oscillations. The dephasings and
interspike intervals observed during the transient regime
strongly depend on initial conditions. Changes in ini-
tial conditions may also cause trajectories to bifurcate
towards different final states. The phase lag trajectory
extracted from Fig.4(a) is shown in Fig.4(b).

Fig.4(c) shows the time dependence of the network
state projected on the axes representing the three neuron
voltages. The state describes loops which evolve towards
a dynamic limit cycle (red line). Within the first loop
n = 1, neurons 2 and 3 oscillate approximately in phase.
A phase slip then occurs which causes a transient tripha-
sic pattern at n = 2,3,4. This is followed by another
phase slip at n = 5,6 which brings neuron 1 approxi-
mately in phase with neuron 2 to produce the final stable
orbit. This limit cycle corresponds to neurons firing in
a clockwise sequence 1 — 2 — 3 and forms one of the
dynamic attractors of our CPG.

Fig.5(a) shows the phase lag map obtained by plot-
ting the dynamic state trajectories (®21(n),P31(n)) from
every starting point. The synaptic conductances are
912=023=9g31=160S, g21=g13=932=454S and the magni-
tude of the current stimulus is 100uA. The firing fre-
quency of a neuron is 360Hz (T' = 2.80ms). The phase
lag map shows all trajectories to be attracted to two
fixed points: attractor 3 O at ($g1 ~ 0.16, P51 ~ 0.49),
and attractor 2 O at (0.62, 0.30). The waveforms corre-
sponding to these attractors are shown in Fig.5(b). At-
tractor 3 O corresponds to a clockwise firing sequence
1 — 2 — 3 in which neuron 2 fires immediately after
neuron 1 but out of phase with 3. Attractor 2 O corre-
sponds to an anticlockwise sequence 1 — 3 — 2 where
neuron 3 fires immediately after 1 and out of phase with
2. We label attractors with the number of the neuron
firing out of phase with the other two followed by the
firing direction. The wider basin of attraction surround-
ing 3 O, implies that this attractor is the most stable of
the two. The wider area of the clockwise basin is con-
sistent with weaker clockwise projecting inhibitory links
which favours clockwise pulse propagation. Phase lag
maps form quadrants of dimensions 7' x T which repeat
periodically (not shown). The first interspike intervals in
the transient regime tend to have a longer period than
the period of steady state oscillations 7. This is why a
number of state trajectories in Fig.5(a) begin in a neigh-
boring quadrant.

We then study the effect of weakening the asymmetry
of interconnects. Fig.6(a) shows the phase lag maps ob-
served after increasing the strength of clockwise project-
ing inhibitory links from 16uS to g12=23.5 uS, g23=20
uS, g31=20 uS and decreasing the strength of anti-
clockwise links from 45uS to g21=37.2 uS, g13=45 uS,
g32=39 pS. This network supports three attractors. The
new attractor 1 O is observed at coordinates (0.74, 0.34)
between attractors 3 O (0.21, 0.56) and 2 O (0.43, 0.61).
The voltage waveforms associated with 1 O (Fig.6(b)) in-
dicate a 1 — 2 — 3 sequence where neuron 3 and 2 fire
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FIG. 4. (color online) (a) Transient voltage oscillations of in-
dividual neurons stimulated by 100 pA current steps delayed
by At12 = 0.6T and At13 = 0.77. The index n counts the in-
terspike intervals of neuron 1. (b) Phase response trajectory
plotting the dephasing between neurons 3 and 1 as a function
of the dephasing between neurons 2 and 1. Initial conditions
are the same as in (a). (¢) Trajectory of the dynamic state
evolving towards a limit cycle (red closed loop). Synaptic con-
ductance: gi12 = g23 = g31 = IGMS, g21 = gi13 = g32 = 45/./,8.
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FIG. 5. (color online) (a) Phase lag map of a 3 neuron CPG
with reciprocally inhibitory links projecting predominantly in
the anticlockwise direction. Initial conditions for each trajec-
tory are set by the relative timings Ati12 and Ati3 which we
vary from 0 to T in steps of 0.057". T'=2.80ms is the period
of the oscillations of neuron 1 in the steady state. Two at-
tractors are observed at 3 © (0.16, 0.49) and 2 O (0.62, 0.30)
which correspond to clockwise and anti-clockwise firing se-
quences. (b) Waveforms of attractors 3 O and 2 ). Synaptic
conductances: gi2=g23=¢31=16uS and g21=g13=¢g31=45uS.

consecutively and out of phase with neuron 1. Within ex-
perimental error, attractors 3 O and 2 O have the same
firing sequence and phase lags as in (Fig.5(b)).

Lowering the asymmetry of interconnects also extends
the duration of transient oscillations. This is seen in the
longer phase lag trajectories of Fig.6(a). The basin sur-
rounding attractor 3 O splits into two basins centered on
3 O and 1 O each. It therefore appears that attractor 1 O
is relatively unstable compared to 3 O but is stabilized
by making interconnects more symmetrical. Increasing
the amplitude of current stimulation has the opposite ef-
fect as 1 O is washed off again when I, is increased
from 100pA to 120pA, the interconnect conductances re-
maining equal (Fig.7). Similar observation is made when
Tgpim =140pA.

When clockwise and anticlockwise projecting conduc-
tances approach a common value of g;; = 30uS, all at-
tractors vanish. Instead the CPG exhibits a single state
where all neurons oscillate in phase. We interpret this
result as the dynamics switching from chaotic to regu-
lar and the network collapsing into a single synchronized
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FIG. 6. (color online) (a) Phase lag map obtained by weak-
ening the asymmetry of reciprocally inhibitory links through
increases in clockwise inhibition from 16uS to gi2 = 23uS,
g23 = gsz1 = 20uS and decreasing anticlockwise inhibition
from 45uS to ga1 = 37uS, g1z = 45uS, gz2 = 39uS. The pe-
riod of neuron 1 remains 7T=2.80ms. Three attractors are
observed at coordinates: 3 O (0.21, 0.56), 1 © (0.43, 0.61)
and 2 O (0.74, 0.34). (b) Spatio-temporal oscillations corre-
sponding to the three attractors.

1.2

1.0

0.8+

q)31

0.6 1

0.4+
lstim= 120/'IA

0.2 .
0.0 0.2

21

FIG. 7. (color online) Dependence of phase lag maps on the
amplitude of current stimulation. The network connectivity
is identical to Fig.6(a) but the current amplitude is increased
from Istim = 100uA to 120 A. Oscillation period: T=2.2ms.

state [33].

IV. INTERPRETATION

Our results demonstrate several features predicted by
theory for a ring of 3 neuronal oscillators [16, 19]. How-
ever the experiment reveals differences concerning the na-
ture of the oscillation patterns and their robustness to
external perturbations. Wojcik et al. [19] predict 5 pos-
sible attractors including 2 triphasic rhythmic patterns
(clockwise: 1 — 2 — 3, anti-clockwise: 1 — 3 — 2) and
3 biphasic rhythmic patterns (1 L [2 || 3], 2 L [3 || 1]
and 3 L [1] 2] ). Canavier et al [16] predict 3 attractors
which comprise a synchronized state where all neurons
fire in phase: (®a1, P31)=(0,0) in addition to the clock-
wise and anticlockwise sequences.

Our findings concur with both theories in showing that
triphasic patterns are the most robust. Our experiment
however shows that the 3 neurons do not fire at equally
spaced intervals within the oscillation period. Instead,
all waveforms in Figs.5 and 6(b) have 2 neurons firing
in quick succession out-of-phase with the third. These
peculiar sequences arise because our links, which mimic
gap junctions, have both a dominant inhibitory character
when Ve > Vj0s+ and may inject an excitatory postsy-
naptic current when Vj.. < Vpose. This biphasic behav-
ior has been observed in actual gap junctions [31]. In-
hibitory action obviously prevents neurons from firing at
the same time hence maximizes interspike intervals by ef-
fectively acting as a repulsive force. As a neuron returns
to its quiescent state, it applies transient excitatory ac-
tion to the next neuron in the sequence as Vpre < Viost.
This secondary excitatory action effectively behaves as
an attractive force between spikes. The stable state that
minimizes the energy of the network in the presence of
these antagonist forces consists of non equidistant pulses
where two neurons fire consecutively out of phase with
the third. The pairing of consecutive spikes makes it
necessary to consider the spike width, W, when pre-
dicting stable modes of oscillation. Defining ¢ = W/T
as the spike width normalized by the period, there are
three possible sequences corresponding to neurons 1, 2
or 3 firing out of phase with the other two (Fig.8(a)).
Each sequence may carry clockwise or anticlockwise mo-
mentum depending on the order in which the two con-
secutive spikes appear. Including rotational degeneracy,
6 stable sequences will form with the following phase
lags: 1O (55554 10 (4,55%); 20 (55,1 - 0);
20 (%,C), 30 (¢, %C) and 3 O (1-¢, %) From the
data of Fig.5(b), we estimate ¢ ~ 0.2 and use this value to
calculate the theoretical positions of the 6 attractors on
the phase lag map. The predicted attractors are plotted
in Fig.8(b) (red dots) together with the experimentally
observed attractors (blue dots).

Fig.8(b) shows that the positions of the two clockwise
attractors 3 O and 1 O are in excellent agreement with
theory. Attractor 2 O is apparently absent, however both
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FIG. 8. (color online) (a) Rhythms in which two neurons fire
in rapid succession out of phase with the third. The black,
red and blue numbered blocks show the positions of spikes 1,
2 and 3 within one period of the cycle. ( = W/T is the spike
width normalized by the oscillation period. (b) Phase lag map
showing the position of the theoretically predicted attractors
(dots in foreground) with the experimentally observed ones
(dots in background).

Figs.6 and 7 show deflected trajectories in the vicinity of
(0.4,0.8) where this attractor ought to be. These deflec-
tions are likely caused by a weak local potential minimum
associated with the missing attractor. The anticlockwise
attractor has mainly a 2 O character.

Now turning to the effects of increasing anticlockwise
projecting inhibition in Figs.5 and 6, the wider clockwise
basin is seen to account for a more robust clockwise firing
sequence as inhibition blocks anticlockwise signal prop-
agation. The anti-clockwise basin, however small, never
vanishes in the experiment. This observation is in agree-
ment with theory [19]. Theory also predicts that unstable
attractors move from the centre to the edge of their basins
of attraction when inhibition becomes stronger in one di-
rection. This is in contrast to stable attractors which
remain at the centre of their basin. This feature distin-
guishes the stable and unstable attractors we observe ex-
perimentally (Fig.6(a)). The unstable attractor 1 O lies
right at the edge of its basin of attraction whereas the sta-
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FIG. 9. (color online) (a) Anticlockwise and (b) clock-

wise triphasic bursting patterns produced by 3 Hindmarsh-
Rose neurons coupled via mutually inhibitory links: Ipos: =
g(‘/;yost - %re) where g > 0.

ble attractor 3 O is well centered. Additional motion of
1 O towards the borderline caused by further increase in
inhibition in one direction can explain the disappearance
of this attractor from Fig.5. Not all predicted oscilla-
tion patterns could be observed, however, by equalizing
clockwise and anticlockwise inhibition. This is because
the network dynamics switches from chaotic to regular
when reciprocal interconnects become equal. When this
occurs the network dynamics collapses in a single state
of collectively synchronized oscillations.

The observation of triphasic sequences requires that
the ratio of pulse width to oscillation period be ¢ < %
By increasing current stimulation, we increased the fre-
quency of neuron oscillations which makes this condition
harder to fulfill. We speculate, this is the reason why
the unstable attractor 1 © vanishes from Fig.7 when the
amplitude of current stimulation increases.

The different firing sequences observed in Figs.4-7 arise
from the competition between nonlinear oscillators. This
competition is controlled by the network connectivity and
is independent of the type of neuron used. Nonlinear os-
cillators other than neurons also produce multistable fir-
ing patterns as shown by Canavier et al. [16] who studied
networks of Butera oscillators. To investigate the effect
of substituting spiking neurons with bursting neurons,
we have modelled a network of Hindmarsh-Rose neurons
interconnected with the same linear couplings as in our
network hardware. A simulation of a network of 3 mu-
tually inhibitory neurons in Fig.9 shows the same stable
clockwise and anticlockwise firing sequences as those of
the hardware network, Figs.5(b) and 6(b). Results are
therefore independent of the type of neuron used.



V. CONCLUSION

In conclusion, we have realized a ring of NaKl neu-
rons that makes constructive use of chaos to generate
stable spatio-temporal sequences activated by timed cur-
rent stimuli. The multistable properties of the network
are consistent with existing theories although the experi-
ment demonstrates more subtle rhythmic patterns when
mutually inhibitory links mimic gap junctions. These
patterns depend on the ratio of the pulse width to the
oscillation period. The results are important in that they
substantiate the command neuron hypothesis [17, 18]
which posits that CPG oscillations can be controlled dy-
namically by electrical signals [9, 21, 22]. Our exper-
imental approach further carries significant advantages
for probing the dynamics of higher dimensional networks
which may be difficult to investigate numerically. Inte-

gration done according to the laws of Physics is instanta-
neous even in the case of larger networks implementing
complex neuron models. It also bypasses limitations on
the accuracy of numerical methods that rapidly creep in
when multiple recovery time constants introduce stiffness
in nonlinear conductance models. Real time integration
of physiological feedback removes an important bottle-
neck to making biomedical devices for prosthetics [5] and
cardiorespiratory disease [27, 28]. Much of the latter de-
pends on properties of the triphasic respiratory oscillator
in the human medulla [34, 35] whose dynamics our work
helps understand.
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