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1 Introduction

The collective management of water and other natural resources is increasingly

being recognised as a key determinant of economic performance, especially in the

rural sector of developing economies (Platteau, 1991; Balland and Platteau, 1996;

Ostrom, 2003; Bardhan et al., 2006). By its nature, collective action involves

interdependency among individuals.1 This, combined with the non-excludable

and rival nature of many natural resources, poses significant challenges and raises

the question of whether individuals are capable to successfully manage resources

held in common.

Over the past decades, significant advancements have been made in the col-

lective action literature and the earlier conventional wisdom that the users of

a common resource are inevitably trapped in a process leading to overuse and

degradation (Hardin 1968) is no longer regarded as the only relevant view. Using

multiple methods of analysis, scholars from different disciplines have shown that

the tragedy of the commons is not inevitable.2 Importantly, they have made

considerable progress in identifying the conditions that are most likely to influ-

ence the success of collective action and collective good provision. These include:

(i) users group characteristics, such as group size and heterogeneity; (ii) insti-

tutional arrangements; and (iii) physical attributes of common-pool resources

(Sandler, 1992; Agrawal, 2007; Ostrom, 2007). Yet, as suggested by Ostrom and

colleagues, advancing our understanding of collective action problems requires

1For example, the maintenance of an irrigation network requires the stabilization of the
rims and the cleaning of minor channels across farmers’ land. In this context, the effort of
one farmer is likely to influence the activity of other farmers along the network, thus implying
strategic interactions among individual users.

2Examples of collective behaviour have been identified in a wide range of contexts. These
include the management of fisheries (e.g., Acheson, 2003; Singleton, 1999), forests (e.g., Mck-
ean, 1986, 2000; Schoonmaker Freudnberger 1993), pastures (e.g., Gilles et al. 1992; Netting,
1981; Nugent and Sanchez, 1999), and groundwater resources (e.g., Blomquist 1992; Trawick,
2003; Marchiori et al., 2012).
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further investigation of the relationships between these key dimensions, as well

as of broader contextual variables (Poteete et al., 2010).

This paper focuses on the mechanisms linking heterogeneity, institutions and

incentives within the context of water resources. Specifically, it investigates

whether and how land inequality —which is taken here as an exogenous source

of heterogeneity —affects the allocation rule that maximises the amount of water

collectively provided.3 In order to trace the fundamental trade-offs that relate

initial inequality to the optimal water allocation rule, we introduce a stylised

model in which two types of farmer, with unequal land endowments, can volun-

tarily contribute to a joint project for the maintenance of an irrigation network.

Maintenance activity increases the amount of water effectively available. The

collective output (water) is then distributed according to some allocation rule

and used by each farmer in combination with land to produce a final good.

We find that the initial degree of inequality does affect the optimal allocation

rule, and that the nature of such relationship depends on technological features

such as the complementarity between agents’ efforts in the realization of the

collective good. More precisely, we identify two key forces, which affect the dis-

tribution of water in opposite directions. The first force, which is referred to as

‘effort-augmenting’, seeks to maximise the aggregate level of effort by pushing the

distribution of water towards the agent with the higher marginal return to water.

Due to the assumed complementarity between land and water in the production

3The paper approaches the problem from a non-cooperative perspective, by studying how
inequality and rules affect agents’ incentives to contribute in a Nash equilibrium. This is
generally regarded as the natural starting point in this kind of analyses. A possible extension
for future research is to study the problem from a cooperative perspective. In a cooperative
setting, considerations of bargaining power become particularly important. This may require a
more explicit account of possible relationships between inequality and power. Other factors we
abstract from here, but may affect cooperative decision-making include reciprocity and social
norms. The importance of such factors for the emergence of cooperative behaviours have been
shown, for example, by Bicchieri (2006) and, within an evolutionary-game-theoretic framework,
by Sethi and Somanathan (1996; 2003) and Noailly et al. (2007).
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of the final good, this is the agent with the larger endowment of land. This

force is the prominent force when efforts are highly substitute. Typically, how-

ever, the production technology for the collective good displays some degree of

complementarity between agents’efforts. In such cases, the effort mix, alongside

with aggregate effort, becomes critical for the level of collective good provision.

Hence, a second force kicks in, which seeks to correct the effort-augmenting ef-

fect by distributing water so as to reach the optimal mix of effort. As we will

show, this ‘effort-mix’force calls for more egalitarian or even progressive water

allocation rules.

The role of inequality has been much debated in the collective action litera-

ture, with theoretical works suggesting that inequality can have either positive

(Olson, 1965; Alix-Garcia, 2007), negative (Ostrom, 1990), non-linear (Dayton-

Johnson and Bardhan, 2002; Baland et al., 2007), or ambiguous (Baland and

Platteau, 1997; Bardhan et al., 2006) effects on collective action. Much like

the theoretical work in this area, the results from econometric and experimental

studies are rather mixed with authors finding that inequality tends to reduce

public good provision (Bergstrom et al., 1986; Anderson et al., 2003), while oth-

ers report higher contributions (Chan et al., 1996; Cardenas, 2002; Cherry et al,

2003). A closer look at this wide range of results suggests that inequality often

interact with other factors - e.g., technological properties (Baland et al. 2007),

and the degree of publicness of the collective good in question (Bardhan et al.,

2006) - that may affect the ‘sign’of its impact.

One aspect that has emerged as critical from recent empirical analyses is the

relationship between inequality and institutions such as the rules that distribute

collective outcomes. Institutions may influence the success with which a commu-

nity undertakes collective action by shaping agents’returns from cooperation.
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The nature of the relationship between inequality and rules, however, is not

straightforward: in some studies (e.g., Dayton-Johnson 1999, 2000), allocation

rules that favour the rich are more frequently observed in communities charac-

terized by relatively high degrees of inequality, while in others relatively fairer

rules are observed in more unequal communities (Bardhan, 2000, and Khwaja

2001).

The forces identified in this paper and the way they depend on technological

features contribute to shed some light on the mechanisms linking inequality, rules

and incentives. The remaining of the paper is organised as follows. Section 2

illustrates the features of the model. Section 3.1 derives and discusses the main

results. Further discussion is provided in section 3.2, where a special case for the

production technology of the collective good is considered. Section 4 concludes.

2 Model setup

2.1 Definitions and assumptions

Consider two types of farmer: 1 and 2. Each type is endowed with an amount of

irrigable land li, with li > 0 and i = {1, 2}. Let l ≡ l1+l2 denote the total amount

of land in the economy. Farmers’endowments can then be defined as: l1 = λ× l

and l2 = (1−λ)× l, with λ ∈ (0, 1). In the remainder of the paper, we normalize

l to one and assume λ > 0.5. The two types can, therefore, be interpreted as the

representatives of two different farmer groups: large landowners (type 1), and

small landowner (type 2).

Farmers can voluntarily engage in a joint project for the maintenance of

a network of irrigation channels. Collective-maintenance activity increases the

supply of water available for irrigation. Better maintenance, for example, leads to
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lower losses from filtration, leakage and sedimentation. The output of the project,

Z, is represented by the average water flow delivered through the system and is

a function of farmers’efforts: e1, e2. Specifically, we parametrize the production

technology for Z by using a CES production function:4

Z = F (e1, e2) = [eσ1 + eσ2 ]
1
σ (1)

where σ < 1 measures the degree of complementarity between individual efforts.

Agents’efforts are assumed to be unobservable (or not enforceable). The col-

lective output, Z, is divided among farmers according to some allocation rule

Γ = (γ1,γ2), where γ1 and γ2 are farmers’shares in Z, with γ1,γ2 ≥ 0 and

γ1 + γ2 = 1. When convenient, we will simplify the notation as follows: γ1 = γ,

γ2 = 1− γ.

The amount of water allocated to a farmer according to the allocation rule

Γ is given by zi = γiZ with i = {1, 2}. Each agent uses two inputs, land and

water, to produce a final good. Agent i’s payoff is defined as:

Πi = f(li, zi)− ei

where f(li, zi) is the individual production function for the final good and ei is

i’s contribution for the maintenance of the irrigation network.

We assume that the cost of ei units of effort is simply ei and that the pro-

4CES production functions cover the whole spectrum of substitution and complementarity
among efforts. For example, when the parameter σ in Equation (1) tends to one, the pro-
duction technology for Z approximates a linear production function; as σ approaches zero,
the isoquants of the CES looks like the isoquants of the Cobb-Douglas production function;
while in the limit case for σ that approches (−∞), the CES function approximates a Leontiev
technology where efforts are perfect complements. Hence, although they impose a regularity in
the shape of isoquants, CES production functions allow considering a wide range of collective
action relevant to water resources - from small dam construction to channel maintenance and
pollution reduction activities, where the degree of complementarity among individual efforts is
progressively increasing.
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duction technology for the final good is well represented by the following Cobb-

Douglas production function5

f(li, zi) = (zi)
α (li)

1−α , with α ∈ (0, 1)

From the complementarity between li and zi in (2), it follows that the mar-

ginal return to water is an increasing function of land.

Although the paper focuses on land inequality as the only source of hetero-

geneity, an alternative interpretation is possible, which views the parameter λ as

capturing some characteristic of an agent, such as skills or locational differences.

As long as these characteristics affect the marginal productivity of water, this

alternative interpretation is consistent with the analysis.

2.2 Individual optimization problem

Each agent chooses the level of effort that maximizes her own payoff, given the

contribution made by the other. Specifically, for any given expectation e2 about

the level of effort exerted by agent 2, type 1 solves the following problem

max
e1≥0

Π1 = f(l1, z1(e1, e2))− e1 =
[
γ(eσ1 + e σ2 )

1
σ

]α
(λ)1−α − e1

The first-order condition is:

∂Π1

∂e1
= 0⇒

[
α(γ)α(λ)1−α(Z)α−1

] ∂Z
∂e1
− 1 = 0 (3)

From (1), the derivative of Z with respect to e1 can be written as:

5Although specific, the Cobb-Douglas form has been widely used in economics because it
generally fits the data well. Moreover, it displays complementarity between land and water
as inputs of production, which seems a realistic feature of the production process for most
agricultural products.
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∂Z

∂e1
= (Z)1−σ(e1)

σ−1. (4)

By substituting (4) into (3) and upon some calculation, we have:6

(e1)
σ = (α)

σ
1−σ ×

[
(γ)α(λ)1−α

] σ
1−σ × (Z)

σ(α−σ)
1−σ (5)

Similarly, one can define type 2’s optimization problem and obtain:

(e2)
σ = (α)

σ
1−σ ×

[
(1− γ)α(1− λ)1−α

] σ
1−σ × (Z)

σ(α−σ)
1−σ (6)

By substituting (5) and (6) into equation (1) and rearranging the terms, the

following expression for Z can be derived:

Z∗ = φ×
{[

(γ)α(λ)1−α
]β

+
[
(1− γ)α(1− λ)1−α

]β}µ
(7)

where φ ≡ (α)
1

1−α , β ≡ σ
1−σ and µ ≡

1−σ
σ(1−α) .

7 Equation (7) represents the amount

of collective output produced in equilibrium.8

6Using (4), we can write equation (3) as follows:

α(γ)α(λ)1−α(Z)α−1(Z)1−σ(e1)
σ−1 − 1 = 0

That is
α(γ)α(λ)1−α(Z)α−σ(e1)

σ−1 = 1

which leads to
e1
σ−1 =

[
α(γ)α(λ)1−α(Z)α−σ

]−1
Raising both side to the power of σ/(σ − 1), we have

e1
σ =

[
α(γ)α(λ)1−α(Z)α−σ

] σ
1−σ

which is equivalent to equation (5). The same step-by-step derivation applies to equation
(6) once we have changed the index of the player from 1 to 2 in the maximisation problem.

7Notice that φ, β and µ are only well defined if α 6= 1 and σ 6= 1, which will be assumed in
the reminder of the paper.

8It can be shown that there exists another solution which involves ei = 0 for all i. This,
however, will be disregarded, as it implies Z∗ = 0. The analysis will, instead, focus on the
non-trivial equilibrium in which the collective output is positive.
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3 Results

3.1 Inequality and Rules

In this section, we start by identifying the distribution of water that maximises

the collective output produced in equilibrium, and then proceed to analyse how

that is affected by inequality in initial conditions - as represented by λ > 0.5.

The problem can be expressed as follows:

max
0≤γ≤1

Z∗ = φ×
{[

(γ)α(λ)1−α
]β

+
[
(1− γ)α(1− λ)1−α

]β}µ
. (8)

If a solution interior to the interval [0,1] exists, then the following FOC must

hold:

∂Z∗

∂γ
=

α

1− α ×
{[

(γ)α(λ)1−α
]β

+
[
(1− γ)α(1− λ)1−α

]β}µ−1 × (9)

×
{[

(γ)(αβ−1)(λ)(1−α)β
]
−
[
(1− γ)(αβ−1)(1− λ)(1−α)β

]}
= 0

Notice that, for α ∈ (0, 1) and λ ∈ (0, 1) the first two terms in (9) are strictly

positive.

Condition (9) can, therefore, be simplified as follows:

[
(γ)(αβ−1)(λ)(1−α)β

]
−
[
(1− γ)(αβ−1)(1− λ)(1−α)β

]
= 0 (10)

By substituting for β = σ
1−σ and solving with respect to γ, we obtain:

γ∗ =
λθ

λθ + (1− λ)θ
(11)
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where: θ ≡ (1−α)σ
(1−σ−ασ) .

It can be shown that for σ < 1
1+α

the maximization problem in (8) admits the

interior solution derived above. Equation (11) can be interpreted as a ’weighted’

index of the degree of inequality characterizing the economy. More precisely,

inequality in land distribution is weighted by the parameter θ, which is a function

of two elements: (i) the strategic importance of agents’efforts in the realization

of the collective good − as measured by σ; and (ii) the relative importance of

water compared to land in the production of the final good − as measured by α.

From (11), the derivative of γ∗ with respect to λ is:

∂γ∗

∂λ
=
θ × [λ(1− λ)]θ−1[
λθ + (1− λ)θ

]2 (12)

with θ ≡ (1−α)σ
(1−σ−ασ) .

Given λ ∈ (0, 1), the sign of ∂γ
∗

∂λ
in (12) is the same as the sign of θ. Moreover,

within the range of parameter values σ < 1
1+α
, the sign of θ varies as follows:

θ < 0 for σ < 0; and θ > 0 for σ ∈
(
0, 1

1+α

)
. We show in the appendix that,

for σ ∈
(

1
1+α

, 1
)
, Z∗ is still increasing in γ at the value γ = 1. In this case, the

supply of irrigation water is maximized by setting γ∗ = 1 for any λ > 0.5.9

Hence, the relationship between inequality and rules can be summarized as

follows:

• For σ < 0⇒ ∂γ∗

∂λ
< 0;

• For σ ∈
(
0, 1

1+α

)
⇒ ∂γ∗

∂λ
> 0;

• For σ ∈
(

1
1+α

, 1
)
⇒ γ∗ = 1, ∀λ > 0.5.

9The appendix also shows that the other possible corner solution, γ = 0, can never be a
global maximum for any λ ≥ 0.5.
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For σ < 0 − that is, as one moves towards relatively high degree of comple-

mentarity between agents’efforts− the collective output is maximized by allocat-

ing a relatively larger share of water to the small landowner. The opposite holds

within the interval σ ∈
(
0, 1

1+α

)
− that is, for lower degrees of complementarity.

In this case, assigning more water to the large landowner favours the provision of

the collective good and the share of the large landowner increases as inequality

in land holding becomes more pronounced. Finally, when agents’contributions

display relatively high degrees of substitutability − that is for σ ∈
(

1
1+α

, 1
)
−

the supply of irrigation water is maximized by allocating all the water available

to the large landowner, independently of the degree of inequality in landholding

(i.e., for any λ > 0.5).

How can these results be interpreted? In the context of the present analysis,

it is possible to identify two key forces which affect the distribution of water

in opposite directions. We refer to the first force as ’effort-augmenting’. This

force pushes the distribution of water towards the agent with the higher marginal

return to water in the attempt to maximise the aggregate level of effort. Due

to the complementarity between land and water in the production of the final

good, this is the agent with the larger endowment of land. The effort-augmenting

force is the prominent force when the production technology for the collective

good displays relatively high degrees of substitutability among agents’ efforts

(i.e. for strictly positive values of σ). However, collective activities associated

with the management of water resources generally display some complementarity

in efforts. In the presence of complementarity, aggregate effort is not all that

matters; indeed, the effort mix is also important. Inequality may hamper the

achievement of the optimal effort-mix (with negative consequences on collective

output) because it reduces the incentives to contribute of the small landowner.
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Hence, a second force kicks in, which seeks to ’correct’for this by distributing

water in a more progressive manner so as to reach the optimal mix of effort. For

suffi cient complementarity (σ < 0), this ’effort-mix’force tends to dominate.10

The use of water as an incentive mechanism has consequences that might

seem at first glance counterintuitive in that it implies allocating more water to

the agent with lower marginal returns. This, however, may still represent the

’constrained’optimum when other contracting possibilities are not available, as

in the context considered here where effort is unobservable. Furthermore, in some

institutional settings contracting over output may also be diffi cult due to lack of

commitment on the part of the producers or to limited enforcement capacity on

the part of governmental authorities.11

3.2 Collective production function: A special case

This section discusses a special case for the production technology of the collective

good, which generates an interesting result as far as the interaction between

inequality and rules is concerned. Specifically, we assume that the production

technology for Z is well represented by the following Cobb-Douglas production

function with constant returns to scale:12

10Applications of a similar idea can be found in the case study literature in relation to other
forms of heterogeneity. In some villages in Nepal, for instance, institutional arrangements have
been used to moderate the effects of locational heterogeneity on users’incentives to monitor and
maintain their resources, by allowing more distant members to pay lower fees in exchange for
more time spent in monitoring and maintenance work (Varughese and Ostrom, 2001; Adhikari
et al., 2004; Adhikari and Di Falco, 2009).
11For simplicity, the model proposed in this paper assumes that output is deterministic.

However, in the rural sector of developing economies, output tends to be highly sensitive to
idiosincratic shocks. This, in turn, gives room to opportunistic behaviour by the parties - who
might have an incentive to cheat about the amount of output being produced - thus adding
further diffi culties to the possibility of contracting over output.
12As explained in section 2, this can be thought of as a limit case of the CES production

function.
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Z = F (e1, e2) = eσ1e
(1−σ)
2 (13)

with σ ∈ (0, 1).

Type 1’s maximization problem can be written as follows:

max
e1≥0

Π1 = (γZ)α (λ)1−α − e1

The FOC for the above problem is given by:

∂Π1

∂e1
= 0⇒ α×

[
(γ)α(λ)1−α

]
× (Z)α−1 × ∂Z

∂e1
− 1 = 0 (14)

From (13), the derivative of Z with respect to e1 is:

∂Z

∂e1
= σe1

(σ−1)e2
(1−σ) (15)

By substituting (15) into (14) and solving with respect to e1, the following

reaction function can be derived:

e1(e2) =
[
ασγαλ(1−α)e

α(1−σ)
2

]1/(1−ασ)
Similarly, from type 2’s maximization problem we have:

e2(e1) =
[
α(1− σ)(1− γ)α(1− λ)(1−α)eασ1

]1/[1−α(1−σ)]
Solving the system of farmers’reaction functions, the following equilibrium

levels of effort can be obtained:

(
e∗1 = g

( 1−α(1−σ)1−α )
1 × g2(

α(1−σ)
1−α ); e∗2 = g

( ασ
1−α)

1 × g2(
1−ασ
1−α )

)
(16)
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where: g1 ≡ ασγαλ(1−α), and g1 ≡ α(1− σ)(1− γ)α(1− λ)(1−α).

The collective output produced in equilibrium is:

Z∗ = (e∗1)
σ (e∗2)

(1−σ) = g
( σ
1−α)

1 × g( 1−σ1−α)
2 (16)

The allocation scheme that maximizes the provision of the collective good is

given by the rule γ that solves the following equation:

∂Z∗

∂γ
= 0⇒

(
1

1− α

)
×
[
g
( σ
1−α)

1 × g( 1−σ1−α)
2

]
×
[
σ

γ
− (1− σ)

1− γ

]
= 0 (17)

Note that (17) is not well defined for γ = 0 and γ = 1. In what follows,

we assume γ ∈ (0, 1). Under this assumption, the first term in (17) is strictly

positive since the parameters α, σ and λ vary within the interval (0, 1). Condition

(17) can, therefore, be simplified as follows:

σ

γ
− (1− σ)

1− γ = 0 (18)

From (18), we have: γ∗ = σ. Thus, collective output is maximised by allo-

cating water according to farmers’marginal productivity of effort (MPE). This

would imply equal distribution of water when MPE is identical across farmers.

The Cobb-Douglas production technology, hence, leads to a special case in which

the two forces identified in section 3.1 perfectly offset one another and the allo-

cation rule γ∗ is independent of the degree of inequality in land-holding.
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4 Conclusions

This paper focused on collective action problems associated with the management

of water resources at the local level. Specifically, it considered a situation in which

two types of farmer, with unequal land endowments, can voluntarily engage

in collective maintenance activities to enhance the amount of water available.

Water is distributed according to some allocation rule and used by each farmer

as an input of production in combination with land. Within this context, we

investigated the relationship between land inequality and water allocation rules,

by determining whether and how the former affects the distribution of water that

maximises collective good provision.

We found that two opposing forces are at work. The logic behind the first

force (effort-augmenting) is to maximise the aggregate level of effort. In the

attempt to do so, such force pushes the distribution of water towards the agent

with the higher marginal return to water. The complementarity between land

and water in the production of the final good implies that the marginal return

to water increases with land; consequently, the first force works in favour of the

large landowner. The second force (effort-mix) seeks to allocate water so as to

reach the optimal mix of effort and calls instead for more egalitarian or even

progressive water allocation rules.

The trade-off between these two forces depends on technological features of

the problem. Specifically, the first force is the prominent force when the produc-

tion technology for the collective good is characterised by relatively high degrees

of substitutability among efforts. In this case, the allocation rule that max-

imises collective output is such that a larger share of water is assigned to the

large landowner and the share of the large landowner increases with the degree

15



of inequality in land-holding. This result is in line with the Olson’s argument -

namely, inequality may favour collective good provision by enhancing the interest

of the richest agent. However, this is not generally the case when the production

technology for the collective good displays (as it typically does) some degree of

complementarity. In particular, for suffi cient complementarity we found that the

effort-mix effect becomes relatively more important and so does the second force;

in this case, more egalitaria or even progressive rules perform better in terms of

collective good provision.

Although the paper focused on land inequality (measured by the exogenous

parameter lambda), an alternative interpretation is possible that views lambda as

capturing some characteristic of an agent, such as skills or locational differences.

As long as these characteristics affect the marginal productivity of water, this

alternative interpretation is consistent with the analysis.

There are several avenues along which to extend the present work. Here,

we focused on the class of linear sharing rules; indeed, although the amount of

water that each player receives depends on aggregate water output, the shares

per se do not. The analysis of more general classes of mechanisms, where the

shares may also vary with the level of output, could provide further insights. The

paper examines how inequality and rules affect agents’incentives to contribute

in a Nash-equilibrium; that is, it concentrates on the non-cooperative case. A

second extension could be to study the problem from a cooperative perspective.

In a cooperative setting, considerations of bargaining power become particularly

important; this may require a more explicit account of possible relationships

between inequality and power. Finally, it would be interesting to test the pre-

dictions of the model in laboratory or even field experiments; this could enrich

the experimental literature on the subject by providing new insights and inter-
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pretations. For example, experiments based on linear public good games could

be extended to account for the possibility that agents’ efforts display varying

degrees of complementarity, and heterogeneity affects the marginal benefits from

contributing through the relationship between private and collective inputs.
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Appendix

In the context of the present analysis, γ∗ is the solution to the following maxi-

mization problem:

max
0≤γ≤1

Z∗ = φ×
{[

(γ)α(λ)1−α
]β

+
[
(1− γ)α(1− λ)1−α

]β}µ
(a.1)

where φ ≡ (α)
1

1−α , β ≡ σ
1−σ and µ ≡

1−σ
σ(1−α) .

By substituting for β = σ
1−σ , the FOC for the above problem can be expressed

as follows:

(γ)(
ασ
1−σ−1) × (λ)

(1−α)σ
1−σ − (1− γ)(

ασ
1−σ−1) × (1− λ)

(1−α)σ
1−σ = 0 (a.2)

Condition (a.2) is implicitly assuming that the solution to (a.1) is interior

to the interval [0, 1]. However, the maximum may well be a corner solution. In

other words, it may well be: γ∗ = 1 and/or γ∗ = 0. This appendix will show

whether and under what conditions those limit values for γ could represent a

solution to (a.1).

Consider first γ = 1. This will be a maximum if ∂Z
∗

∂γ
> 0 when γ approaches

one. In that case, Z∗ would still be increasing in γ at the value γ = 1.

Notice that, when the exponent of (1 − γ) in equation (a.2) is negative, it

cannot be true that γ∗ = 1, because:

ασ

1− σ − 1 < 0⇒ lim
γ→1

(1− γ)(
ασ
1−σ−1) = lim

γ→1

1

(1− γ)(1−
ασ
1−σ )

=∞

Hence,
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lim
γ→1

[
1

(γ)(1−
ασ
1−σ )

× (λ)
(1−α)σ
1−σ − 1

(1− γ)(1−
ασ
1−σ )

× (1− λ)
(1−α)σ
1−σ

]
= −∞

violating the FOC.

For σ < 1
1+α
, the magnitude

(
ασ
1−σ − 1

)
is negative, and the solution to (a.1)

is, therefore, given by equation (11).

For σ > 1
1+α
, we have:

ασ

1− σ − 1 > 0⇒ lim
γ→1

(1− γ)(
ασ
1−σ−1) = 0

Therefore:

lim
γ→1

[
(γ)(1−

ασ
1−σ ) × (λ)

(1−α)σ
1−σ − (1− γ)(1−

ασ
1−σ ) × (1− λ)

(1−α)σ
1−σ

]
= (λ)

(1−α)σ
1−σ > 0

which, in turn, implies that for any σ > 1
1+α
, Z is maximised by setting γ∗ = 1.

Consider now the limit case γ = 0. It is easy to prove that this can never be

a global maximum within the compact set [0, 1]. Let:

Z0 ≡ Z∗(γ = 0) = (α)
1

1−α ×
[
(1− λ)

(1−α)σ
1−σ

] 1−σ
σ(1−α)

= (α)
1

1−α × (1− λ)

and

Z1 ≡ Z∗(γ = 1) = (α)
1

1−α ×
[
(λ)

(1−α)σ
1−σ

] 1−σ
σ(1−α)

= (α)
1

1−α × λ

For λ > 0.5 − as it was assumed in section 3 − it is straightforward to observe

19



that Z0 < Z1. Then, γ = 0 cannot be a global maximum for γ ∈ [0, 1], since

there exists at least one value of γ ∈ [0, 1] such that Z∗(γ) > Z0.
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