

Citation for published version:
Mueller, E, Scheichl, R & Vainikko, E 2015, 'Petascale solvers for anisotropic PDEs in atmospheric modelling on
GPU clusters', Parallel Computing, vol. 50, pp. 53-69. https://doi.org/10.1016/j.parco.2015.10.007

DOI:
10.1016/j.parco.2015.10.007

Publication date:
2015

Document Version
Peer reviewed version

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161915311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.parco.2015.10.007
https://researchportal.bath.ac.uk/en/publications/petascale-solvers-for-anisotropic-pdes-in-atmospheric-modelling-on-gpu-clusters(40d7aba0-676e-4757-91ba-fd936c9c027a).html

Petascale solvers for anisotropic PDEs in atmospheric modelling on GPU clusters

Eike Hermann Müllera,∗, Robert Scheichla, Eero Vainikkob

aDepartment of Mathematical Sciences, University of Bath, BA2 7AY, Bath, United Kingdom
bInstitute of Computer Science, University of Tartu, Liivi 2, Tartu 50409, Estonia

Abstract

Memory bound applications such as solvers for large sparse systems of equations remain a challenge for GPUs. Fast solvers
should be based on numerically efficient algorithms and implemented such that global memory access is minimised. To
solve systems with trillions (O(1012)) unknowns the code has to make efficient use of several million individual processor
cores on large GPU clusters.

We describe the multi-GPU implementation of two algorithmically optimal iterative solvers for anisotropic PDEs
which are encountered in (semi-) implicit time stepping procedures in atmospheric modelling. In this application the
condition number is large but independent of the grid resolution and both methods are asymptotically optimal, albeit
with different absolute performance. In particular, an important constant in the discretisation is the CFL number; only
the multigrid solver is robust to changes in this constant. We parallelise the solvers and adapt them to the specific features
of GPU architectures, paying particular attention to efficient global memory access. We achieve a performance of up to
0.78 PFLOPs when solving an equation with 0.55 · 1012 unknowns on 16384 GPUs; this corresponds to about 3% of the
theoretical peak performance of the machine and we use more than 40% of the peak memory bandwidth with a Conjugate
Gradient (CG) solver. Although the other solver, a geometric multigrid algorithm, has a slightly worse performance in
terms of FLOPs per second, overall it is faster as it needs less iterations to converge; the multigrid algorithm can solve a
linear PDE with half a trillion unknowns in about one second.

Keywords: iterative solver, multigrid, Graphics Processing Unit, massively parallel, atmospheric modelling

1. Introduction

Many problems in geophysical modelling require the fast solution of anisotropic partial differential equations (PDEs)
in “flat” domains. For example, a global PDE for the pressure correction has to be solved in every time step of many
numerical weather- and climate prediction models if an implicit method is used to advance the atmospheric fields forward
in time. In this work we consider a model problem for this PDE which can be written schematically as

−ω(h)2

(
∇2
S u+ λ2 1

r2

∂

∂r

(
r2 ∂u

∂r

))
+ u = f ; (1)

where ω(h) = O(h2), r is the radial coordinate and ∇S the component of the derivative which is tangential to the surface
of the earth. The exact form of the parameters ω and λ is described below. As the height of the atmosphere is much
smaller than the horizontal extent of the domain in global models, after discretisation this equation has a very strong
vertical anisotropy. The discretised PDE can be written as a sparse system of equations

Au = f , (2)

where A is a sparse n × n matrix and the vector u has n entries and represents the global (Exner-) pressure correction
field in the whole domain. In modern applications the number of degrees of freedom n can be very large, for a global grid
with a horizontal resolution of 1km or less and O(100 − 200) vertical levels a system with n & 1011 unknowns needs to
be solved. Resolutions of this order are expected to be achieved by state-of-the-art global forecast models within the next
decade. As the PDE is solved in every model time step and accounts for a significant amount of the total model runtime,
it is crucial to solve it as fast as possible to deliver forecasts on operational timescales. This can only be achieved by using
algorithmically optimal methods and implementing them on the fastest available hardware. The main challenge faced by
the solver is the vertical anisotropy which prevents a standard approach such as a geometric multigrid algorithm with point

∗Corresponding author
Email address: e.mueller@bath.ac.uk (Eike Hermann Müller)

Preprint submitted to Parallel Computing October 24, 2015

smoother or an iterative solver with Jacobi preconditioner. Recently we have shown that Krylov subspace solvers and
multigrid methods tailored to the structure of the problem are highly efficient and scale up to tens of thousands of CPU
cores [1]. In particular we found that for our application the tensor-product geometric multigrid solver, suggested and
first analysed in [2], is superior to a preconditioned Conjugate Gradient method and to state of the art parallel algebraic
multigrid (AMG) implementations from the DUNE [3, 4] and Hypre [5] libraries.

As explained in detail below, the PDE for the atmospheric pressure correction has the structure of a shifted Laplace
equation, which is usually known as the (sign-positive) Helmholtz equation in the meteorological literature. In contrast
to the conventional Helmholtz equation encountered for example in wave scattering problems, the elliptic operator we
consider is positive definite. While implicit time marching schemes permit larger model time steps, advective time scales
and constraints on the accuracy of the solution limit the permitted time step size. This implies that the CFL number,
which is proportional to the ratio of the time step size and horizontal grid spacing, is typically in the range 2 − 10.
After preconditioning, the condition number of the elliptic operator is O(100 − 1000), independent of the horizontal
grid resolution. Because of this, Krylov subspace methods and multigrid algorithms with a fixed number of levels are
asymptoptically optimal and algorithmically scalable as the problem size increases. However, the performance of Krylov
methods deteriorates with growing CFL number.

Graphics Processing Units (GPUs) have been used very successfully in many areas of Scientific Computing and can
be superior to more traditional CPU architectures both in terms of speed and power efficiency. A particular challenge for
solvers of sparse systems of linear equations such as (2) is that their performance is typically limited by the speed with which
data can be read from (and written to) global GPU memory. While the number of floating point operations for the iterative
solvers we consider is typically two to five times larger than the number of memory operations, on modern GPUs, such as
the Kepler GK110 on the K20X cards on the Titan supercomputer [6] the cost for one (double precision) memory access
is more than 40× larger than the cost of one floating point operation. This factor is given by the ratio of the peak floating
point performance and the peak global memory bandwidth, namely 1.31 TFLOPs /(250 GByte/s)×8 Byte ≈ 42 for double
precision arithmetic on the K20X card [7]. It should be compared to the corresponding number for CPU architectures
where only around 3 floating point operations can be carried out per variable loaded from memory. Furthermore, due
to limited memory, only problems with up to a few million degrees of freedom can be solved on a single GPU. To solve
larger systems a distributed-memory multi-GPU implementation has to be used. For problems with up to a trillion (1012)
unknowns, several million processor cores are necessary.

To implement the fastest possible massively parallel GPU solver we followed three design principles:

1. Algorithmically optimal solver. To minimise the overall solution time, the biggest gains can be achieved by
using an iterative solver method which is tailored to the problem to be solved and converges in the smallest possible
number of iterations. Krylov subspace methods are very popular in meteorological applications because of their
simplicity (see e.g. [8, 9, 10, 11] and the detailed review in [1]). For anisotropic PDEs it is particularly important
to exploit the strong coupling in the vertical direction by using a suitable preconditioner. Since the elliptic system
considered in this work is symmetric and positive definite, the most suitable Krylov subspace method is a Conjugate
Gradient solver preconditioned with vertical line relaxation. The preconditioner requires the frequent solution of a
tridiagonal system in each vertical column; this can be achieved with the Thomas algorithm (see e.g. [12]).
However, we already found in [1] that the geometric tensor-product multigrid solver proposed and analysed in
[2], which uses vertical line relaxation as the smoother, converges significantly faster than the preconditioned CG
iteration. As the numerical experiments in this article confirm, the CG solver requires at the order of 60 iterations
to reduce the residual by five orders of magnitude, whereas the multigrid method converges in less than 10 iterations
in atmospheric simulations. The situation turns even more in favour of the multigrid method if the CFL number is
not restricted by accuracy constraints or the explicit treatment of other processes, such as advection.

2. Memory optimised CUDA-C implementation. We optimised the single GPU implementation by minimising
the number of memory references per iteration. As already shown in [13], the biggest gains can be achieved by using a
“matrix-free” approach and recomputing the (sparse) matrix A instead of storing it explicitly. For example, carrying
out a sparse matrix-vector product (SpMV) y ← [Ax requires 1 to 7 global reads (depending on the caching of the
vector x) and 1 global write at each grid cell. This should be compared to a matrix-explicit implementation which
requires 7 additional reads for a finite volume stencil and can hence be more than twice as expensive. Not storing
the matrix explicitly also reduces the memory requirements of the solver significantly. This allows the solution of
larger problems and better utilisation of the GPU resources. For optimal global memory troughput on the GPU
it is crucial to adapt the data layout to achieve optimally coalesced access for all threads in a warp. This requires
a horizontally contiguous ordering of the degrees of freedom, which differs from the vertically contiguous ordering
which allows optimal cache reusage on CPUs. In addition we reduced the number of memory references by fusing
several GPU kernels.
We find that on a single GPU our CG implementation achieves 36% − 56% of the peak global memory bandwidth

2

depending on the problem size. For the multigrid solver the rate is slightly lower with 15%− 36% of the peak global
memory bandwidth, but this is more than compensated by the faster convergence rate.

3. Massively parallel multi-GPU code. We extended our implementation to clusters of GPUs by using a horizontal
decomposition of the computational domain, which is common for applications in atmospheric modelling. For this
we used the Generic Communication Library [14] which allows the straightforward implementation of halo exchanges
on structured two- and three-dimensional grids and supports GPUDirect data transfer between different GPUs.
For the largest problem we studied, the additional overhead from the MPI communications is about 10% for the CG
solver and about 40% for the multigrid solver, both solvers show very good weak scaling to up to 16384 GPUs.

Main achievements. In this paper we describe this approach in detail for the solution of a model equation which captures
the main features of the PDE for the pressure correction in global weather- and forecast models; further details on the
model equation and relevant meteorological literature can be found in previous publications [1, 15]. In [13] we described
the single-GPU implementation of a matrix-free CG solver, here we extend this approach to the geometric-multigrid solver
analysed in [2] and extend both solvers to run on clusters of GPUs. We tested the performance of our solvers and ran them
on up to 16384 GPUs of the Titan Cray XK7 cluster (OLCF, Oak Ridge National Lab), which contains 18,688 nVidia
K20X cards with GK110 Kepler GPUs and is currently ranked as the second fastest computer in the world (top500.org,
June 2014 [6]).

We are able to solve a problem with half a trillion (0.55·1012) degrees of freedom in about one second with the multigrid
solver. The GPU implementation is about a factor four faster on one K20X GPU card on Titan than our optimised Fortran
90 CPU code running on one 16 core AMD Opteron processor of HECToR, the UK’s national supercomputing resource.

On Titan we achieve a performance of 0.78 PFLOPs for the CG solver (and 0.65 PFLOPs for the multigrid algorithm).
It should be stressed that this time includes all components of the solver, such as host-device data transfer and transposition
of the fields for horizontally contiguous ordering on the GPU. As the code is bandwidth limited, the absolute performance
should be quantified in fractions of the peak global GPU bandwidth. For the CG solver we can achieve a percentage of
32%-42% of the peak global memory bandwidth when running on 16384 GPUs, for the multigrid solver this fraction is
15%-25%. All source code is freely available for download under the LGPL 3 license.

Previous work. Early work on the GPU parallelisation of Conjugate Gradient methods and multigrid solvers for sparse
linear systems is discussed in [16, 17]. The authors solve the two dimensional shifted Laplace equation −∆u+σu = RHS
[16] and the Poisson equation −∆u = 0 [17] arising in implicit time stepping methods for the solution of the Navier Stokes
equations. In both cases the code is implemented by using the low level graphics API on GPU hardware which is quite
dated now. More recent GPU implementations of (preconditioned) Conjugate Gradient- [18, 19, 20, 21, 22, 23, 24] and
geometric multigrid solvers [25, 26, 27] are also reported in the literature. To solve problems which arise for example
from finite element discretisations on unstructured grids, typically the system matrix is stored explicitly in formats such
as compressed sparse row storage (CSR) or in the ELLPACK format (see [28] for a detailled discussion of sparse matrix
storage formats on GPUs) and the authors concentrate on optimising the sparse matrix-vector multiplication. The
advantage of this approach is that the solvers can be applied to very general and grid-independent problems such as power
grid simulations in [25] or arbitrary sparse matrices from the University of Florida sparse matrix collection [29] as described
in [19]. However, for very general problems, the construction of a suitable preconditioner is very difficult and convergence
is slow. Similarly, while AMG implementations such as those reported in [30, 31] can be used to solve a very large class
of elliptic problems, the requirement of explicit matrix storage makes them more expensive than geometric multigrid for
the structured PDEs which we discuss in this article. On the other hand, the only matrix-free implementations we are
aware of are [17, 18, 20], and in all cases the authors focus on solving the homogeneous and isotropic Poisson equation
in a regular two- or three- dimensional domain. Both extremes should be compared to our approach: by exploiting the
structure of the problem to construct a suitable preconditioner our solvers can deal with three dimensional anisotropic
equations on curved domains but avoid explicit storage of the matrix which has a negative impact on performance for
bandwidth limited applications.

More recently iterative solvers have also been parallelised across multiple GPUs. For example (unpreconditioned)
Conjugate Gradient solvers are tested for a range of sparse matrices in [19, 21, 22]. Of particular interest for this work are
the multigrid solvers discussed in [24, 23, 27] for the 3D Poisson equation which arises in implicit time stepping methods
for the solution of the Navier Stokes equations. The equation we consider in the following can be derived in a similar
fashion for the compressible Euler equations. A significant but important difference is that compressibility gives rise to
an additional zero order term which introduces an intrinsic length scale beyond which interactions between gridpoints are
exponentially suppressed. This has an important impact on the parallelisation of the multigrid solver: it is sufficient to use
a relatively small number of multigrid levels and one or two smoother iterations are sufficient to solve the well conditioned
coarse grid problem, thus avoiding an exact global coarse grid solve across all processors. This should be compared to

3

the more complicated approaches such as parallel coarse grid aggregation discussed in [27] for the homogeneous Poisson
equation.

An interesting approach combining the computational power of both the CPU and the GPU on a node is described in
[32] where the authors describe a BiCG solver for the Poisson problem on an unstructured grid and parallelise the solver
on a cluster with up to 17 nodes. A multigrid V-cycle is used for preconditioning and the smoother, which is a separate
multigrid iteration on structured subgrids, is offloaded to the GPU. As CPU-GPU data transfer is expensive and there are
now efficient ways for exchanging data directly between GPUs on different nodes, we implemented our solver such that
all calculations are carried out on the device only.

Only recently clusters with several thousands of GPUs have become available and as far as we are aware to date there
are no multi-GPU implementations which have been shown to scale to up to more than around 100 GPUs. Parallel scaling
on up to 128 GPU for a CG solver with Jacobi preconditioner for the Poisson equation is described in [24], and scaling for
the multigrid solver of the same problem is reported on up to 64 nodes in [27]. Elliptic problems solved so far typically have
less than 1 billion unknowns and the results in this work represent a significant contribution to extending the scalability
of iterative solvers to several millions of processor cores on tens of thousands of GPUs and for solving very large systems
with up to half a trillion unknowns. In this context we mention the work reported in [33] where the authors achieved a
GPU performance of 1.9 PFLOPs for an explicit time stepping solver of the shallow water equations on a cubed sphere
grid (however, in contrast to implicit timestepping methods, this does not require the solution of an elliptic PDE for the
pressure correction). That solver is run on 3750 nodes with 1 GPU each to solve problems with up to 4 billion unknowns
per atmospheric variable.

Although we believe that here we describe the first massively parallel GPU implementation of solvers for sparse systems
with more than half a trillion (0.5 · 1012) unknowns, problems of this size have been solved on more conventional CPU
clusters before. For example, a massively parallel implementation of a multigrid solver on hybrid grids is described in [34]
and the authors demonstrate the excellent scalability of the algorithm on nearly 300,000 CPU cores by solving systems
with up to 1012 unknowns.

While in the past, bespoke geometric multigrid solvers for anisotropic elliptic PDEs have been studied extensively in
the literature (see e.g. [35] for a standard textbook), we will not discuss those more algorithmic aspects here and instead
refer the reader to to [2] and a forthcoming publication ([15]) which contain more compresensive reviews of this topic.

Structure. This paper is organised as follows: in Section 2 we briefly review the application of iterative solvers to
anisotropic elliptic PDEs in atmospheric modelling with particular focus on Conjugate Gradient and geometric multi-
grid methods. The GPU implementation of these methods is discussed in Section 3 and a theoretical performance analysis
is carried out in Section 4. The results of our numerical experiments and weak scaling tests on Titan are presented in
Section 5. Finally we conclude and outline some ideas for further work in Section 6.

2. Iterative solvers for anisotropic elliptic PDEs in implicit time stepping methods

2.1. Model problem

We consider the following PDE, which can be used as a simplified model of the pressure correction equation arising in
semi-implicit semi-Lagrangian time stepping methods in atmospheric forecast models:

−ω(h)2

(
∇2
S u(r̂, r) + λ(h)2 1

r2

∂

∂r

(
r2 ∂u(r̂, r)

∂r

))
+ u(r̂, r) = f(r̂, r). (3)

Here r ∈ [1, 1 + H] is the radial coordinate in units of the earth’s radius Rearth and H = D/Rearth � 1 is the ratio
between the depth of the atmosphere and the radius of the earth. The unit vector r̂ is used to describe a position on a
unit sphere S and ∇S ≡ ∇− 〈r̂,∇〉r̂ denotes the tangential conponent of the three dimensional gradient. Homogeneous
Neumann boundary conditions are used at the top and bottom boundary of the domain. A structured vertical grid and
a semi-structured horizontal grid Th are used for discretising the equation on the domain S × [1, 1 + H]. Since H � 1
the vertical grid spacing hz is much smaller than the horizontal mesh width h, and so the discretised equation has a
very strong grid aligned anisotropy in the vertical direction. The parameters ω(h) and λ(h) depend on the meteorological
conditions and on the time step size and are discussed in more details in [1]. Most importantly, as the horizontal resolution
increases, i.e. the mesh width h tends to zero, we have ω(h) ∝ h and λ(h) → 1. More specifically the coefficient of the
second order term in (3) is given by

ω(h) =
ch∆t(h)

2Rearth
(4)

where ch is at the order of the speed of sound. Because of fast advective time scales and to represent large scale flow
accurately, in meteorological applications the resolution dependent time step size ∆t(h) has to be chosen such that the

4

horizontal CFL number νCFL = ch∆t/∆x = 2ω(h)/h is not larger than around 2− 10. On the other hand, implicit time
stepping methods will not be competitive if νCFL is too small. To satisfy these conditions we always use

ω(h) =
1

2
νCFLh with νCFL = 8.4 (5)

in our numerical experiments. We also study the robustness of our solvers to variations in the CFL number.
The equation in (3) can be seen as a special case of the more general PDE studied in [15] (see also [36] which describes

how an equation of this form is derived in the ENDGame dynamical core of the UK Met Office’s Unified Model)

−ω2∇ · (α(r̂, r)∇u(r̂, r))− ω2ξ(r̂, r) ·∇u(r̂, r) + β(r̂, r)u(r̂, r) = f(r̂, r), (6)

where α, ξ and β are atmospheric “profiles”, i.e. functions which depend on the current state of the model. Due to the
vertical layering of the atmosphere each of these functions can be approximated very well as the product of a vertically
varying field and a horizontally varying function. This is why tensor-product methods are of particular interest. Even if
the profiles do not factorise exactly, an approximate factorisation can still be used in a preconditioner. This is discussed
in a lot of detail in [15]. It is for these reasons that we believe that the PDE in (3) is a good model for the pressure
correction equation encountered in atmospheric models.

We chose not to make any further simplifications such as solving a (shifted) Laplace equation in a simplified geometry,
as is often done in the literature on massively parallel solvers, since this would allow significant further performance
improvements which are not reasonable in realistic meteorological applications.

As discussed below one of the crucial advantages of our matrix-free implementation is that it allows a generalisation of
problems in flat Euclidean domains (with constant matrix stencil) to spherical geometries without significant additional
computational costs.

2.1.1. Discretisation

Equation (3) is discretised using a simple cell centred finite volume scheme on one panel of a non-conformal cubed
sphere grid with gnomonic projection as described in [37].

For simplicitly homogeneous Dirichlet boundary conditions are used in the horizontal direction. To represent a field
u(r̂, r), all data in one vertical column above the horizontal grid cell T is stored in a vector u(T) of length nz. Then the
discretised equations associated with the horizontal grid cell T ∈ Th can be written as

(Au)
(T)

= ATu
(T) +

∑
T ′∈N (T)

ATT ′u(T ′) = f
(T)
. (7)

where AT is a tridiagonal matrix containing all vertical couplings, as well as diagonal terms, and where the diagonal
matrices ATT ′ describe the couplings to the horizontally neighbouring cells T ′ ∈ N (T). Due to the strong vertical
anisotropy, the entries in AT are much larger than the ones in ATT ′ .

To understand the origin of the individual terms in (7), it is instructive to write down the explicit form of these matrices
for a simplified equation instead of (3). Consider the shifted Laplace equation −ω2

(
∇2

2Du+ λ2∂2/∂2
ru
)

+ u = f in a flat
box Ω× [0, H]; here the horizontal domain Ω = [0, 1]× [0, 1] is the unit square and ∇2D = ∂2/∂2

x + ∂2/∂2
y denotes the two

dimensional Laplacian. If we choose an equidistant Cartesian grid with spacing h on Ω then every horizontal cell T can
be labelled with a pair of indices, i.e. T ≡ (i, j). In this case equation (7) can be written explicitly as

(Au)
(i,j)

= A(i,j)u
(i,j) +A(i,j),(i+1,j)u

(i+1,j) +A(i,j),(i−1,j)u
(i−1,j) +A(i,j),(i,j+1)u

(i,j+1) +A(i,j),(i,j−1)u
(i,j−1) = f

(i,j)

with the matrices A(i,j),(i′,j′) = −ω2/h2Inz×nz where Inz×nz is the nz × nz identity matrix. The entries on the diagonal

of the matrix A(i,j) would be 1 + 4ω2/h2 + 2ω2λ2/h2
z and the off-diagonal entries are −ω2λ2/h2

z where hz is the vertical
grid spacing. We stress, however, that equation (7) allows more general geometries with semi-structured horizontal grids.
In this case the exact form of the matrices ATT ′ and AT is more complicated as the finite volume discretisation leads to
non-trivial geometric factors.

The elliptic equation in (3) is symmetric and positive definite. For a given horizontal resolution we can give a rough
estimate of the condition number by again considering the equation in a flat box. After preconditioning by vertical line
relaxation, it can be shown that the resolution dependent condition number κ(h) is

κ(h) ≈ 1 + 8ω(h)2/h2 for h� 1 and ω(h)� 1. (8)

Since ω(h) = 4.2h for νCFL = 8.4, this leads to an estimate of κ(h) ≈ 142. Geometric factors arising from the spherical
geometry will modify this estimate by factors of O(1) and hence we expect the condition number of our problem to be in
the range 100− 1000, independent of the grid resolution.

5

In principle we do not need to make any assumptions on the ordering of the horizontal degrees of freedom and indirect
addressing could be used in the horizontal direction, as is described for the DUNE implementation of the problem on
quasi-uniform icosahedral and cubed-sphere grids for the entire sphere in [15]. However, in this work we assume for
simplicity that each horizontal grid cell on the panel can be identified by a pair of indices (i, j) ∈ [1, nx]× [1, ny], and each
vertical level is indexed by an additional integer k ∈ [0, nz − 1].

2.2. Algorithmically scalable and efficient solvers

Large sparse systems of equations can be solved efficiently using state-of-the-art iterative solvers which improve an
initial solution u0 by reducing the residual r = f −Au (and hence the error) at every iteration. Krylov subspace methods
(see e.g. [38] for an introduction) minimise the residual by constructing the solution in the space spanned by the vectors

r0, Ar0, A
2r0, . . . , (9)

where r0 = f − Au0 is the initial residual. The simplest (and most efficient) Krylov subspace method for symmetric
positive systems is the preconditioned Conjugate Gradient (CG) iteration. Closely related methods such as Conjugate
Residual (CR), GMRES and BiCGStab are very popular in the meteorological literature (see e.g. [8, 9, 10, 11]) and due to
the strong vertical anisotropy, a very effective preconditioner M is vertical line relaxation, which requires the solution of
a tridiagonal problem in each vertical column. This preconditioner corresponds to solving the equation which is obtained
by only keeping the first term on the left hand side of (7), which describes the dominant vertical couplings; the resulting
matrix M is block-diagonal. Each of the tridiagonal systems can be solved independently using the Thomas algorithm (see
e.g. [12]). Mathematically this is equivalent to a block-Jacobi or block-SOR method where each of the blocks correspond
to the degrees of freedom in one particular vertical column.

The computationally most expensive components of the algorithm are a sparse matrix-vector (SpMV) multiplication
and a preconditioner (tridiagonal-) solve, in the following we write these operations as

y ←[Ax (SpMV), y ← [M−1x (Preconditioner). (10)

As discussed in detail in [13] (where also the algorithm is written down explicitly), the efficiency of the implementation can
be improved by fusing these two operations with the level 1 BLAS operations in the main loop. Other Krylov subspace
methods, such as BiCGStab, CR or GMRES can be used to solve more general systems and differ from the CG method
only in the number of sparse matrix-vector products, preconditioner applications, level 1 BLAS operations, and in the
storage requirements.

In contrast, multigrid methods (see e.g. [39, 35]) use a hierarchy of coarse levels to minimise the error on all scales
simultaneously. In the following we write u(`) for the field on multigrid level `, where ` = 1 corresponds to the coarsest
level and ` = L to the finest level where we want to solve the equation, i.e. u(L) = u. For simplicity we omit the
multigrid-level index (`) wherever it is obvious from the context, such as on all the coarse grid matrices. The fine grid
equation is solved by starting with an initial guess for the solution and improving on this by repeated calls to the recursive
subroutine Vcycle in Algorithm 1 (for simplicity the iteration is written down for one pre- and one post-smoothing step
here). After each Vcycle convergence is checked by comparing the norm of the residual to a given tolerance ε, i.e. the
algorithm terminates as soon as

||r||/||r0|| < ε. (11)

In our numerical experiments we always reduce the residual by five orders of magnitude, which is typical in atmospheric
applications. To achieve rapid convergence the different multigrid components have to be adapted to the problem to be
solved. In [2] geometric multigrid algorithms for equations with a tensor-product structure and grid-aligned anisotropy
are analysed. The authors show that the convergence rate of a multigrid solver for a two-dimensional problem with
strong coupling in the vertical direction can be bounded by the convergence rate of the multigrid algorithm for a related
one-dimensional horizontal problem if the following tensor-product multigrid algorithm is used:

• Horizontal-only semicoarsening: Only coarsen the grid in the horizontal direction.

• vertical block-Jacobi/-SOR smoother: Use vertical line relaxation as the smoother, i.e. solve the equation for
all degrees of freedom in a vertical column simultaneously. Hence, in essence the multigrid smoother is identical to
the preconditioner used for the CG algorithm described above.

As shown in [15], the generalisation from two to three dimensions is straightforward and this is the algorithm which we
use in this work. On each level we use a block-Jacobi smoother which can be written as

u(`) ← [u(`) + ρrelaxM
−1
(
f (`) −Au(`)

)
(12)

6

Algorithm 1 Subroutine VCycle(ρrelax, {u(`)}, {f (`)}, {r(`)},`)
if ` = 1 then
{Restrict residual and solve on coarsest level}
f (1) ←[R1,2r

(2), u(1) ← [A−1f (1)

else
if ` = L then
{Smooth once on finest level}
u(`) ← [u(`) + ρrelaxM

−1(f (`) −Au(`)) [= Kernel Smooth]
else
{On all other levels, restrict residual and smooth once}
f (`) ← [R`,`+1r

(`+1), u(`) ←[ρrelaxM
−1f (`) [= Kernel RestrictSmooth]

end if
{Calculate residual}
r(`) ← [f (`) −Au(`) [= Kernel Residual]
{Recursive call to Subroutine VCycle}
Call VCycle(ρrelax, {u(`)}, {f (`)}, {r(`)}, `− 1)
{Add prologated coarse grid correction}
u(`) ←[u(`) + P `,`−1u

(`−1) [= Kernel Prolongate]
{Postsmoothing}
u(`) ←[u(`) + ρrelaxM

−1(f (`) −Au(`)) [= Kernel Smooth]
end if

and requires one sparse-matrix-vector product and one preconditioner solve in (10). For the intergrid operations

u(`) ← [R`,`+1u
(`+1) (Restriction), u(`) ←[P `,`−1u

(`−1) (Prolongation) (13)

we use a simple cell-average for the restriction and (piecewise) linear interpolation for prologation (both in the horizontal
direction only), and we found that these methods are sufficient for scalable performance. By carrying out the restriction
at the beginning of the subroutine in Algorithm 1 it is possible to fuse it with the first presmoothing step on the coarse
levels. Apart from that fusing kernels has little potential for further gains in the multigrid algorithm.

Recall that the condition number κfine of the fine grid problem is O(100−1000) independent of the horizontal resolution.
The condition number of each subsequent coarse level is reduced by a factor 4, i.e. the square of the relative grid spacings.
We typically choose L = 5 multigrid levels. Hence on the coarsest grid we have κcoarse = 4−(L−1)κfine, i.e. the operator
is well conditioned and the coarse grid equation can be solved by a small number (two turned out to be sufficient) of
smoother iterations. This has already been confirmed by the detailed numerical experiments on CPU architectures in [1].
For the particular model problem in (3) where ω(h) ∝ h to accurately represent large scale atmospheric flow, both these
iterative methods are algorithmically scalable, i.e. the number of iterations is independent of the mesh size h and thus of
the problem size. However, an additional benefit of multigrid solvers is their greater robustness with respect to variations
in the model coefficients [1].

3. Implementation

In the following we describe the CUDA-C implementations of both the CG- and multigrid solvers discussed in the
previous section. The code was written from scratch by the authors and we use the CUBLAS library for some level
1 BLAS operations as well as the GCL library [14] for inter-GPU communication. The source code is made available
under the LGPL 3 license and can be accessed as a git repository via the following link: https://bitbucket.org/em459/
ellipticsolvergpu. Further details on the single GPU implementation of our CG solver can be found in [13].

3.1. Memory throughput optimised implementation

Due to the vertical dependency in the tridiagonal solver, which is used both as the preconditioner in CG and as the
smoother in multigrid, one thread is assigned to each vertical column. To achieve optimal performance it is crucial to
coalesce access to global memory for all threads within one warp. This is achieved by storing data contiguously in the
horizontal (x-) direction. As discussed in Sections 3.2 and 6.1 of [13], a three dimensional field u on one panel of a cubed

7

https://bitbucket.org/em459/ellipticsolvergpu
https://bitbucket.org/em459/ellipticsolvergpu

sphere grid can be described as a collection of nx × ny vectors u(i,j), one for each horizontal cell (i, j) ∈ [1, nx] × [1, ny].
Internally the field can be stored as a linear array of length nx × ny × nz defined by the mapping,

uΛ(i,j,k) = u
(i,j)
k , where Λ(i, j, k) ≡ nx · (nz · (j − 1) + k) + (i− 1). (14)

In the following we also assume that (at least on the finest multigrid levels) both nx and ny are multiples of 32. This
further improves performance as global memory access is not only coalesced but also well-aligned. We stress, however,
that our approach can be generalised to more unstructured grids e.g. by the use of a space filling curve for numbering the
horizontal grid cells.

Matrix-free implementation. As in [13] we use a matrix-free implementation, i.e. we recalculate the local matrix stencil
whenever it is needed. In particular, the diagonal matrix AT,T ′ and the tridiagonal matrix AT in (7) are given by

AT,T ′ = αT,T ′ diag(d),

AT = |T |diag(a)− αT diag(d) + |T | tridiag(−(b+ c), b, c).
(15)

The four vectors a, b, c and d have length nz and can be derived from the vertical stiffness- and mass- matrices in a
tensor product representation of (3) [15]. As they do not differ from column to column they can be precomputed once for
the entire grid. The coefficients αT,T ′ and αT are different for each horizontal grid cell T (and depend on the multigrid
level). However, they are scalars which can be computed for an entire vertical column with a small overhead as long as nz
is sufficiently large (in atmospheric applications nz = O(100), and we use nz = 128 throughout this work). This should
be compared to a matrix-explicit implementation where seven matrix entries need to be loaded from memory per grid cell
to carry out a sparse matrix-vector product. The matrix-free implementation significantly reduces global memory access,
in particular if the vectors a, b, c and d are cached. Instead of O(7× nhoriz × nz) the storage requirements of the matrix
are only O(4× nz) which also means that significantly larger problems can be solved on a single GPU.

At this point we mention that a very similar structure for the matrices AT,T ′ and AT arises when discretising more
general equations of the form

−ω2∇ · (α∇u)− ω2ξ ·∇u+ βu = f

as long as the “profiles” α, β and ξ can be factorised into a parts which contain on the horizontal and vertical coordinates
only. In this case the factors |T |, αT,T ′ and αT in (15) have to be replaced by more complicated expressions which can,
however, still be evaluated only once per column. It is for this reason that we believe that the results in this article can
be generalised easily to more complicated equations, this is discussed in more detail in [15].

On the other hand, in a flat, Euclidean geometry the matrix stencil would be the same for all grid cells and in the
simplest possible implementation (which just uses a constant matrix stencil) there would be no cost associated with the
local matrix assembly. However, as argued above, for large enough nz our approach also does not require any additional
computational cost (measured in the amount of data read from memory) for setting up the local matrix in each cell.
Therefore it allows the generalisation of the problem to spherical domains at the same computational cost as is required
for the simplest possible implementation in a flat, Euclidean domain.

In addition, in the CG algorithm we reduce the amount of global memory access by fusing the two computationally
most expensive kernels (SpMV and tridiagonal solve) with several of the level 1 BLAS operations. The following operations
need to be carried out for the solvers and were implemented as CUDA-C kernels:

Conjugate Gradient.

1. Sparse matrix-vector product [Kernel (Fused) SpMV]: Simultaneously calculate u ←[u + αp; p ←[z + βp; q ←[
Az + βq; σ ← [〈p, q〉

2. Preconditioner (tridiagonal solve) [Kernel (Fused) Tridiag]: Simultaneously calculate r ← [r − αq; z ← [M−1r;
||r|| ←[〈r, r〉; κ← [〈r, z〉

Multigrid.

1. Smoother [Kernel Smooth]: u(`) ←[u(`) + ρrelaxM
−1(f (`) −Au(`)); to avoid a race condition in u(`), this operation

is split up into two kernels, with the residual calculation and forward sweep of the tridiagonal solver in the first and
the backward sweep and axpy-like update of u in the second.

2. Residual calculation [Kernel Residual]: r(`) ← [f (`) −Au(`)

3. Interleaved (fused) restriction and smoother [Kernel RestrictSmooth]: Simultaneously calculate f (`) ← [R`,`+1r
(`+1),

u(`) ← [ρrelaxM
−1f (`)

8

��

��

��

� �� �

���	
��

Figure 1: Data layout of the local subdomain on one processor. Interior degrees of freedom (i, j) ∈ [1, nx] × [1, ny] “owned” by the processor
are shown in white, the halo is shown in dark gray and extra padding space in light gray. We set OLx = 32 and OLy = halosize to guarantee
aligned memory access in the x-direction.

4. Prologation [Kernel Prolongate]: u(`) = u(`) + P `,`−1u
(`−1)

Each of the kernels requires a single iteration over the grid. For the multigrid solver the first presmoothing step on the
coarse grids (on which the initial solution is initialised to zero) has been fused with the residual calculation to reduce the

number of accesses to the vector f (`).
In addition, a small number of level 1 BLAS operations still needs to be carried out for global reductions. For example,

the global reductions in the interleaved CG kernels are implemented by each thread summing up the values in a vertical
column into a two-dimensional field, which is then summed by a cuBLAS dot product with a field that is set to 1 in the
whole two dimensional domain. For simplicity the calculation of the norm of the residual on the finest multigrid level
was also implemented via a 3D cuBLAS norm instead of fusing it with the corresponding kernel (note that this norm
calculation is also not necessary if a fixed number of V-cycles is carried out). While there is further potential for (small)
additional speedups, we found that the cost of these level 1 BLAS operations is negligible (to see this, compare the last
two rows in Tables 4 and 5 below) and not worth the effort.

3.2. Multi-GPU implementation

To parallelise the solvers across several GPUs we split the horizontal domain into equal square parts, such that each
GPU is responsible for a quadratic subdomain. Consistency between neighbouring domains is guaranteed by exchanging
halo data when necessary. For this we used the Generic Communication Library (GCL) [14]. The extension of this
approach to more general partitionings and different (semi-) structured horizontal grids is possible. This is discussed in
[15] where we discuss a parallel CPU implementation of the tensor-product multigrid solver on an icosahedral grid.

In addition to the interior degrees of freedom with horizontal indices (i, j) ∈ [1, nx] × [1, ny] a halo of cells of width
halosize = 1 is stored on each GPU. To avoid unaligned memory access, which we found can reduce performance by as
much as 30%, we pad data by a total amount of OLx = 32 in the x− direction, and set OLy = halosize in the y− direction
(in this direction padding is not necessary). Then the linear mapping (14) is modified to

Λ̂(i, j, k) ≡ (nx + 2OLx) · (nz · (j − 1− OLy)) + (i− 1− OLx) (16)

with (i, j) ∈ [1− OLx, nx + OLx − 1]× [1− OLy, ny + OLy − 1]; the local domain is shown in Figure 1. We stress, however,
that only degrees of freedom on the halo cells are exchanged between processors i.e. the padding does not increase the
amount of data that is sent over the network. In the GCL this can be achieved by registering the appropriate degrees of
freedom in the halo exchanger object

he->add_halo<0>(halosize, halosize, OL_X, NX+OL_X-1, NX+2*OL_X);

he->add_halo<1>(halosize, halosize, OL_Y, NY+OL_Y-1, NY+2*OL_Y);

he->add_halo<2>(0, 0, 0, NZ-1, NZ);

where he is an instantiation of the uniform type halo structure interface class GCL::halo_exchange_dynamic_ut.

9

(Fused) CG

FLOPs Mem Mem(C)

(Fused) SpMV 32 12 6

(Fused) Tridiag 22 12 9

Total 54 24 15

Multigrid

FLOPs Mem Mem(C)

Smooth 37 17 8

RestrictSmooth 17 12 6

Residual 23 9 3

Prolongate 6 5 3

Residual norm 2 1 1

Total 149.4 67.2 29.6

(fine level only) (122) (53) (23)

Table 1: Number of FLOPs and memory references per grid cell for the kernels in the (fused) CG algorithm (left) and the multigrid solver
(right); see Section 3.1 and Algorithm 1 for a definition of the individual kernels.

4. Theoretical performance analysis

4.1. Floating point operations and memory transfer costs

The number of floating point operations (FLOPs) and memory references per grid cell is shown for the CG and
multigrid algorithms in Table 1. The total number of operations on all 5 multigrid levels (penultimate row in Table 1,
right) was obtained by adding up the number of operations on all levels and dividing by the size of the fine grid. We
assume that 1 pre- and post-smoothing step is applied on each level and the coarse grid problem is solved by two smoother
iterations. The residual norm is only calculated on the fine level to test for convergence.

The column labelled with “Mem” shows the number of global memory references without any caching. On the other
hand the “Mem(C)” column shows the corresponding number assuming optimal caching, i.e. we assume that data is only
loaded from global memory once per kernel call. As our implementation is matrix-free (and we assume that the vectors
a, b, c and d in (15) are always cached), there are no costs associated with reading the local stencil from global memory.
Consider, for example, the sparse matrix vector product y ←[Ax. Without caching, the value of the vector x in each
cell and its six direct neighbours needs to be read from memory and one value is written back to y, resulting in a total
of 8 memory references. With perfect caching each entry in x only has to be read from global memory once and the
total number of memory references is reduced to 2 per grid cell. How much caching can actually be achieved is hard to
predict, so these two values should be interpreted as upper and lower bounds. As explained in Section 5.1 we always use
the lower value (i.e. the number in the “Mem(C)” column) for our estimates of the achieved global memory bandwidth.
The quantity which is constructed in this way is commonly know as the “useful bandwidth” since it does not include any
spurious memory traffic which is not required by the algorithm (for example data which is read twice due to poor caching).

In the multigrid solver the grid size is reduced by a factor 4 with each coarsening step and as a result most of the
computational work is concentrated on the finest grid level. To demonstrate this we also list the number of operations per
grid cell on the fine level only in the last row of Table 1, right. In practise, once the size of the horizontal grid drops below
a certain threshold, the GPU might not be utilised efficiently and the actual runtime is reduced by less than a factor four
on subsequent levels. Our measurements (see Table 3) show that calculations on the fine grid account for most of the total
computational cost and that the cost reduction factor is close to four as long as the local domain is larger than 64 × 64
(see Figure 3 (left)). The impact of inter-GPU communications, which is also more significant on the coarser grids, will
be discussed below.

For the CG solver, the number of FLOPs is only 3.6× larger than the minimal number of memory references, for the
multigrid solver the corresponding factor is 5×, and we conclude that both algorithms are clearly memory bound on a
GPU. By comparing the number of memory references in the two algorithms, the theoretically expected time per iteration
is 2× to 3× larger for the multigrid solver where the exact ratio depends on the cache efficiency.

It is worth counting the additional number of global memory accesses which would be required in a matrix-explicit
code: to read the matrix from memory requires 10 memory accesses for the CG solver and 42.9 for the multigrid algorithm
(the full seven point stencil is required to evaluate the sparse matrix-vector product, but only the couplings to the cell
above and below are required in the tridiagonal solver). This should be compared to the minimal number of memory
references shown for the matrix-free code in Table 1 which is 15 for CG and 29.6 for multigrid.

4.2. Parallel communications between GPUs

In the CG solver a halo exchange is required after each call to the (fused) tridiagonal solver kernel. In the multigrid
algorithm halos need to be exchanged after each kernel launch (with the exception of the residual calculation). Denoting

10

Problem size nx

Solver 128 256 512 768

(Fused) CG 20.8 10.4 5.2 3.5

Multigrid 80.5 40.2 20.1 13.4

Multigrid (fine level) 54.3 27.2 13.6 9.1

Table 2: Theoretical ratio between MPI communication- and calculation- times as defined in (17). The table shows R multiplied by 104 for
different local horizontal problem sizes nx = ny with halosize = 1 and double precision arithmetic (sizeof(double) = 8).

the number of halo exchanges per iteration by nhalo and the minimal number of memory references by nMem(C) , on a given
level with a local problem size of nx × ny × nz (where we always implicitly assume that nx = ny), the ratio between the
communication time and calculation time is given by

ρ =
2(nx + ny)nz × sizeof(double)× halosize× nhalo

nxnynz × nMem(C)

× BWmem

BWMPI
≡ R× BWmem

BWMPI
. (17)

This ratio decreases as ∝ (nx + ny)/(nx · ny) ∝ 1/nx as the local domain size nx increases. We assume that the global
memory bandwidth BWmem is about two orders of magnitude larger than the network bandwidth BWMPI required for
communication between different GPUs (the exact ratio between the bandwidths will be quantified in more detail in
Section 5.3). For the multigrid solver the amount of exchanged data and the number of memory references have to be
summed over all levels to calculate the ratio R in (17).

In Table 2 the ratio R is shown for all solvers. For the multigrid algorithm we also distinguish between the full level
hierarchy and the finest level only. While (based on our estimate BWmem/BWMPI ≈ 100) the resulting ratio ρ is at the
order of 10% or less for the CG solver and on the finest multigrid level (for local problem sizes larger than 256×256×128),
it is approximately four times larger for the multigrid solver. The main reason for this is that three halo exchanges are
required on each level instead of one for the CG solver. In addition on the coarser levels the ratio between communications

and calculations is a factor nx/n
(`)
x > 1 larger than on the finest level, where n

(`)
x = n

(`)
y is the problem size on level

`. With L = 5 multigrid levels this corresponds to an increase by a factor 2L−1 = 16 on the coarsest level. For both
reasons we expect the overhead from MPI communications to be larger for the multigrid solver and this is confirmed by
our numerical experiments in Section 5.3.

5. Results

In the following we report on detailed numerical experiments with our solvers and quantify both their algorithmic- and
computational performance on up to 16384 nVidia GPUs.

Hardware and compilers. Most GPU results shown in this section were obtained on the Cray XK7 Titan supercomputer
at Oak Ridge National Lab. According to the June 2014 release of the top500.org list [6] this machine is currently
ranked as the second fastest computer in the world and consists of 18,688 nodes in total. Each node contains one 16-core
2.2GHz AMD Opteron(TM) 6274 (Interlagos) CPU and one nVidia Tesla K20X card with a GK110 Kepler GPU (compute
capability 3.5). The nodes are linked with a Cray Gemini interconnect in a torus topology. Each GPU has 2688 cores,
which are organised into 15 streaming multiprocessors of 192 cores each. The K20X card has 6 GB of global memory,
in addition to 1536KB L2 cache and 48KB+16KB configurable L1 cache/shared memory. The theoretical peak FLOP
rate of a single GPU is 1.31 TFLOPs and the theoretical peak global memory bandwidth is 250 GByte/s [7], resulting
in a theoretical peak floating point performance of 27 PFLOPs (combined CPU and GPU performance); the LinPACK
benchmark performance is quoted as 17.59 PFLOPs [6]. The code was compiled with release 5.0 (V0.2.1221) of the nVidia
nvcc compiler and version 4.7.2 of the gnu c++ compiler; a vendor optimised MPICH2 implementation that supports
GPUDirect was used for internode communications.

To study the dependency of the performance on the GPU hardware we also carried out a number of runs on up to 64
GPUs of the EMERALD GPU cluster hosted at Rutherford Appleton Lab in the UK. This cluster consists of 372 NVidia
M2090 cards with Fermi GPUs (compute capability 3.0), which are organised into 60 nodes with 3 GPUs each and 24
nodes with 8 GPUs each. With 0.67TFLOPs the double precision floating point performance is half as large as for the
Kepler GK110 cards in Titan. The global memory bandwidth is 177 GByte/s. Each node contains two 6-core Intel X5650
Xeon CPUs and a QDR Infiniband network is used to link the nodes; the MVAPICH2 implementation was used for MPI
communications.

11

To quantify the performance of our algorithms on traditional CPU hardware we compared the GPU code to a bespoke
Fortran implementation of the multigrid solver which is based on the MPI distributed memory programming model. The
Fortran code was run on up to 65536 cores of HECToR, the UK’s national supercomputer which is hosted and managed
by the Edinburgh Parallel Computing Centre (EPCC). The performance and scalability of this Fortran code is discussed
in more detail in [1]. HECToR is a Cray XE6 supercomputer consisting of 2816 compute nodes connected by a Cray
Gemini interconnect. Each node contains two AMD Opteron (Interlagos, model 6276, 2.3 GHz) processors with 16 cores
[40], and we adjusted the problem size such that it is the same on one GPU and on one CPU, i.e. we always carried out
a socket-to-socket comparison.

Problem- and solver- parameters. For a given problem size, which in the following is defined by the number of horizontal
grid cells nx in one direction, the parameters ω(h) and λ(h) in (3) were adjusted to physically realistic values, for the
exact values compare Table 6 to Table 1 in [1]. In particular ω(h) decreases linearly with increasing model resolution as
described in (5), which implies that the condition number of the discretised equations does not increase with problem
size, and hence the number of iterations is roughly independent of nx. As estimated above, the condition number is
O(100− 1000). The number of vertical grid levels was kept fixed at nz = 128.

We use five multigrid levels in all cases and solve the coarse grid problem by applying two smoother iterations and use
one pre- and post-smoothing step on all multigrid levels. The overrelaxation parameter in the block-Jacobi smoother was
set to ρrelax = 2/3.

5.1. Single GPU performance

The performance of CG and of the multigrid solver is shown in Table 3 for different problem sizes nx. The largest
problem that could be solved with the CG algorithm has 768× 768× 128 = 7.55 · 107 degrees of freedom, whereas for the
multigrid solver the largest problem that fits into memory has 512× 512× 128 = 3.36 · 107 unknowns. On the GPU the
horizontal thread layout was chosen such that each block consists of 64 threads in the (memory contiguous) x- direction
and 2 threads in the y- direction. We iterate in both cases until the residual has been reduced by five orders of magnitude,
i.e. we use ε = 10−5 in (11). The number of iterations is almost 8 times smaller for the multigrid solves. The numbers
depend only weakly on the problem size, confirming the good algorithmic scalability of both solvers. For the nx = 512
problem, one iteration of the multigrid solver is three times as expensive as a CG iteration which is in line with the
prediction based on the number of memory references in Section 4.1. This ratio deteriorates for smaller problem sizes
because as the problem size decreases, the GPU will be underutilised on the coarse grid levels, see also Figure 3.

At this point it is worth recalling the significant reduction in runtime which is achieved by not storing the matrix
explicitly. In [13] the performance of the matrix-free fused CG solver is compared to an implementation based on the
CUSparse library which stores the matrix in compressed sparse row (CSR) storage format. For a 256× 256× 128 problem
on a single Fermi M2090 GPU a speedup of a factor 4.6× is achieved by recalculating the local matrix stencil on-the-fly
instead of using the CSR implementation.

In Table 3 we also quantify the floating point performance and the percentage of the peak global memory bandwidth
which can be utilised by our solvers. For this we use the figures in Table 1 and divide them by the measured time per
iteration in the first row of Table 3. In all cases our calculation is based on the minimal number of memory accesses,
i.e. the number in the “Mem(C)” column, i.e. we calculate the “useful bandwidth”. For a memory bound application
a bandwidth of 100% would correspond to perfect caching. It is very hard to achieve this theoretical upper bound in
practice.

We stress that the total solution time in the last row includes the time for copying the right hand side from the host
to the device and for copying the final solution back to the host. This time is listed separately in Table 3 together with
the time for transposing the fields from a z-contiguous data format on the host to the x-contiguous format in (16) on
the GPU. For optimal efficiency the transposition was implemented on the GPU by adapting the algorithm described by
Mark Harris [41]. Looking at the 512 problem again, the multigrid solver converges twice as fast as the CG iteration.
This speedup is reduced for smaller problem sizes but still 1.6× for the smallest problem we considered. In summary this
stresses the point made at the beginning of this article: the highest performance gains can be achieved by choosing the
algorithmically most efficient solver even if it is more expensive and computationally less efficient in a single iteration and
has a slightly worse parallel efficiency.

5.2. Robustness

For Krylov solvers the algorithmic performance, i.e. the number of iterations to reduce the relative residual below a
certain threshold, depends on the condition number κ(h) of the preconditioned elliptic operator. As discussed above, in the
case of vertical line relaxation, κ(h) only depends on the ratio of ω(h) and the grid spacing h; the size of κ(h) is estimated
in (8). The dimensionless quantity ω(h) is proportional to the time step size (see (4)) and hence 2ω(h)/h = νCFL is the

12

(Fused) CG Multigrid

Problem size nx Problem size nx

128 256 512 768 128 256 512

titer 2.8 7.5 29.7 65.0 12.8 27.3 88.8

GFLOPs 41.0 60.1 60.9 62.7 24.6 45.9 56.4

percentage of peak BW 36.4% 53.4% 54.2% 55.7% 15.6% 29.1% 35.8%

iterations 70 62 59 58 9 8 8

tMemCpy+transpose 19.4 63.5 228.4 494.0 19.6 64.3 229.5

total solution time 217.1 543.7 2029.0 4365.0 135.5 285.7 949.9

Table 3: Time per iteration titer, number of iterations and total solution time for different problem sizes nx and solvers. The total solution
time includes the host-device memory transfer and data transposition time, which is listed separately as tMemCpy+transpose. All times are given
in milliseconds. The floating point performance and percentage of theoretical peak global memory bandwidth are calculated based on titer and
the numbers in Table 1, see main text for details.

1 10 100 1000
νCFL

1

10

100

1000

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

CG

Multigrid [5 levels]

Multigrid [7 levels]

Multigrid [10 levels]

1 10 100 1000
νCFL

10-1

100

101

102

To
ta

l
ti

m
e
 [

s]

CG

Multigrid [5 levels]

Multigrid [7 levels]

Multigrid [10 levels]

Figure 2: Number of iterations (left) and total solution time (right) for different solvers and a range of CFL numbers. The problem size was
fixed to 512× 512× 128 and all runs were carried out on one M2090 GPU of the EMERALD cluster. The dashed vertical line marks the CFL
number used for numerical experiments in the rest of this article.

horizontal CFL number. As already shown in [1], the tensor-product multigrid method converges in a constant number of
iterations for our model problem, independent of the condition number. While for most numerical experiments presented
in this paper we fixed νCFL = 8.4, here we also study the algorithmic performance for other choices of νCFL for fixed
horizontal resolution. In the limit ∆t→∞, νCFL →∞ one would recover the Laplace equation from (3). In Fig. 2 both
the number of iterations and the total solution time are shown for different values of νCFL. In addition to the results for
5 multigrid levels, which were used for the numerical experiments in the rest of this paper, we also show results for 7 and
10 multigrid levels. As expected, since κ(h) ∝ ν2

CFL for νCFL � 1, the number of CG iterations increases linearly with
νCFL for the CG solver. In terms of the total solution time CG only becomes competitive for small CFL numbers. The
multigrid algorithm is significantly more robust. The number of iterations and the total solution time depends only weakly
on the CFL number. As the CFL number increases, the coarse grid problem becomes less well conditioned. Depending
on the number of levels, it may be necessary to increase the number of smoother iterations on the coarsest grid (or use
a different coarse grid solver, such as preconditioned CG). We found that for the 10-level method 2 smoother iterations
are sufficient to solve the coarse grid problem up to a value of νCFL = 840 without any significant increase in the number
of iterations or in the total solution time. For the 7-level method it was necessary to increase the number of smoother
iterations on the coarsest level slightly for νCFL > 16.8. To maintain robustness, 5 and 15 smoother steps were sufficient
for νCFL = 84 and νCFL = 840, respectively. For the 5-level method, still 2 smoother steps on the coarsest level suffice up
to νCFL = 16.8, but the number has to increase significantly faster for larger CFL numbers, namely to 30, for νCFL = 84,
and to 150, for νCFL = 840, leading to a slightly faster increase of the number of iterations and of the total solution time

13

1 GPU 64 GPUs

(Fused) SpMV 14.1 14.2

(Fused) Tridiag 15.6 18.0

Total [kernels] 29.7 32.2

Total [iteration] 29.8 32.5

Table 4: Breakdown of the (fused) CG solver time per iteration on a 512× 512× 128 grid for 1 and 64 GPUs [all times in milliseconds].

1 GPU 64 GPUs

Multigrid level Multigrid level

kernel 5 4 3 2 1 5 4 3 2 1

Smooth 45.0 5.9 1.9 0.8 0.7 50.7 7.6 3.2 1.8 1.7

ResSmooth — 4.7 1.7 0.7 0.7 — 6.3 3.0 1.8 1.6

Residual 15.4 2.0 0.8 0.3 — 21.7 3.5 2.0 1.3 —

Prolongate 4.3 1.1 0.4 0.2 — 6.7 2.7 1.6 1.3 —

Total [kernels] 64.7 13.7 4.8 2.0 1.4 79.1 20.1 9.8 6.3 3.3

Total [iteration] 88.8 122.0

Table 5: Breakdown of the multigrid solver time per iteration on a 512× 512× 128 grid for 1 and 64 GPUs [all times in milliseconds].

for the 5-level method. Nevertheless, with these modifications the multigrid solver is robust over a very wide range of
CFL numbers.

5.3. Communication overhead between GPUs and multigrid performance

To identify the bottlenecks of the multigrid algorithm and also to study the impact of parallel communications, the
time per iteration was broken down into the time spent in the individual kernels both for a 1 GPU run and for a 64 GPU
run with identical local grid size. For the (fused) SpMV and preconditioner kernels these times are shown in Table 4 for a
local 512× 512× 128 grid. The total time per iteration increases by around 10% due to the halo exchange, this should be
compared to the theoretically predicted increase of around 5% according to Table 2. The corresponding results are shown
for the multigrid solver in Table 5. Here the time per iteration grows by nearly 40% when going from one to 64 GPUs,
while the theoretical analysis predicts a 20% increase.

For the theoretical estimates of the communication/calculation ratio R in (17) we quantify the memory and inter-GPU
bandwidth as follows: the peak global memory bandwidth of the K20X card is BWmem = 250GB/s, and as demonstrated
in Section 5.1, our solvers can typically utilise at the order of 30% − 50% of this peak value on a single GPU (see
Table 3). We measured the communication bandwidth by carrying out 1000 halo exchanges on 64 GPUs and obtained
BWMPI ≈ 1GB/s, which implies that BWmem/BWMPI = O(100).

Looking at the time spent on different multigrid levels, which is also plotted on a logarithmic scale in Figure 3, we
see that part of this poor scaling can be attributed to a worse calculation/communication ratio on the coarser levels. On
a single GPU the times decrease by roughly a factor of 4 from level to level as expected, until a horizontal problem size
of 64 × 64 is reached. Beyond this point the costs do not decrease further as the GPU is underutilised. However, on 64
GPUs the cost per level is reduced by less than a factor 4 on all levels due to the worse communication and calculation
ratio.

5.4. Massively parallel scaling on GPU and CPU clusters

We finally carried out a series of weak scaling runs on Titan. For each of these runs the local problem size was kept
fixed at nx×ny×nz, such that the global problem size grows linearly with the number of GPUs. The resulting numbers of
cores and global problem sizes are shown in Table 6. The largest problem solved has half a trillion (0.55 · 1012) unknowns.
The weak scaling of the time per iteration and the total solution time is plotted in Figure 4. After a slight initial increase
all GPU solvers scale very well up to 16384 GPUs and, as expected, the scalability increases with the problem size due
to the resulting better calculation / communication ratio. In Figure 5 we compare the performance of the multigrid

14

5 4 3 2 1
Multigrid level

0.01

0.1

1

10
Ti

m
e

pe
r c

al
l [

m
s]

512x512

256x256

128x128

64x64 32x32

Smooth
Restrict + Smooth
Residual
Prolongate
quadratic decay
linear decay

5 4 3 2 1
Multigrid level

0.01

0.1

1

10

Ti
m

e
pe

r c
al

l [
m

s]

512x512

256x256

128x128
64x64 32x32

Figure 3: Breakdown of the multigrid solver time on a 512× 512× 128 grid on 1 (left) and 64 GPUs (right). The horizontal grid size is shown
separately for each multigrid level.

#GPU cores # CPU cores Local problem size nx

sockets (p) Titan EMERALD HECToR 256 512 768

1 2,688 512 16 8.39 · 106 3.36 · 107 7.55 · 107

4 10,752 2,048 64 3.36 · 107 1.34 · 108 3.02 · 108

16 43,008 8,192 256 1.34 · 108 5.37 · 108 1.21 · 109

64 172,032 32,768 1,024 5.37 · 108 2.15 · 109 4.83 · 109

256 688,128 — 4,096 2.15 · 109 8.59 · 109 1.93 · 1010

1024 2,752,512 — 16,384 8.59 · 109 3.44 · 1010 7.73 · 1010

4096 11,010,048 — 65,536 3.44 · 1010 1.37 · 1011 3.09 · 1011

16384 44,040,192 — — 1.37 · 1011 5.50 · 1011 —

Table 6: Global number of degrees of freedom p × nx × ny × nz for different numbers of processors p and local problem sizes nx = ny . The
number of vertical columns is always nz = 128.

1 4 16 64 256 1024 4096 16384
Number of GPUs

1

10

100

1000

Ti
m

e
pe

r i
te

ra
tio

n
[m

s]

256
512
768

CG
Multigrid

1 4 16 64 256 1024 4096 16384
Number of GPUs

0.1

1

10

To
ta

l s
ol

ut
io

n
tim

e
[s

]

256
512
768

CG
Multigrid

Figure 4: Weak scaling of the time per iteration (left) and total solution time (right) on different numbers of GPUs on Titan.

15

1 4 16 64 256 1024 4096 16384
Number of GPUs

10

100

1000
Ti

m
e

pe
r i

te
ra

tio
n

[m
s]

16 64 256 1024 4096 16384 65536
Number of CPU cores

256
512

HECToR
Titan
EMERALD

1 4 16 64 256 1024 4096 16384
Number of GPUs

0.1

1

10

To
ta

l s
ol

ut
io

n
tim

e
[s

] (): EMERALD, 8GPUs/node

16 64 256 1024 4096 16384 65536
Number of CPU cores

256
512

HECToR
Titan
EMERALD

Figure 5: Time per iteration (left) and total solution time (right) of the multigrid solver on different clusters. Results obtained on EMERALD
with 8 GPUs per node are shown in brackets.

GPUs # columns per GPU CG Multigrid
tsolve[s] parallel efficiency tsolve[s] parallel efficiency

256 512× 512 = 262, 144 2.141 — 1.102 —
1024 256× 256 = 65, 536 0.631 84.8% 0.415 66.4%
4096 128× 128 = 16, 384 0.541 24.8% 0.250 27.6%

Table 7: Strong scaling of the total runtime for a problem of size 8192 × 8192 × 128 on Titan. The parallel efficiency is given relative to the
256 GPU run.

solver for two problem sizes on all three computer systems. On the EMERALD cluster two memory links have to be
shared between all GPUs on a node and we found that we can achieve the best performance if we only use two GPUs per
node, all results shown in Figure 5, except for the ones which are specifically marked, are obtained with this configuration.
In summary the GPU implementation on Titan is roughly a factor 4 faster than the CPU implementation on HECToR
(comparing one K20X GPU card to one 16 core AMD CPU) or, put differently, it is possible to solve a four times larger
problem in the same total runtime. For the 512 problem we find that the CG solver on the GPU is about 6 times faster
than the CPU implementation (not shown here).

The absolute performance on Titan both in terms of the global memory bandwidth and in terms of floating point
operations per second was also quantified as described in Section 5.1. The absolute floating point performance is plotted
in Figure 6 (left) for different problem sizes and numbers of GPUs. On one GPU the CG solver on the 512 problem can
utilise about 5 % of the peak performance and on the largest core count it can still use 3 % of the peak FLOP rate of the
entire machine. As both algorithms are memory bound, a more meaningful measure for the performance of the solvers is
the global memory bandwidth. According to Figure 6 the CG solver can utilise between 30% and 60% of the theoretical
peak global memory bandwidth. For the multigrid solver this number is smaller and in the range 15% - 25% on 16384
GPUs and 25% - 35% on one GPU. We stress again that we measure the “useful bandwidth” and obtaining a value close
to 100% is very hard to achieve in practice.

It is also interesting to compare the performance on the two GPU systems. Although the difference in floating point
performance between the cards is a factor two, one multigrid iteration on the Fermi card is only 20%− 35% slower than
on the Kepler GPU, which is closer to what is expected due to the ratio between the global memory bandwidths on the
two different cards (BWmem(K20X)/BWmem(M2090) = (250 GByte/s)/(177 GByte/s) ≈ 1.4). For the same number of
total GPUs, using all 8 GPUs on an EMERALD node (instead of only using 2 per node) leads to a significant increase
in the total runtime as all cards have to share the host-device bandwidth (see the additional data in Figure 5). This is
expected as for the multigrid solver the cost of copying the right hand side to the GPU and copying the final solution
back to the CPU is not negligible (see Table 3).

While we have not attempted to carry out detailled strong scaling runs, we report in Tab. 7 some preliminary results

16

1 4 16 64 256 1024 4096 16384
Number of GPUs

25%

50%

75%

100%

pe
rc

en
ta

ge
 o

f p
ea

k
gl

ob
al

 m
em

or
y

BW

256
512
768

CG
Multigrid

Figure 6: Floating point performance and percentage of utilised peak global memory bandwidth for different numbers of GPUs and local
problem sizes nx on Titan.

for a problem of size 8192× 8192× 128 = 8.6 · 109 unknowns on 256, 1024 and 4096 GPUs; the results were obtained on
Titan. The efficiency is still around 85% for CG and 66% for the multigrid solver when the number of GPUs is increased
from 256 to 1024, i.e. when the number of local columns on one GPU has gone from 512 x 512 to 256 x 256. When the
number of GPUs is increased further to 4096, the efficiency (measured relative to the 256 GPU run) drops to around 25%
for both algorithms. On 4096 GPUs the number of threads per GPU is 128 × 128 = 16384. This has to be compared
to the number of CUDA cores on the Kepler card which is 2688, i.e. each core will process only around 6 columns. As
the local problem size is reduced further the number of columns per core will drop below 1 and it becomes impossible to
exploit the full capacity of the GPU with our current implementation.

6. Conclusion and outlook

In this article we described massively parallel and efficient CUDA-C implementations of two memory bound iterative
solvers for anisotropic PDEs. Equations of this type are encountered in many areas of geophysical modelling and we
focus on the pressure correction equation which arises from semi-implicit semi-Lagrangian time stepping in atmospheric
forecast models. The biggest gains can be achieved by choosing the algorithmically most efficient solver tailored to the
problem, which in this case is a tensor-product geometric multigrid solver. It is about twice as fast as a preconditioned
Conjugate Gradient method. We demonstrated the excellent absolute performance (measured in terms of the achieved
memory bandwidth) of our solvers on Kepler GK110 GPUs and showed the very good weak scaling on up to 16384 GPUs
of the Titan supercomputer. The GPU implementation is about a factor four faster than the CPU code on HECToR.

Although we believe that our implementation is close to optimal there are still potential improvements that could be
considered. In this article we only give preliminary results for strong scaling of our solvers. In the strong scaling limit
the number of threads will eventually be too small to utilise the full computational power of the GPU. This could be
improved by exposing more parallelism in the algorithm, for example by using a parallel tridiagonal solver as described
below. Furthermore the overhead from parallel communcations between GPUs can be “hidden” by overlapping the halo
exchange with computations. For this the domain is split up into an interior part and a boundary. After the calculations
have been completed on the boundary, an asynchronous halo exchange is posted and calculations are continued for the
interior part of the domain. While on a CPU this approach is straighforward, on a GPU the calculations on the boundary
degrees of freedom will only be efficient if it is large enough in the x-direction to allow contiguous memory access in this
direction. This is a problem in particular for the multigrid method on the coarse levels which are already very small. In
some preliminary experiments we were not able to achieve any speedups with this technique.

Part of the reason for the poorer computational efficiency of the multigrid method is that the grids on the coarse
levels are so small that the GPU can not be fully utilised, as we only parallelise in the horizontal direction due to the
dependency in the tridiagonal solver. The amount of parallelism can be increased if we can assign several threads to work
on each vertical column, by using a parallel tridiagonal solver such as cyclic reduction or a substructuring algorithm (see
also [42]). Preliminary experiments with the subtructuring method have shown that some gains with speedups of up to a
factor two can be achieved on the coarser multigrid levels.

17

Currently our entire solver is implemented on the GPU, which means that the host CPU is idle. This is wasteful and
could potentially be improved by splitting the work between the two processors. The obvious way of doing this is via
splitting the domain between the CPU and GPU, as described for a shallow water solver in [33]. For the multigrid solver
an alternative approach might be to process the finer levels on the GPU and the coarse levels on the CPU, thus minimising
the amount of data that is copied between host and device. This could for example be done by using an additive multigrid
algorithm, and potential benefits have to be balanced against worse algorithmic performance of the method.

Acknowledgements

We are grateful to Benson Muite for his help with porting and running the code on the Titan supercomputer and
for kindly making part of his compute time allocation on the machine available for this project. We would like to thank
Mauro Bianco (CSCS, Switzerland) for his help with using the GCL library and Mike Giles and István Reguly (Oxford)
for useful discussions.

This work was funded as part of the NERC project on “Next Generation Weather and Climate Prediction” (NGWCP),
grant number NE/K006762/1 and was supported also by European Regional Development Fund through the Estonian
Centre of Excellence in Computer Science and the Estonian Science Foundation grant 9019. We used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725; the runs on Titan were carried out
under DD Project CSC113. In addition we made use of the facilities of HECToR, the UK’s national high-performance
computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and NAG Ltd, and
funded by the Office of Science and Technology through EPSRC’s High End Computing Programme. We would also like
to acknowledge use of the EMERALD High Performance Computing facility provided via the Centre for Innovation (CfI).
The CfI is formed from the universities of Bristol, Oxford, Southampton and UCL in partnership with STFC Rutherford
Appleton Laboratory.

[1] Eike Müller and Robert Scheichl. Massively parallel solvers for elliptic PDEs in numerical weather- and climate
prediction. accepted for publication in Q. J. Roy. Meteor. Soc., 2014.

[2] Stefan Börm and Ralf Hiptmair. Analysis of tensor product multigrid. Numer. Algorithms, 26:200–1, 1999.

[3] Markus Blatt and Peter Bastian. The Iterative Solver Template Library. In Lecture Notes in Computer Science,
volume 4699, pages 666–675. Springer-Verlag, Berlin, Heidelberg, 2007.

[4] Markus Blatt. A Parallel Algebraic Multigrid Method for Elliptic Problems with Highly Discontinuous Coefficients
(PhD thesis). Heidelberg, 2010.

[5] Van Emden Henson and Ulrike Meier Yang. BoomerAMG: a Parallel Algebraic Multigrid Solver and Preconditioner.
Applied Numerical Mathematics, 41:155–177, 2000.

[6] Hans Meuer, Erich Strohmaier, Jack Dongarra, and Horst Simon. Top500 list of supercomputers, November 2013.
http://www.top500.org/lists/2014/06/. Accessed: 13 Aug 2014.

[7] nVidia Corporation. nVidia Tesla GPU Accelerators data sheet. http://www.nvidia.com/object/tesla-servers.
html. Accessed: 8 Jan 2014.

[8] William C. Skamarock, Piotr K. Smolarkiewicz, and Joe B. Klemp. Preconditioned conjugate-residual solvers for
Helmholtz equations in nonhydrostatic models. Mon. Weather Rev., 125(4):587–599, 1997.

[9] Stephen J. Thomas, Andrei V. Malevsky, Michel Desgagné, R. Benoit, P. Pellerin, and Michel Valin. Massively
parallel implementation of the mesoscale compressible community model. Parallel Comput., 23:2143 – 2160, 1997.

[10] Abdessamad Qaddouri and Jean Côté. Preconditioning for an Iterative Elliptic Solver on a Vector Processor. In Jos
Palma, A. Sousa, Jack Dongarra, and Vicente Hernndez, editors, High Performance Computing for Computational
Science VECPAR 2002, volume 2565 of Lecture Notes in Computer Science, pages 451–455. Springer, Berlin, 2003.

[11] Terry Davies, Mike J. P. Cullen, Andrew J. Malcolm, M. H. Mawson, Andrew Staniforth, A. A. White, and Nigel
Wood. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q. J. Roy.
Meteor. Soc., 131(608):1759–1782, 2005.

[12] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes: The Art of
Scientific Computing, 3rd Edition. Cambridge University Press, New York, 2007.

18

http://www.top500.org/lists/2014/06/
http://www.nvidia.com/object/tesla-servers.html
http://www.nvidia.com/object/tesla-servers.html

[13] Eike Müller, Xu Guo, Robert Scheichl, and Sinan Shi. Matrix-free GPU implementation of a preconditioned Conjugate
Gradient solver for anisotropic elliptic PDEs. to appear in Computation and Visualization in Science, Feb 2014.

[14] Mauro Bianco. An interface for halo exchange pattern. http://www.prace-ri.eu/IMG/pdf/wp86.pdf, 2013. Ac-
cessed: 11 Jan 2014.

[15] Andreas Dedner, Eike Müller, and Robert Scheichl. Efficient multigrid preconditioners for atmospheric flow simula-
tions at high aspect ratio. International Journal for Numerical Methods in Fluids, pages n/a–n/a, 2015. available
online.

[16] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. Sparse Matrix Solvers on the GPU: Conjugate Gradients
and Multigrid. ACM Transactions on Graphics, 22:917–924, 2003.

[17] Nolan Goodnight, Cliff Woolley, Gregory Lewin, David Luebke, and Greg Humphreys. A multigrid solver for boundary
value problems using programmable graphics hardware. In ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, New
York, NY, USA, 2005. ACM.

[18] Sandeep Menon and J. Blair Perot. Implementation of an efficient conjugate gradient algorithm for Poisson solutions
on graphics processors. In Proceedings of the 2007 Meeting of the Canadian CFD Society, Toronto Canada, 2007.

[19] Ali Cevahir, Akira Nukada, and Satoshi Matsuoka. Fast conjugate gradients with multiple GPUs. In Computational
Science–ICCS 2009, pages 893–903. Springer Verlag, Berlin, Heidelberg, 2009.

[20] Marco Ament, Günter Knittel, Daniel Weiskopf, and Wolfgang Strasser. A Parallel Preconditioned Conjugate Gradi-
ent Solver for the Poisson Problem on a Multi-GPU Platform. In Parallel, Distributed and Network-Based Processing
(PDP), 2010, 18th Euromicro International Conference on, pages 583 –592, feb. 2010.

[21] Ali Cevahir, Akira Nukada, and Satoshi Matsuoka. High performance conjugate gradient solver on multi-GPU clusters
using hypergraph partitioning. Computer Science-Research and Development, 25(1-2):83–91, 2010.

[22] Serban Georgescu and Hiroshi Okuda. Conjugate gradients on multiple GPUs. International Journal for Numerical
Methods in Fluids, 64(10-12):1254–1273, 2010.

[23] Michael Griebel and Peter Zaspel. A multi-GPU accelerated solver for the three-dimensional two-phase incompressible
Navier-Stokes equations. Computer Science-Research and Development, 25(1-2):65–73, 2010.

[24] Dana A Jacobsen, Julien C Thibault, and Inanc Senocak. An MPI-CUDA implementation for massively parallel
incompressible flow computations on multi-GPU clusters. In 48th AIAA Aerospace Sciences Meeting and Exhibit,
volume 16, 2010.

[25] Zhuo Feng and Zhiyu Zeng. Parallel multigrid preconditioning on graphics processing units (GPUs) for robust power
grid analysis. In Proceedings of the 47th Design Automation Conference, pages 661–666. ACM, 2010.

[26] Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, and Stefan Turek. Efficient finite element geometric
multigrid solvers for unstructured grids on GPUs. Techn. Univ., Fak. für Mathematik, 2011.

[27] Dana A. Jacobsen and Inanc Senocak. A full-depth amalgamated parallel 3D geometric multigrid solver for GPU
clusters. In 49th AIAA Aerospace Science Meeting, 2011.

[28] Nathan Bell and Michael Garland. Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical Report
NVR-2008-004, NVIDIA Corporation, December 2008.

[29] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw.,
38(1):1:1–1:25, December 2011.

[30] Gundolf Haase, Manfred Liebmann, Craig C Douglas, and Gernot Plank. A parallel algebraic multigrid solver on
graphics processing units. In High performance computing and applications, pages 38–47. Springer, 2010.

[31] James Brannick, Yao Chen, Xiaozhe Hu, and Ludmil Zikatanov. Parallel Unsmoothed Aggregation Algebraic Multi-
grid Algorithms on GPUs. In Oleg P. Iliev, Svetozar D. Margenov, Peter D Minev, Panayot S. Vassilevski, and
Ludmil T Zikatanov, editors, Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their
Applications, volume 45 of Springer Proceedings in Mathematics & Statistics, pages 81–102. Springer New York, 2013.

19

http://www.prace-ri.eu/IMG/pdf/wp86.pdf

[32] Dominik Göddeke, Robert Strzodka, Jamaludin Mohd-Yusof, Patrick McCormick, Hilmar Wobker, Christian Becker,
and Stefan Turek. Using GPUs to improve multigrid solver performance on a cluster. International Journal of
Computational Science and Engineering (IJCSE), 4(1):36–55, 2008.

[33] Chao Yang, Wei Xue, Haohuan Fu, Lin Gan, Linfeng Li, Yangtong Xu, Yutong Lu, Jiachang Sun, Guangwen Yang,
and Weimin Zheng. A Peta-scalable CPU-GPU Algorithm for Global Atmospheric Simulations. SIGPLAN Not.,
48(8):1–12, February 2013.

[34] Björn Gmeiner, Harald Köstler, Markus Stürmer, and Ulrich Rüde. Parallel multigrid on hierarchical hybrid grids:
a performance study on current high performance computing clusters. Concurrency and Computation: Practice and
Experience, 26(1):217–240, 2014.

[35] Ulrich Trottenberg, Cornelis W. Oosterlee, and Anton Schüller. Multigrid. Academic Press, San Diego, London,
Sydney, Tokyo, 2001.

[36] Nigel Wood, Andrew Staniforth, Andrew White, Tom Allen, Michail Diamantakis, Markus Gross, Thomas Melvin,
Chris Smith, Simon Vosper, Mohamed Zerroukat, and John Thuburn. An inherently mass-conserving semi-implicit
semi-Lagrangian discretisation of the deep-atmosphere global nonhydrostatic equations. Q. J. Roy. Meteor. Soc.,
2013. Published online December 4th 2013.

[37] Robert Sadourny. Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spher-
ical Grids. Mon. Weather Rev., 100(2):136–144, 1972.

[38] Yousef Saad. Iterative Methods for Sparse Linear Systems, Second Edition. Society for Industrial and Applied
Mathematics, Philadelphia, 2003.

[39] William. L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid Tutorial. Society for Industrial and
Applied Mathematics, Philadelphia, 2000.

[40] AMD Corporation. . http://www.amd.com/uk/products/server/processors/6000-series-platform/6200/

Pages/6200-series-processors.aspx. Accessed: 12 Jan 2014.

[41] Mark Harris. An Efficient Matrix Transpose in CUDA C/C++. http://devblogs.nvidia.com/parallelforall/

efficient-matrix-transpose-cuda-cc/. Accessed: 7 Jan 2014.

[42] Endre Laszlo. Efficient Solution of Multiple Scalar and Block-Tridiagonal Equations. GPU Technology Conference,
2014.

20

http://www.amd.com/uk/products/server/processors/6000-series-platform/6200/Pages/6200-series-processors.aspx
http://www.amd.com/uk/products/server/processors/6000-series-platform/6200/Pages/6200-series-processors.aspx
http://devblogs.nvidia.com/parallelforall/efficient-matrix-transpose-cuda-cc/
http://devblogs.nvidia.com/parallelforall/efficient-matrix-transpose-cuda-cc/

	1 Introduction
	2 Iterative solvers for anisotropic elliptic PDEs in implicit time stepping methods
	2.1 Model problem
	2.1.1 Discretisation

	2.2 Algorithmically scalable and efficient solvers

	3 Implementation
	3.1 Memory throughput optimised implementation
	3.2 Multi-GPU implementation

	4 Theoretical performance analysis
	4.1 Floating point operations and memory transfer costs
	4.2 Parallel communications between GPUs

	5 Results
	5.1 Single GPU performance
	5.2 Robustness
	5.3 Communication overhead between GPUs and multigrid performance
	5.4 Massively parallel scaling on GPU and CPU clusters

	6 Conclusion and outlook

