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BRANCHING BROWNIAN MOTION IN A STRIP:
SURVIVAL NEAR CRITICALITY

By S. C. Harris† M. Hesse‡ and A. E. Kyprianou∗

University of Bath

We consider a branching Brownian motion with linear drift
in which particles are killed on exiting the interval (0,K) and
study the evolution of the process on the event of survival as
the width of the interval shrinks to the critical value at which
survival is no longer possible. We combine spine techniques and
a backbone decomposition to obtain exact asymptotics for the
near-critical survival probability. This allows us to deduce the
existence of a quasi-stationary limit result for the process condi-
tioned on survival which reveals that the backbone thins down
to a spine as we approach criticality.
This paper is motivated by recent work on survival of near crit-
ical branching Brownian motion with absorption at the origin
by Aı̈dékon and Harris in [AH] as well as the work of Berestycki
et al. in [BBS] and [BBS11].

1. Introduction and main results.

1.1. Introduction and main results. We consider a branching diffu-
sion in which each particle performs a Brownian motion with drift −µ,
for µ ≥ 0, and is killed on hitting 0 or K. All living particles undergo
branching at constant rate β to be replaced by a random number of
offspring particles, A, where A is an independent random variable with
distribution {qk; k = 0, 1, ...} and finite mean m > 1 and such that
E(A log+A) < ∞. Once born, offspring particles move off indepen-
dently from their birth position, repeating the stochastic behaviour of
their parent.
In other words, the motion of a single particle is governed by the in-
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finitesimal generator

L =
1

2

d2

dx2
− µ d

dx
, x ∈ (0, K),(1.1)

defined for all functions u ∈ C2(0, K), the space of twice continu-
ously differentiable functions on (0, K), with u(0+) = u(K−) = 0. The
branching activity is characterised by the branching mechanism

F (s) = β(G(s)− s), s ∈ [0, 1],

where G(s) =
∑∞

k=0 qks
k is the probability generating function of A.

Denote by Nt and |Nt| the set of and the number of particles alive
at time t respectively. For a particle u ∈ Nt, we write xu(t) for its
spatial position at time t. We define Xt =

∑
u∈Nt δxu(t) to be the spatial

configuration of particles alive at time t and we set X = (Xt, t ≥ 0).
Denote by PK

ν the law ofX withX0 = ν where ν ∈Ma(0, K), the space
of finite atomic measures on (0, K) of the form

∑n
i=1 δxi with xi ∈ (0, K)

and n ∈ N. If the process is initiated from a single particle at x ∈ (0, K),
then we simply write PK

x (instead of PK
δx

). We will sometimes neglect
the dependence on the initial configuration and write PK without a
subscript. We call the process X a PK-branching diffusion.
Further, (ξ = (ξt, t ≥ 0),PKx ) will henceforth denote a Brownian motion
with drift −µ starting from x ∈ (0, K) which is killed upon exiting the
interval (0, K). PK is the law of the single particle motion under PK .
For x ∈ [0, K] we define the survival probability pK(x) = PK

x (ζ = ∞)
where ζ = inf{t > 0 : |Nt| = 0} is the time of extinction. As a first
result we identify the critical widthK0 below which survival is no longer
possible.

Proposition 1. If µ <
√

2(m− 1)β and K > K0 where K0 :=

π(
√

2(m− 1)β − µ2)−1, then pK(x) > 0 for all x ∈ (0, K); otherwise
pK(x) = 0 for all x ∈ [0, K].

Proposition 1 is essentially not new as, in the case of binary branch-
ing, it is already implicit in Theorem 3 in Engländer and Kyprianou
[EK04], see also [EHK10], Example 14. Nevertheless, we will give a
short proof of Proposition 1 in Section 2 as the techniques therein will
be important later. In particular, the proof uses a spine argument, de-
composing X into a Brownian motion conditioned to stay in (0, K)
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dressed with independent copies of (X,PK) which ‘immigrate’ along
its path.
Our aim is to study the evolution of the PK-branching diffusion on
the event of survival. We will therefore develop a decomposition which
identifies the particles with infinite genealogical lines of descent, that is,
particles which produce a family of descendants which survives forever.
To illustrate this, in a realisation of X, let us colour blue all particles
with an infinite line of descent and colour red all remaining particles.
Thus, on the event of survival, the resulting picture consists of a blue
tree ‘dressed’ with red trees whereas, on the event of extinction, we see
a red tree only.
For the moment, let us consider the binary branching case only in
which each particle splits into two. Suppose a particle dies and is re-
placed by two offspring at position y. For each of the offspring, the
probability that it has an infinite genealogical line of descent is the
survival probability pK(y), independent of the other offspring particle.
Thus, each offspring particle is blue with probability pK(y) and hence
with probability pK(y)2 both offspring particles are blue. Therefore,
given the parent particle is blue, it branches into two blue particles at

rate β pK(y)2

pK(y)
= βpK(y). Similarly, given the parent particle is red, it

branches into two red particles at rate β(1− pK(y)).
Further, with probability 2pK(y)(1− pK(y)) one blue and one red par-
ticle are born. Then, given a particle is blue, it branches into one blue
and one red particle at rate 2β(1 − pK(y)). We call such a branching
event an immigration.
Intuitively speaking, as blue and red particles are so coloured as the
result of statistically biased selection, we would expect their respective
associated motions to be altered in a way that reflects this selection.
The following two results, again in the setting of binary branching,
make precise this heuristic. They show that a Doob h-transform of L
using h = pK and h = 1 − pK , for blue and red particles respectively,
describes the relevant motions and that the blue and red trees are, in
fact, branching diffusions.

Proposition 2 (The red tree). Let K > K0. In the case of binary
branching, the red tree is a branching diffusion on (0, K) with single
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particle motion described by the infinitesimal generator

LR,K =
1

2

d2

dy2
−
(
µ+

p′K(y)

1− pK(y)

)
d

dy
on (0, K),

for u ∈ C2(0, K) with u(0+) = u(K−) = 0, and its particles branch at
space-dependent rate β(1− pK(y)), y ∈ (0, K).

Theorem 3 (The dressed blue tree). Let K > K0. In the case
of binary branching, the dressed blue tree is a branching diffusions on
(0, K) starting from an initial particle at x ∈ (0, K), which evolves as
follows:

(i) From x, we run a blue branching diffusion XB, that is a branching
diffusion with single particle movement has infinitesimal genera-
tor

LB,K =
1

2

d2

dy2
−
(
µ− p′K(y)

pK(y)

)
d

dy
on (0, K),

defined for all u ∈ C2(0, K), and each particle branches at space-
dependent rate βpK(y), y ∈ (0, K).

(ii) Conditionally on XB, along the trajectory of each particle in XB,
an immigrant occurs at space-dependent rate 2β(1− pK(y)), y ∈
(0, K). Each immigrant initiates a red branching diffusion from
the space-time position of its birth.

In view of Theorem 3, we will sometimes refer to the blue branch-
ing diffusion XB as the backbone and the theorem itself together with
Proposition 2 as the backbone decomposition.
The corresponding results in the case of a general branching mecha-
nism F are given as Proposition 11 and Theorem 12 in Section 3. In
particular, we will see that a general branching mechanism induces a
second type of immigration at the branching times of the backbone.
A significant convenience of these results is that the law of the PK-
branching diffusion conditioned on survival is the same as the law of
the dressed blue branching diffusion. For example, instead of studying
the quasi-stationary limit limK↓K0 P

K
x (·|ζ =∞) it suffices to study the

evolution of the dressed blue branching diffusion as K ↓ K0.
To help understand the branching diffusion near criticality, we study
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the asymptotics of the survival probability pK as K ↓ K0. As a first
asymptotic result note that u = 1− pK solves the differential equation
Lu+F (u) = 0 on (0, K) with boundary condition u(0) = u(K) = 1 (cf.
Remark 10). Near criticality we may assume that pK(x) is very small
for a fixed x and neglecting all terms of order (pK(x))2 and higher
we obtain the linearisation LpK + (m − 1)βpK = 0. This suggests
pK(x) ∼ CK sin(πx/K0)e

µx. In fact we have the following result.

Theorem 4. Define

CK := (K −K0)
(K2

0µ
2 + π2)(K2

0µ
2 + 9π2)

12(m− 1)βπK3
0(eµK0 + 1)

.

Then, as K ↓ K0, we have CK ↓ 0 and

pK(x) ∼ CK sin(πx/K0)e
µx,(1.2)

uniformly for all x ∈ (0, K0). That is, pK(x)/(CK sin(πx/K0)e
µx) con-

verges to 1 uniformly for all x ∈ (0, K0), as K ↓ K0.

It is of particular note that we are able to determine CK here. In
Section 4.1 we will prove the first part of Theorem 4, that is equation
(1.2) but without identifying CK , in the fashion of [AH] using spine
techniques. In the sketch of the analytic argument above, we used that
pK asymptotically solves the linearisation LpK + (m − 1)βpK = 0.
However, so does any multiple of pK . Therefore, it is not possible to
find the exact expression for CK by studying this linearisation only. On
the probabilistic side, using a spine approach is closely related to this
linearised differential equation approach, and similarly does not assist
in establishing an expression for CK .
However, it turns out that the backbone decomposition in Theorem 3
captures enough information about the evolution of (X,PK) on survival
to derive the explicit expression for CK . A heuristic argument and an
outline of the proof using large deviation theory is given in Section
4.2.1, followed by a rigorous proof based on computations of the growth
rate of the expected number of particles in the backbone in Section
4.2.2.

With Theorem 3 and 4 in hand we look for a quasi-stationary limit
result for the law of the dressed blue branching diffusion, which agrees
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with the law of (X,PK) conditioned on survival, as we approach crit-
icality. In the case of a binary branching mechanism as considered in
Theorem 3, the blue branching rate βpK drops down to 0 as K ↓ K0. At
the same time the red branching rate β(1− pK) increases to β and the
rate of immigration 2β(1− pK) rises to 2β at criticality. It is therefore
reasonable to believe that, over a fixed time interval [0, T ], the blue
tree thins down to a single genealogical line of descent as K ↓ K0.
Let us formalise this idea by defining what we expect to be the limit-
ing branching diffusion, now already for the case of a general branching
mechanism, and giving the quasi-stationary limit thereafter.

Definition 5. Let x ∈ (0, K0). Let X∗ = (X∗t , t ≥ 0) be aMa(0, K0)-
valued process which is constructed as follows.
X∗ is initiated from a single particle at x performing a Brownian mo-
tion conditioned to stay in (0, K0). i.e. a strong Markov process with
infinitesimal generator

LK0,∗ =
1

2

d2

dy2
+

π/K0

tan(πy/K0)

d

dy
, on (0, K0),(1.3)

defined for all u ∈ C2(0, K0). Along its path we immigrate Ã indepen-
dent copies of (X,PK0) at rate mβ where Ã has the size-biased offspring
distribution (q̃k, k = 0, 1, ...) with

q̃k = qk+1
k + 1

m
, k ≥ 0.

Denote the law of X∗ by Q∗x.

Theorem 6. Let x ∈ (0, K0). Then, for any fixed time T > 0, the
law of (Xt, 0 ≤ t ≤ T ) under the measure limK↓K0 P

K
x (·|ζ = ∞) is

equal to (X∗t , 0 ≤ t ≤ T ) under Q∗x.

To conclude this study, we demonstrate the robustness of our ap-
proach by applying the results for the PK-branching diffusion to study
the evolution of a supercritical super-Brownian motion with absorp-
tion at 0 and K near criticality. We outline a backbone decomposition
analogous to Theorem 3 in which we will see that the backbone of
the super-Brownian motion with absorption at 0 and K is the same
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as the backbone of an associated PK-branching diffusion. This con-
nection allows us to deduce asymptotic results for the survival rate
of the super-Brownian motion with absorption on (0, K) directly from
the results on the survival probability of the associated PK-branching
diffusion. Further, we can find a quasi-stationary limit result for the
super-Brownian motion equivalent to Theorem 6.
Our paper is organised as follows. In Section 2 we introduce some use-
ful spine techniques along with the proof of Proposition 1. In Section
3 we establish the results corresponding to Proposition 2 and Theorem
3 for the case of a general branching mechanism, see Proposition 11
and Theorem 12. In doing so, we show that the red branching diffusion
and the dressed blue branching diffusion arise from martingale changes
of measure which condition (X,PK) on extinction and survival respec-
tively. In Section 4, we give a heuristic large deviation argument for
the constant CK (see subsection 4.2.1) and we prove the asymptotic
results for the survival probability given in Theorem 4. The proof of
the quasi-stationary limit result in Theorem 6 follows in Section 5. Sec-
tion 6 sketches the analogous results for the super-Brownian motion on
(0, K).

1.2. Literature overview. Branching Brownian motion with an ab-
sorbing barrier was first studied by Kesten [Kes78]. Our paper is par-
ticularly motivated by recent results on the asymptotics of the survival
probability of Branching Brownian motion with absorption found in
Berestycki et al. [BBS11] as well as Aı̈dékon and Harris [AH]. A dis-
cussion of Branching Brownian motion in the critical width strip can
be found in Berestycki et al. [BBS].
Spine techniques of the type used in the proof of Proposition 1 were
developed in Chauvin and Rouault [CR88], Lyons [Lyo97] and Lyons et
al. [LPP95] and are now a standard approach in the theory of branch-
ing processes. See, for example, Harris et al. [HHK06] and Kyprianou
[Kyp04] for related applications in the setting of branching Brownian
motion with absorption at 0 respectively absorption at a space-time
barrier.

A backbone decomposition, similar in spirit to the one presented in
Theorem 3 but for supercritical superprocesses, is given in Berestycki
et al. [BKMS11]. It extends the earlier work of Evans and O’Connell
[EO94], Fleischmann and Swart [FS04] and Engländer and Pinsky



8 HARRIS, S.C., HESSE, M. AND KYPRIANOU, A.E.

[EP06] as well as the corresponding decomposition for continuous-state
branching processes in Duquesne and Winkel [DW07].
The results for superprocesses are complemented by the decomposi-
tion in Etheridge and Williams [EW03] which considers the (1 + β)-
superprocess conditioned on survival. This work is of particular interest
in the current context since it also presents the equivalent result for the
approximating branching particle system. However we should point out
that in their case the immigrants are conditioned to become extinct up
to a fixed time T whereas, in our setting, we condition on extinction
in the strip (0, K). Thus the underlying transformations in [EW03] are
time-dependent in contrast to the space-dependent h-transforms we see
in our setting.
Unlike all of the above mentioned backbone decompositions, the proof
of the one we address in this paper is based on a new technique using en-
tirely martingale changes of measure. This lends itself more favourably
to the quasi-stationary limit theorem later in the paper.

The equivalent result to Theorem 4 in the setting of Branching Brow-
nian motion with absorption at the origin was shown in Berestycki et al.
[BBS11] and Aı̈dékon and Harris [AH]. However, it has not been pos-
sible so far to give such an explicit expression for the constant which
plays the analogous role to CK for Branching Brownian motion with
absorption at the origin .

A similarly fashioned result to Theorem 6, albeit being temporal
rather than spatial quasi-stationarity, was obtained in the aforemen-
tioned work by Etheridge and Williams [EW03]. Their result extends
the Evans immortal particle representation for superprocesses in [Eva93]
which is the equivalent of the spine representation for branching pro-
cesses.

1.3. Table of notation. Our results and proofs come with a number
of changes of measure. For the benefit of the reader we include in Table
1 an index of some of the probability measures which will be used
frequently throughout the paper.

2. Changes of measure and spine techniques - Proof of Propo-
sition 1. Let us begin this section by stating a general result on how
martingale changes of measure affect the drift of a Brownian motion.
Recall that we denote by (ξ,PKx ) a Brownian motion with drift −µ
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Table 1
Index of some notation.

(ξ,PK) Brownian motion with drift −µ and killing
upon exiting (0,K)

(ξ,PR,K) ‘red’ diffusion in (0,K): drift −(µ+
p′
K

1−pK
) eq. (3.4)

and killing upon exiting (0,K)

(ξ,PB,K) ‘blue’ diffusion in (0,K): drift drift −(µ− p′
K

pK
) eq. (3.10)

(X,PK) BBM with killing upon exiting (0,K)
(X,PR,K) red branching diffusion in (0,K) Proposition 11
(X,PB,K) blue branching diffusion in (0,K) Proposition 13
(X,PD,K) dressed blue branching diffusion in (0,K) Theorem 12
(X,PK) two-colour branching diffusion in (0,K) Corollary 14
(ξ,QK) Brownian motion conditioned to stay in (0,K) eq. (2.2)
(X,QK) BBM with a spine conditioned to stay in (0,K) eq. (2.3)
(Gt, t ≥ 0) natural filtration of ξ
(Ft, t ≥ 0) natural filtration of X

initiated from x ∈ (0, K) which is killed upon exiting (0, K) and set
Gt = σ(ξs : s ≤ t).
We remind the reader of the following classical result, which is adapted
from Revuz and Yor [RY91], VIII Proposition 3.4 and the discussion
preceding it, since we will make use of it several times.

Lemma 7. Let x ∈ (0, K). Let h ∈ C2(0, K) and suppose that

h(ξt)

h(x)
exp

{
−
∫ t

0

Lh(ξs)

h(ξs)
ds
}
, t ≥ 0,(2.1)

is a PKx -martingale. Define P̂Kx to be the probability measure which has
martingale density (2.1) with respect to PKx on Gt.
Under P̂Kx , ξ has infinitesimal generator L + h′(y)

h(y)
dy for all functions

u ∈ C2(0, K) with u(0+) = u(K−) = 0.

In this regard, a change of measure with a martingale of the form
(2.1) is equivalent to a h-transform of the infinitesimal generator L.

The proof of Proposition 1 uses classical spine techniques devel-
oped in Chauvin and Rouault [CR88], Lyons et al. [LPP95] and Lyons
[Lyo97]; see e.g. Harris et al. [HHK06] and Kyprianou [Kyp04] for re-
lated applications in the setting of Branching Brownian motion with
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absorption at 0.
We will briefly recall the key steps in the spine construction. For a com-
prehensive account we refer the reader to Hardy and Harris [HH09].
Recall that we characterised the Brownian motion conditioned to stay
in (0, K) via its infinitesimal generator LK,∗ given in (1.3) in Definition
5 (where K0 can be replaced by a general K > 0). In view of Lemma
7, it is not difficult to see that its law can be obtained from the law of
(ξ,PK) by a martingale change measure. In fact, note that the process

ΥK(t) = sin(πξt/K)eµξt+(µ2/2+π2/2K2)t, t ≥ 0,(2.2)

is a PK-martingale and define QK
x to be the probability measure which

has martingale density ΥK(t) with respect to PKx on Gt. Then, under
QK
x , ξ is a Brownian motion conditioned to stay in (0, K). By Lemma

7 with h(x) = sin(πx/K)eµx, its infinitesimal generator is indeed given
by LK,∗ as in (1.3).
This process was first introduced in Knight [Kni69], Theorem 3.1 and
referred to as the taboo process. Let us note that (ξ,QK

x ) is positive
recurrent and has invariant density 2

K
sin2(πx/K), for x ∈ (0, K).

Using ideas in [HH09], we can use ΥK to construct a martingale with
respect to Ft = σ(Xs, s ≤ t), the filtration generated by the PK-
branching diffusion up to time t. For each u ∈ Nt, write ΥK

u (t) =
sin(πxu(t)/K)eµxu(t)+(µ2/2+π2/2K2)t, t ≥ 0. Define the process ZK =
(ZK(t), t ≥ 0) as

ZK(t) =
∑
u∈Nt

e−(m−1)βtΥu(t) =
∑
u∈Nt

eµxu(t)−λ(K)t sin(πxu(t)/K), t ≥ 0,

where we set λ(K) := (m − 1)β − µ2/2 − π2/2K2. Then Z is a non-
negative (PK

x ,Ft)-martingale. For x ∈ (0, K), we define a martingale
change of measure on the probability space of the PK-branching diffu-
sion via

dQK
x

dPK
x

∣∣∣∣
Ft

=
ZK(t)

ZK(0)
.(2.3)

This change of measure induces the following spine construction for the
path of X under QK

x . From the initial position x, we run a QK
x -diffusion,

that is a Brownian motion conditioned to stay in (0, K), and we call
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it a spine. At times of a Poisson process with rate mβ we immigrate
Ã independent copies of (X,PK) rooted at the spatial position of the
spine at this time. The number of immigrants Ã has the size-biased
offspring distribution

q̃k =
1 + k

m
qk+1, k ≥ 0.

From this description it is clear that the process (X,QK), survives a.s.
since the spine survives. In light of the change of measure (2.3), survival
of X under QK implies a positive probability of survival of X under
PK if the martingale ZK is uniformly integrable. For this reason, we
will now the study the large time behaviour of ZK .
Since we assumed E(A log+A) <∞, the following Proposition gives a
necessary and sufficient condition for the L1(PK

x )-convergence of ZK .

Proposition 8. Recall that λ(K) = (m − 1)β − µ2/2 − π2/2K2

and let 0 < x < K.
(i) If λ(K) > 0 then the martingale ZK is L1(PK

x )-convergent and in
particular uniformly integrable.
(ii) If λ(K) ≤ 0 then limt→∞ Z

K(t) = 0 PK
x -a.s.

We refrain from giving the proof of Proposition 8 since it is a straight-
forward adaptation of the proof of Theorem 13 in Kyprianou [Kyp04]
which presents the L1-convergence result in the case of a branching
Brownian motion with absorption at a space-time barrier, see also the
proof of Theorem 1 therein, as well as the proof in [Lyo97] and the
proof of Theorem A in [LPP95].
We will now show that the martingale limit ZK(∞) is zero if and only
if (X,PK) becomes extinct.

Proposition 9. For x ∈ (0, K), the events {ZK(∞) = 0} and
{ζ <∞} agree PK

x -a.s.

Proof of Proposition 9. Clearly {ζ < ∞} ⊂ {ZK(∞) = 0}
and it remains to show that {ζ =∞}∩ {ZK(∞) = 0} has zero proba-
bility. We consider the cases λ(K) ≤ 0 and λ(K) > 0 separately.

Assume λ(K) ≤ 0. Proposition 8 gives ZK(∞) = 0, PK-a.s. As ZK

is the sum of the non-negative terms e−λ(K)t sin(πxu(t)/K)eµxu(t), ZK
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vanishes in the limit if and only if all its terms do. On extinction, this
is certainly the case. On the event of survival, these terms can only
vanish if all particles move arbitrarily close to the killing boundary as
sin(πx/K)eµx ≈ 0 for x close to 0 and K only. Let us show that this
particle behaviour cannot occur.
We suppose for a contradiction that ZK(∞) = 0 on the event of sur-
vival. This assumption implies that, for any ε > 0, all particles leave
the interval (ε,K−ε) eventually, and thus we may assume without loss
of generality that the process survives in the small strip (0, ε). We will
now lead this argument to a contradiction by showing that, for ε small
enough, the P ε

x-branching diffusion, x ∈ (0, ε), will become extinct a.s.

Denote by P
(−δ,ε+δ)
x the law under which X is our usual branching

Brownian motion but with killing upon exiting the interval (−δ, ε+ δ),
δ > 0. For any δ > 0, we can embed the P ε-branching diffusion in a
P (−δ,ε+δ)-branching diffusion according to the following procedure. Let
us write v ≤ u if v is an ancestor of u (u is considered to be an ancestor
of itself), in accordance with the classical Ulam-Harris notation (see for

instance [HH09], p.290). Under P
(−δ,ε+δ)
x , we define

Nt|(0,ε) = {u ∈ Nt : ∀s ≤ t∀v ∈ Ns s.t. v ≤ u we have xv(s) ∈ (0, ε)} ,

which is the set of particles u ∈ Nt whose ancestors (not forgetting
u itself) have not exited (0, ε) up to time t. Now we can define the

restriction of X to (0, ε) under P
(−δ,ε+δ)
x by

Xt|(0,ε) =
∑

u∈Nt|(0,ε)

δxu(t), t ≥ 0.

Then we conclude immediately that, for an initial position in (0, ε), the

restricted process X|(0,ε) =
(
Xt|(0,ε) , t ≥ 0

)
under P

(−δ,ε+δ)
x has the

same law as (X,P ε
x).

Now we choose δ and ε small enough such that λ(ε+2δ) := (m−1)β−
µ2/2− π2/2(ε+ 2δ)2 < 0. Then, under P (−δ,ε+δ), the process

Z(−δ,ε+δ)(t)

:=
∑
u∈Nt

{
eµ(xu(t)+δ)−λ(ε+2δ)t sin(π(xu(t) + δ)/(ε+ 2δ))

}
, t ≥ 0,

is a martingale of the form in Proposition 8. Considering now the con-
tribution coming from the particles in the set Nt|(0,ε) only, we first



BRANCHING BROWNIAN MOTION IN A STRIP 13

note that our assumption of survival of the P ε-branching diffusion en-
sures that this set is non-empty for any time t. Further, for particles
u ∈ Nt|(0,ε), the terms eµ(xu(t)+δ) sin(π(xu(t)+δ)/(ε+2δ)) are uniformly

bounded from below by a constant c > 0 and hence, under P
(−δ,ε+δ)
x ,

we get

Z(−δ,ε+δ)(t) ≥ cNt|(0,ε)e−λ(ε+2δ)t.

Since we have chosen δ and ε such that λ(ε + 2δ) < 0, we now con-

clude that Z(−δ,ε+δ)(∞) =∞, P
(−δ,ε+δ)
x -a.s. This is a contradiction since

Z(−δ,ε+δ) is a positive martingale and therefore has a finite limit. Hence,
for λ(K) ≤ 0, the martingale limit ZK(∞) cannot be zero on survival.

Consider the case λ(K) > 0. Suppose for a contradiction that {ζ =
∞}∩{ZK(∞) = 0} has positive probability. Let zK(x) = PK

x (ZK(∞) =
0), for x ∈ (0, K). Define M∞ := 1{ZK(∞)=0} and set

Mt := EK
x (M∞|Ft) =

∏
u∈Nt

zK(xu(t)),(2.4)

where the second equality follows from the branching Markov prop-
erty. Then the process (Mt, t ≥ 0) defined through (2.4) is a uniformly
integrable PK

x -martingale with limit M∞ = 1{ZK(∞)=0}. On the event
{ζ = ∞} ∩ {ZK(∞) = 0}, we clearly have M∞ = 1, PK

x -a.s. This
requires in turn that all particles xu(t), u ∈ Nt move towards 0 and K
as t → ∞, since we know from Proposition 8 (i) that zK(x) < 1 for
x within (0, K). The previous part of this proof already showed that
this leads to a contradiction. Thus, for λ(K) > 0, the martingale limit
cannot be zero on survival. This completes the proof.

Proof of Proposition 1. Note that λ(K) ≥ 0 if and only if µ <√
2(m− 1)β and K > K0. The result follows now immediately from

Proposition 8 and 9.

Remark 10. In the proof of Proposition 1, we saw that the function
zK(x) = PK

x (ZK(∞) = 0) generates the product martingale (Mt, t ≥ 0)
in (2.4). We can apply the same argument given there to show that

EK
x (1{ζK<∞}|Ft) =

∏
u∈Nt

(1− pK(xu(t))) , t ≥ 0
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is a uniformly integrable product martingale. Followed by a classical
Feynman-Kac argument (cf. Champneys et al. [CHT+95]), this gives
that zK(x) respectively 1− pK(x) solves

Lu+ F (u) = 0 on (0, K)

u(0) = u(K) = 1.(2.5)

3. Backbone decomposition via martingale changes of mea-
sure. In this section we decompose the PK-branching diffusion into
the blue and red branching diffusions corresponding to the blue and red
trees described in our intuitive picture, for the binary branching case
only, in Section 1.1. Recall that the blue tree consists of all genealogi-
cal lines of descent that will never become extinct while the red trees
contain all remaining lines of descent. In Section 1.1, we only gave a
characterisation of the red, blue and dressed blue branching diffusion in
the case of a binary branching mechanism (Proposition 2 and Theorem
3). For a general branching mechanism, the results will be presented in
this section as Proposition 11 and Theorem 12.
Let us refer to the process corresponding to the coloured tree as the
two-colour branching diffusion. The law PK of the two-colour branch-
ing diffusion is defined by the law of X under PK and a subsequent
colouring of the particles. Let c(u) denote the colour of a particle u. We
say a particle u is blue if it has an infinite genealogical line of descent
and we write c(u) = b, otherwise we say it is red and write c(u) = r. Let
us remark that the natural filtration of (X,PK) is σ(Ft, c(u)u∈Nt) but
this filtration will not play a role in the forthcoming analysis. Given
F∞, the colouring is deterministic.
Define c(Nt) = {(cu)u∈Nt : cu ∈ {b, r}} as the set of all possible colour-
ings of Nt. Trivially, for all t ≥ 0,

dPK
x

dPK
x

∣∣∣∣
F∞

=
∏
u∈Nt

(
1{c(u)=b} + 1{c(u)=r}

)
= 1
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and thus

dPK
x

dPK
x

∣∣∣∣
Ft

= EK
x

( ∏
u∈Nt

(
1{c(u)=b} + 1{c(u)=r}

)∣∣∣Ft)
=

∑
c∈c(Nt)

∏
u∈Nt

PK
x

(
c(u) = cu

∣∣∣Ft)
=

∑
c∈c(Nt)

∏
u∈Nt,cu=b

pK(xu(t))
∏

u∈Nt,cu=r

(
1− pK(xu(t))

)
= 1,

where the sum is taking over all possible colourings c = (cu)u∈Nt in
c(Nt). In particular, for A ∈ Ft, we get

PK
x (A; c(u) = cu ∀u ∈ Nt|Ft)

= 1A
∏

u∈Nt,cu=b

pK(xu(t))
∏

u∈Nt,cu=r

(
1− pK(xu(t))

)
.

We can now derive the change of measure for the red branching diffu-
sion. It is sufficient to consider one initial particle and we suppose that
this particle is red. Let A ∈ Ft and write c(∅) = r for the event that
the initial particle is red. Then

PR,K
x (A) := PK

x (A|c(∅) = r) =
PK
x (A; c(u) = r ∀u ∈ Nt)

PK
x (c(∅) = r)

=
EK
x

(
1A
∏

u∈Nt

(
1− pK(xu(t))

) )
1− pK(x)

.(3.1)

Clearly, conditioning the initial particle to be red is the same as condi-
tioning the process to become extinct and therefore the law of X under
PR,K agrees with the law of X conditioned on extinction. The following
proposition characterises X under PR,K and generalises Proposition 2
in Section 1.1.

Throughout this section we will denote branching rates by β and
offspring probabilities by q with superscripts indicating whether they
belong to the red or blue branching diffusion or the immigration pro-
cedure.
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Proposition 11 (The red branching diffusion). For ν ∈Ma(0, K),
define PR,K

ν via (3.1). Then (X,PR,K
ν ) is a branching process with sin-

gle particle motion characterised by the infinitesimal generator

LR,K =
1

2

d2

dy2
−
(
µ+

p′K(y)

1− pK(y)

)
d

dy
on (0, K),(3.2)

for u ∈ C2(0, K) with u(0+) = u(K−) = 0, and the branching activity
is governed by the space-dependent branching mechanism

FR,K(s, y) =
1

1− pK(y)
(F (s(1− pK(y)))− sF (1− pK(y))),

for s ∈ [0, 1] and y ∈ (0, K). In particular, FR,K is of the form

FR,K(s, y) = βR(y)(
∑
k≥0

qRk (y)sk − s),

where βR is a space-dependent branching rate and (qRk , k ≥ 0) a space-
dependent offspring distribution (expressions for βR and (qRk , k ≥ 0)
are given in (3.5) and (3.6) below).

Proof. The change of measure in (3.1) preserves the branching
property in the following sense. Let ν =

∑n
i=1 δxi be an initial configu-

ration at time 0 in (0, K) and A ∈ Ft. Then

PR,K
ν (A) = EK

ν

(
1A

∏
u∈Nt

(
1− pK(xu(t))

)∏n
i=1

(
1− pK(xi)

) )
=

n∏
i=1

EK
xi

(
1A

∏
u∈N i

t

(
1− pK(xu(t))

)
1− pK(xi)

)
=

(
⊗ni=1 P

R,K
xi

)
(A),

where N i
t is the set of descendants at time t of the ith initial particle.

The process (X,PR,K) is therefore completely characterised by its evo-
lution up to the first branching time S. Let us denote by ξ = {ξt, 0 ≤
t ≤ S} the path of the initial particle up to time S, noting that it is a
Brownian motion with drift −µ, killed upon exiting (0, K) under PK

and PK . Let H be a positive bounded measurable functional of this
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path. We begin with considering the case t < S. Using the change of
measure in (3.1) and the fact that S is exponentially distributed with
parameter β, we have

ER,K
x (H(ξs, s ≤ t);S > t) = EK

x

(
H(ξs, s ≤ t)

1− pK(ξt)

1− pK(x)
;S > t

)
= e−βtEKx

(
H(ξs, s ≤ t)

1− pK(ξt)

1− pK(x)

)
= e−βtER,Kx

(
H(ξs, s ≤ t)e

−
∫ t
0

F (1−pK (ξs))

1−pK (ξs)
ds
)
,(3.3)

where PR,Kx is defined by the change of measure

dPR,Kx

dPKx

∣∣∣∣
Gt

=
1− pK(ξt)

1− pK(x)
e
∫ t
0

F (1−pK (ξs))

1−pK (ξs)
ds
, t ≥ 0.(3.4)

Thus, the initial particle performs a PR,K-motion. It follows from Lemma
7 using h = 1− pK and the fact that L(1− pK) + F (1− pK) = 0 (see
Remark 10), that the motion under PR,K is governed by the infinitesi-
mal generator LR,K in (3.2). Note that LR,K depends on the branching
mechanism F through pK .
Taking H = 1 and differentiating in t at t = 0 in (3.3) above, we see
that under PR,K the branching rate changes to

βR(y) =
F (1− pK(y)) + β(1− pK(y))

1− pK(y)
= β

∑
k≥0

qk(1− pK(y))k−1,

(3.5)

for y ∈ (0, K).
It remains to identify the offspring distribution and we therefore study
the process at its first branching time S. Using (3.1) in the first step,
and then (3.4) together with the definition of βR in (3.5) in the last,
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we get,

ER,K
x (H(ξs, s ≤ S);S ∈ dt;NS = k)

= EK
x

((1− pK(ξS)
)NS

1− pK(x)
H(ξs, s ≤ S);S ∈ dt;NS = k

)
= EK

x

((1− pK(ξt)
)k

1− pK(x)
H(ξs, s ≤ t) βe−βtqk

)
dt

= EKx
(1− pK(ξt)

1− pK(x)
e
∫ t
0

F (1−pK (ξs))

1−pK (ξs)
ds
H(ξs, s ≤ t)

qk βe
−βte

−
∫ t
0

F (1−pK (ξs))

1−pK (ξs)
ds (

1− pK(ξt)
)k−1)

dt

= ER,Kx

(
H(ξs, s ≤ t)βR(ξt)e

−
∫ t
0 β

R(ξs)ds
β

βR(ξt)
qk(1− pK(ξt))

k−1
)
dt.

We see that, in addition to the change in the motion and the branching
rate, the offspring distribution under PR,K becomes {qRk , k ≥ 0} where,
for y ∈ (0, K),

qRk (y) = β(βR(y))−1qk(1− pK(y))k−1, k ≥ 0.(3.6)

A simple computation shows that FR,K(s, y) = βR(y)(
∑

k≥0 q
R
k (y)sk −

s) takes the desired form.

The natural next step is to condition the initial particle to be blue
and study the resulting law. Note that this will describe the evolution of
a dressed blue branching diffusion, corresponding to a blue tree dressed
with red trees, and from this process we will be able to recover the blue
branching diffusion. We will give the change of measure for the blue
branching diffusion in Proposition 13 following the next theorem.
Let us define the law of the dressed blue branching diffusion by

PD,K
x (A) := PK

x (A|c(∅) = b)

=
PK
x (A; c(u) = b for at least one u ∈ Nt)

PK
x (c(∅) = b)

=
EK
x

(
1A

(
1−

∏
u∈Nt

(
1− pK(xu(t))

)) )
pK(x)

.(3.7)

Then (X,PD,K) is the same as (X,PK) conditioned on survival.
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Theorem 12 (The dressed blue branching diffusion). Let K > K0

and x ∈ (0, K). The process (X,PD,K
x ) evolves as follows.

(i) From x, we run a branching diffusion XB with single particle
movement according to the infinitesimal generator

LB,K =
1

2

d2

dy2
−
(
µ− p′K(y)

pK(y)

)
d

dy
on (0, K),(3.8)

defined for all u ∈ C2(0, K), and space-dependent branching mech-
anism FB,K of the form

FB,K(s, y) = βB(y)(
∑
k≥0

qBk (y)sk − s), s ∈ [0, 1], y ∈ (0, K),

where, for a fixed y ∈ (0, K), the branching rate βB(y) and the
offspring distribution (qBk (y), k ≥ 2) are given by

βB(y) = β
∑
k≥2

∑
n≥k

qn

(
n

k

)
pK(y)k−1(1− pK(y))n−k,

qBk (y) = β βB(y)−1
∑
n≥k

qn

(
n

k

)
pK(y)k−1(1− pK(y))n−k.

In particular, FB,K(s, y) can be written as

1

pK(y)
(F (spK(y) + (1− pK(y)))− (1− s)F (1− pK(y))) .

(ii) Conditionally on the branching diffusion XB in (i), we have the
following.

• (Immigration along the trajectories) Along the trajectories of
each particle in XB, an immigration with n ≥ 1 immigrants
occurs at rate

βI,1n (y) = βqn+1(n+ 1)(1− pK(y))n, y ∈ (0, K).

• (Branch point immigration) At a branch point of XB at
y ∈ (0, K) with some fixed k ≥ 2 offspring, the number
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of immigrants is distributed according to (qI,2n,k(y), n ≥ 0), in
that we see an immigration of n immigrants with probability

qI,2n,k(y) = (κk(y))−1qn+k

(
n+ k

k

)
pK(y)k−1(1− pK(y))n,

with normalising constant κk(y) = qBk (y)β−1βB(y).

Each immigrant initiates an independent copy of (X,PR,K) from
the space-time position of its birth.

Proof. We use the same notation as in the proof of Proposition 11
and in addition let T(0,K) denote the first time the initial particle exits
(0, K). Consider the change of measure in (3.7) and note that, for any
time t < S and A ∈ Ft, it becomes

PD,K
x (A) = EK

x

(
1A
pK(ξt)

pK(x)
, T(0,K) > t

)
.

where the term T(0,K) > t appears since the product in the enumerator
in (3.7) is empty if the initial particle gets killed before it reproduces.
Then

ED,K
x (H(ξs, s ≤ t);S > t) = e−βtEKx

(
H(ξs, s ≤ t)

pK(ξt)

pK(x)
, T(0,K) > t

)
= e−βtEB,Kx

(
H(ξs, s ≤ t) e

∫ t
0

F (1−pK (ξs))

pK (ξs)
ds
)
,(3.9)

where PB,Kx is defined by the change of measure, for t ≥ 0,

dPB,Kx

dPKx

∣∣∣∣
Gt

=
pK(ξt)

pK(x)
exp

{
−
∫ t

0

F (1− pK(ξs))

pK(ξs)
ds

}
1{T(0,K)>t}.

(3.10)

By Lemma 7 using h = pK and LpK −F (1− pK) = 0 (cf. Remark 10),
the motion of ξ under PB,Kx is governed by the infinitesimal generator
LB,K as in (3.8). Note that LB,K depends on F through pK . Then,
setting

βD(y) = −F (1− pK(y))− βpK(y)

pK(y)

= β
1−

∑∞
k=0(1− pK(y))kqk
pK(y)

, for y ∈ (0, K),(3.11)
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we see that (3.9) simplifies to

ED,K
x (H(ξs, s ≤ t), S > t) = EB,Kx

(
H(ξs, s ≤ t)e−

∫ t
0 β

D(ξs) ds
)
.

We deduce from this that, under PD,K , the motion of the initial par-
ticle is given by the change of measure in (3.10) and it branches at
space-dependent rate βD as in (3.11).
It remains to specify the offspring distribution. We begin with the ex-
pression in (3.7) and then use (3.10) and the expression for βD in (3.11)
to get

ED,K
x (H(ξs, s ≤ S);S ∈ dt;NS = k)

= EK
x

(
H(ξs, s ≤ t)

1− (1− pK(ξt))
NS

pK(x)
;S ∈ dt;NS = k

)
= EKx

(
H(ξs, s ≤ t)βe−βtqk

1− (1− pK(ξt))
k

pK(x)
dt
)

= EB,Kx

(
H(ξs, s ≤ t)βDe−

∫ t
0 β

D(ξs)ds
β

βD(ξt)
qk

1− (1− pK(ξt))
k

pK(ξt)
dt
)
.

Again this reveals the evolution of the initial particle as described above
and we further see that the offspring distribution of the initial particle
under PD,K is given by {qDk , k ≥ 0} where

qDk (y) ∝ qk
1− (1− pK(y))k

pK(y)
, for y ∈ (0, K),

up to the normalising constant β(βD(y))−1. We note that q0(y) = 0
for all y ∈ (0, K) which we expected to see since (X,PD,K) is equal
in law to (X,PK) conditioned on survival. However, we have so far
neglected the fact that the initial particle can give birth to particles
of the same type, i.e. blue particles (referred to as branching), and red
particles which evolve as under PR,K(referred to as immigration). We
will split up the rate βD and the offspring distribution qDk into terms
corresponding to branching respectively immigration. Firstly, note that
with the help of the binomial theorem we can decompose the rate βD
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into

βD(y) = β
1−

∑∞
k=0(1− pK(y))kqk
pK(y)

= β
∑
k≥2

∑
n≥k

qn

(
n

k

)
pK(y)k−1(1− pK(y))n−k

+β
∑
n≥1

qnn(1− pK(y))n−1

=: βB(y) +
∑
n≥0

βI,1n (y).(3.12)

Then βI,1n is the rate at which the initial particle gives birth to one
blue particle and n (red) immigrants while βB is the rate at which
the initial particle gives birth to at least two particles of the blue type
and a random number of (red) immigrants. These rates agree with the
immigration rates βI,1n and βB as stated in (ii) resp. (i). Again using
the binomial theorem, we can now rewrite the offspring distribution
qDk , for each k ≥ 1, as

qDk (y) ∝ qk
1− (1− pK(y))k

pK(y)

= qk

k∑
i=2

(
k

i

)
pK(y)i−1(1− pK(y))k−i(3.13)

+qk k(1− pK(y))k−1, k ≥ 1.(3.14)

Then the term in (3.13) gives, up to normalisation, the sum of the prob-
abilities that the initial particle branches into i blue particles and, at
the same branching time, k− i red particles immigrate. This gives the
immigrant distribution at branching points, (qI,2n,k(y), k ≥ 2), as stated
in (ii) as well as the offspring distribution of the blue branching diffu-
sion in (i). The term in (3.14) is the probability that k− 1 immigrants
occur, again up to a normalising constant.
Note that (X,PD,K) inherits the branching Markov property from
(X,PK) by (3.7) in a similar spirit to the case of (X,PR,K) (cf. the
proof of Proposition 11). Thus the description of the initial particle also
characterises the evolution of all particles of the blue type and together
with the characterisation of the immigrating PR,K-branching diffusions
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in Proposition 11 we have completely characterised the evolution of X
under PD,K .

In light of Theorem 12, we call the blue branching diffusion XB in
step (i) the backbone. Let us give the change of measure under which
X evolves like XB. Using the classical Ulam-Harris notation (see for
instance [HH09], p.290), we denote by τv and σv the birth respectively
death time of a particle v, by T v(0,K) its first exit time from (0, K) and
by Av the random number of its offspring. Denote by T be the set of
all particles in a realisation of X. Let Tt be the set of all v ∈ T with
τv < t and v is in Tt− if, in addition, σv < t.

Proposition 13 (The backbone). For ν ∈ Ma(0, K) such that
ν =

∑n
i=1 δxi with xi ∈ (0, K), n ≥ 1, we define the measure PB,K

ν via
the following change of measure. For t ≥ 0,

dPB,K
ν

dPK
ν

∣∣∣∣
Ft

=
∏
v∈Tt

pK(xv(σv ∧ t))
pK(xv(τv))

1{t<T v
(0,K)

}

× exp

{∫ σv∧t

τv

F ′(1− pK(xv(s))) + β ds

}
×
∏
v∈Tt−

qBAv(xv(σv))

qAvβ(βB(xv(σv)))−1
.

The branching diffusion (X,PB,K
ν ) has single particle movement ac-

cording to the infinitesimal generator LB,K and branching mechanism
FB,K as given in step (i) of Theorem 12.

Proof. A simple computation, using (3.11) and (3.12), shows that

F ′(1− pK(y)) = −F (1− pK(y))

pK(y)
− βB(y), y ∈ (0, K).

The result then follows from rewriting the change of measure up to the
first branching time S as

dPB,K
x

dPK
x

∣∣∣∣
FS

=
pK(ξS)

pK(x)
exp

{
−
∫ S

0

F (1− pK(ξs))

pK(ξs)
ds

}
1{S<T(0,K)}

× 1

β
βB(ξS)) exp

{
−
∫ S

0

βB(ξs)− β ds
}
×
qBNS(ξS))

qNS
,
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noting that the first line on the right-hand side accounts for the change
of motion, the first term in the second line for the change in the branch-
ing rate and the last term in the second line for the change in the
offspring distribution.

Corollary 14 (The backbone decomposition). Let K > K0 and
ν ∈Ma(0, K) such that ν =

∑n
i=1 δxi with xi ∈ (0, K), n ≥ 1.

Then (X,PK
ν ) has the same law as the process

n∑
i=1

(
YiX

D,i
t + (1− Yi)XR,i

t

)
, t ≥ 0.

where XR,i = (XR,i
t , t ≥ 0) are independent copies of (X,PR,K

xi
), XD,i =

(XD,i
t , t ≥ 0) are independent copies of (X,PD,K

xi
) and the Yi are inde-

pendent Bernoulli random variables with respective parameters pK(xi).

Intuitively speaking, we can describe the evolution under PK
ν and

thus also under PK
ν as follows. Independently for each initial particle i

with position xi, we flip a coin with probability pK(xi) of ‘heads’. If it
lands ‘heads’, we initiate a copy of (X,PD,K

xi
) and otherwise we initiate

a copy of (X,PR,K
xi

).

Corollary 15. Given the number of particles of (X,PK
ν ) and

their positions, say x1, ..., xn for some n ∈ N, at a fixed time t, then
the number of particles of XB

t is the number of successes in a se-
quence of n independent Bernoulli trials each with success probability
pK(x1), ..., pK(xn).

Remark 16. With Theorem 12 in hand it can be shown that, if the
differential equation in (2.5) has a non-trivial, [0, 1]-valued solution,
then it is unique. We sketch the argument here.
Assume that gK(x) is a non-trivial, (0, 1)-valued solution to (2.5). By
a Feynman-Kac argument (cf. Champneys et al. [CHT+95]), it follows
that

MK(t) =
∏
u∈Nt

gK(xu(t)), t ≥ 0,

is a PK
x -product martingale. Since MK is uniformly integrable, its limit

MK(∞) exits PK
x -a.s. On the event of extinction, MK(∞) = 1. On the



BRANCHING BROWNIAN MOTION IN A STRIP 25

event of survival, it follows from Theorem 12 that

MK(t) =
∏
u∈Nt

gK(xu(t)) ≤
∏
u∈NB

t

gK(xBu (t)),(3.15)

where NB
t is the set of particles in XB

t .
Clearly, |NB

t | → ∞ as t→∞ since each particle in XB is replaced by
at least two offspring and there is no killing. Denote by ξB = (ξBt , t ≥ 0)
the path of an arbitrary line of descent of particles in XB. Then ξB per-
forms an ergodic motion in (0, K) according to the infinitesimal gener-
ator LB,K in (3.2). By ergodicity, PK-a.s., we have lim inft→∞ ξ

B
t = 0

and lim supt→∞ ξ
B
t = K which implies

lim inf
t→∞

gK(ξBt ) = inf
y∈(0,K)

gK(y) < 1,(3.16)

since gK is non-trivial and (0, 1)-valued. At any time t ≥ 0, we can
choose |NB

t | lines of descent, each of them containing the path of one of
the particles in NB

t , and (3.16) holds true along these lines of descent.
Loosely speaking, the right-hand side of (3.15) then tends to an infinite
product of terms with lim inf strictly smaller than 1 and therefore it
must converge to 0, that is,

lim inf
t→∞

MK(t) ≤ lim inf
t→∞

∏
u∈NB

t

gK(xBu (t)) = 0, PK-a.s.

Since the limit MK(∞) exists PK-a.s., we get MK(∞) = 0, on the
event of survival.
We conclude that MK(∞) = 1{ζ<∞}. Taking expectations gives

gK(x) = EK
x (MK(∞)) = PK

x (ζ <∞), x ∈ (0, K).

As this is true for any non-trivial, [0, 1]-valued solution to (2.5) we
have established uniqueness of these solutions.

In Remark 10, we saw that the function zK(x) = PK
x (ZK(∞) = 0)

solves (2.5). With Proposition 8, this yields that (2.5) has a non-trivial
solution if and only if µ <

√
2(m− 1)β and K > K0.

Again by Remark 10, 1− pK(x) is also a solution to (2.5). Thus we
may derive again that the events {ZK(∞) = 0} and {ζ < ∞} agree
PK
x -a.s., cf. Proposition 9.
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4. Proof of Theorem 4. We break up Theorem 4 into two parts
which will be proved in the subsequent sections.

Proposition 17. Uniformly for all x ∈ (0, K0),

pK(x) ∼ cK sin(πx/K0)e
µx, as K ↓ K0,

where cK is independent of x and cK ↓ 0 as K ↓ K0.

Proposition 18. The constant cK in Proposition 17 satisfies

cK ∼ (K −K0)
(K2

0µ
2 + π2)(K2

0µ
2 + 9π2)

12(m− 1)βπK3
0(eµK0 + 1)

as K ↓ K0.(4.1)

Theorem 4 then follows by defining CK to be the expression on the
right-hand side in (4.1).
We will provide probabilistic proofs of the results above. We remark
that, although it would take some effort to make rigorous, it is also
possible to recover the asymptotics of pK and the explicit constant CK
in an analytic approach using a careful asymptotic expansion of the
non-linear ODE Lu+ F (u) = 0 with u(0) = u(K) = 1, as shown to us
by B. Derrida.

4.1. Proof of Proposition 17. We begin with a preliminary result
which ensures that the survival probability pK is right-continuous at
K0.

Lemma 19. Let x ∈ (0, K0). Then limK↓K0 pK(x) = 0.

Proof. We fix x ∈ (0, K0) throughout the proof and consider pK(x)
as a function in K. For t > 0, let us define the probability pK(x, t) :=
PK
x (survival in (0, K) up to time t). Since pK(x, t) is monotonically de-

creasing for K ↓ K0 and t→∞ we have

lim
K↓K0

lim
t→∞

pK(x, t) = lim
t→∞

lim
K↓K0

pK(x, t).

Further, by monotonicity of measures, we have, for any K > 0,

lim
t→∞

pK(x, t) = pK(x),
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and, for t ≥ 0,

lim
K↓K0

pK(x, t) = PK
x (survival in [0, K0] up to time t) = pK0(x, t),

where the last equality holds true as any particle that hits 0 or K will
immediately pass below 0 resp. above K. Putting the pieces together,
we get

lim
K↓K0

pK(x) = lim
K↓K0

lim
t→∞

pK(x, t) = lim
t→∞

lim
K↓K0

pK(x, t)

= lim
t→∞

pK0(x, t)

= pK0(x).

By Proposition 1, pK0(x) = 0 and so we have limK↓K0 pK(x) = 0.

Recall that we denoted by T the set of all particles in a realisation
of X and v < u means that v is a strict ancestor of u. For y ∈ (0, K0),
let L(0,y) be the set containing all particles which are the first ones in
their genealogical line to exit the strip (0, y), i.e.

L(0,y) = {u ∈ T : ∃s ∈ [τu, σu] s.t. xu(s) /∈ (0, y)

and xv(r) ∈ (0, y) for all v < u, r ∈ [τv, σv]}.
(4.2)

The random set L(0,y) is a stopping line in the sense of Biggins and
Kyprianou [BK97] (see also Chauvin [Cha91] which uses a slightly dif-
ferent definition though).
Let |L(0,y)| be the number of particles which are the first ones in their
line of descent to hit y (we do not count the ones exiting at 0), which
can be written as

|L(0,y)| =
∑
u∈Ly

1{
xu(Tu(0,y))=y

},(4.3)

recalling that we denoted by T u(0,y) the first exit time of a particle u

from (0, y). Likewise we can define the stopping line L(y,K0) as the set
containing all particles which are the first ones in their genealogical
line to exit the strip (y,K0) and |L(y,K0)| as the number of particles in
L(y,K0) which have exited at y.
The quantity |L(0,y)| will turn out to be the essential ingredient in the
proof of Proposition 17. To begin with, let us show that EK0

x (|L(0,y)|)
is finite. In fact, we can compute this expectation explicitly.
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Lemma 20. Let x, y ∈ (0, K0) with x ≤ y. We have

EK0
x (|L(0,y)|) =

sin(πx/K0)

sin(πy/K0)
eµ(x−y),(4.4)

where |L(0,y)| is defined in (4.3). For x, y ∈ (0, K0) with x ≥ y, (4.4)
holds true with |L(0,y)| replaced by |L(y,K0)|.

Proof. To begin with, we note that a stopping line is called dissect-
ing if there exists a PK-a.s. finite time such that each particle alive at
this time has descended from a particle in the stopping line, cf. [Kyp04].
Since we choose y ∈ (0, K0), the width of the strip (0, y) is subcritical
and hence, for any initial position x ∈ (0, y), all particles will exit it
eventually. This ensures that the stopping line L(0,y) defined in (4.2)
is a dissecting stopping line. Since L(0,y) is dissecting it follows from
Theorem 6 in [Kyp04] that we can apply the Many-to-one Lemma (see
e.g. [HH09] Theorem 8.5) for the stopping line L(0,y). Let T(0,y) again
be the first time ξ exists (0, y) and recall the definition of QK0

x via the
martingale change of measure in (2.2). Then we get

EK0
x (|L(0,y)|)

= EK0
x

(
e(m−1)βT(0,y)1(ξT(0,y)=y)

)
= QK0

x

(
e(m−1)βT(0,y)

sin(πx/K0)e
µ(x−ξT(0,y) )

sin(πξT(0,y)/K0)e
(µ2/2+π2/2K2

0 )T(0,y)
1(ξT(0,y)=y)

)

=
sin(πx/K0)

sin(πy/K0)
eµ(x−y)QK0

x (ξT(0,y) = y),

where we have used that (m − 1)β − µ2/2 − π2/2K2
0 = 0 (and QK0

x is
used as an expectation operator). Under QK0

x , ξ will never hit 0 since
it is conditioned to stay in (0, K0). However as ξ is positive recurrent
it will eventually cross y and therefore QK0

x (ξT(0,y) = y) = 1. This gives
(4.4). The case x ≥ y follows in the same way.

The following lemma is the essential part in the proof of Proposition
17.

Lemma 21. Let x, y ∈ (0, K0) with x ≤ y. Let |L(0,y)| be as defined
in (4.3). Then, we have

lim
K↓K0

pK(x)

pK(y)
= EK0

x (|L(0,y)|).(4.5)
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For x, y ∈ (0, K0) with x ≥ y, (4.5) holds true with |L(0,y)| replaced by
|L(y,K0)|.

Proof. Fix y ∈ (0, K0). We begin with the case 0 < x ≤ y.
We recall from Remark 10 that (

∏
u∈Nt(1− pK(xu(t))), t ≥ 0) is a PK

x -
martingale. Since L(0,y) is dissecting, as noted in the proof of Lemma
20, it follows from [Cha91] that we can stop the martingale at L(0,y)

and obtain, for x ∈ (0, y),

1− pK(x) = EK
x

 ∏
u∈L(0,y)

1− pK(xu(T
u
(0,y)))

 = EK
x ((1− pK(y))|L(0,y)|),

(4.6)

where we have used that the process started at zero becomes extinct
immediately, i.e. pK(0) = 0. Further |L(0,y)| has the same distribution
under PK

x and PK0
x since we consider particles stopped at level y below

K0 and thus we can replace EK
x by EK0

x on the right-hand side above.
Now, using first (4.6) and then the geometric sum

∑n−1
j=0 a

j = 1−an
1−a , we

get

pK(x)

pK(y)
= EK0

x

(
1− (1− pK(y))|L(0,y)|

1− (1− pK(y))

)
= EK0

x

|L(0,y)|−1∑
j=0

(1− pK(y))j

 .

(4.7)

The sum on the right-hand side is dominated by |L(0,y)| which does
not depend on K and has finite expectation, see Lemma 20. We can
therefore apply the Dominated convergence theorem to the right-hand
side in (4.7) and we conclude that

lim
K↓K0

EK0
x

|L(0,y)|−1∑
j=0

(1− pK(y))j


= EK0

x

|L(0,y)|−1∑
j=0

lim
K↓K0

(1− pK(y))j

 = EK0
x (|L(0,y)|),(4.8)

where the convergence holds point-wise in x ∈ (0, y). Combining (4.7)
and (4.8) we get (4.5) for x ∈ (0, y).
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It remains to show that (4.5) also holds for x ∈ (y,K0). Instead of
approaching criticality by taking the limit in K we can now fix a K >
K0 and consider a (supercritical) strip (z,K) and let z ↑ z0 where
z0 := K−K0. Denote by p(z,K)(x+ z) the probability of survival in the
strip (z,K) when starting from x+ z. We then have

lim
K↓K0

pK(x)

pK(y)
= lim

z↑z0

p(z,K)(x+ z)

p(z,K)(y + z)
.

Hence (4.5) is equivalent to showing that

lim
z↑z0

p(z,K)(x+ z)

p(z,K)(y + z)
= EK

x+z0
(|L(y+z0,K)|) = EK0

x (|L(y,K0)|).

Here |L(y+z0,K)| denotes the number of particles which are the first in
their genealogical line to exit the strip (y + z0, K) at y + z0. Noting
that this has the same law under P z,K

x+z and P z0,K
x+z , we can then repeat

the argument in the first part.

The next step is to show that the convergence in Lemma 21 holds
uniformly in x on (0, K0).

Lemma 22. Let y ∈ (0, K0). Then we have

lim
K↓K0

pK(x)

pK(y)
=

sin(πx/K0)

sin(πy/K0)
eµ(x−y),(4.9)

uniformly for all x ∈ (0, K0).

Proof. With Lemma 21 and 20, it remains to show that, for fixed
y ∈ (0, K0), the convergence in equation (4.5) of Lemma 21 holds
uniformly for all x ∈ (0, K0). Taking a look back at the proof of Lemma
21, we see that it suffices to show that the convergence in (4.8) holds
uniformly for all x ∈ (0, K0).
Let us fix a y ∈ (0, K0) and let x ∈ (0, y). We set

ϕ(x,K) = EK0
x

|Ly |−1∑
j=0

(1− pK(y))j

 , for x ∈ [0, y],

(with the convention that the PK-branching diffusion becomes extinct
immediately for the initial position x = 0 respectively stopped for
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x = y) and denote by ϕ(x) = EK0
x (|Ly|) its point-wise limit. Since

1− pK(y) ≤ 1− pK′(y), for K ≥ K ′, we have ϕ(x,K) ≤ ϕ(x,K ′) and
thus, for any x ∈ [0, y], the sequence ϕ(x,K) is monotone increasing as
K ↓ K0. Moreover the functions ϕ(x,K) and ϕ(x) are continuous in x,
for any K. In conclusion, we have an increasing sequence of continuous
functions on a compact set with a continuous point-wise limit and
therefore the convergence in (4.8) also holds uniformly in x ∈ [0, y]
(see e.g. [Rud76], Theorem 7.13). This implies now that, for fixed y ∈
(0, K0), (4.5) and thus (4.9) holds uniformly in x ∈ (0, y).
As outlined in the proof of Lemma 21, we can adapt the argument to
the case x ∈ (y,K0) to complete the proof.

Proof of Proposition 17. Choose a y ∈ (0, K0). Then an appli-
cation of Lemma 22 gives, as K ↓ K0,

pK(x) = pK(y)
pK(x)

pK(y)
∼ pK(y)

sin(πx/K0)

sin(πy/K0)
eµ(x−y) = cK sin(πx/K0)e

µx,

uniformly for all x ∈ (0, K0), where cK := pK(y)
sin(πy/K0)

e−µy. By Proposi-
tion 19, cK ↓ 0 as K ↓ K0 which completes the proof.

4.2. Proof of Proposition 18. In this section we will present the
proof of Proposition 18 which gives an explicit asymptotic expression
for the constant cK appearing in the asymptotics for the survival prob-
ability in Proposition 17 and Theorem 4. We begin with a heuristic
that guides our proof.

4.2.1. Heuristic argument. The starting point for the proof of Propo-
sition 18 is the following idea: By Corollary 14, at time t, given the
spatial positions xu(t) of all particles u ∈ Nt, the number of blue par-
ticles is the number of successes in a sequence of Bernoulli trials with
success probabilities pK(xu(t)). As this holds at any time t, we would
expect that the proportion of blue particles, as a proportion of the
whole population, roughly stays constant over time. This suggests that
the blue particles (the backbone) grows at the same rate as the whole
process on survival. Further, the immigrating red trees are conditioned
to become extinct which suggests that they do not contribute to the
survival of the process. Loosely speaking, we do not expect to lose too
much information about the evolution of (X,PK) on survival if we sim-
ply study the growth of the blue tree and ignore the contribution of
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the immigrating red trees.
We break up the heuristic argument into four steps.

Step (i) (The growth rate of the backbone) In this step, we derive an
expression for the expected growth rate of the number of blue parti-
cles. The following heuristic argument is based on Donsker-Varadhan
large deviation theory for occupation measures, for precise formulations
see for instance Deuschel and Stroock [DS89] or Chapter 5 in Stroock
[Str84].
Consider a process Y B = (Y B

t , t ≥ 0) performing the single particle mo-
tion of the backbone, that is according to the infinitesimal generator
LB,K which is given in (3.8) in Theorem 12 as

LB,K =
1

2

d2

dy2
−
(
µ− p′K

pK

)
d

dy
on (0, K),

with domain C2(0, K). Let ΠB,K be the invariant density for LB,K , i.e.
the positive solution of L̃B,KΠB,K = 0 where L̃B,K is the formal adjoint
of LB,K . Then we find

ΠB,K(y) ∝ pK(y)2e−2µy, y ∈ (0, K).

For t ≥ 0 and a set A ⊂ [0, K], we define

Γ(t, A) =

∫ t

0

1{Y Bs ∈A} ds

to be the occupation time up to time t of Y B in the set A. Then
large deviation theory tells us that the probability that the occupation
measure t−1Γ(t, ·) is ‘close’ to the measure

∫ K
0

1{·}(y)f 2(y)ΠB,K(y) dy
is roughly

exp

{
−t
∫ K

0

1

2
(f ′(y))2 ΠB,K(y) dy

}
.(4.10)

Recall that each particle in the backbone moves according to LB,K and
that the branching mechanism of the backbone is FB,K as defined in
Theorem 12. For y ∈ (0, K),

FB,K ′(1, y) :=
d

ds
FB,K(s, y)|s=1 = (m− 1)β +

F (1− pK(y))

pK(y)
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represents the branching rate multiplied by the mean increment in pop-
ulation (the meath growth rate) for particles at location y. Then from
(4.10), we would guess that the expected number of particles with oc-
cupation densities ‘close to’ f 2ΠB,K at time t is very roughly

exp
{
t

∫ K

0

{
FB,K ′(1, y)f(y)2 − 1

2
(f ′(y))2

}
ΠB,K(y) dy

}
.

By Laplace-Varadhan asymptotics, the expected growth rate of the
blue tree should then be

sup
f

{∫ K

0

{
FB,K ′(1, y)f(y)2 − 1

2
(f ′(y))2

}
ΠB,K(y) dy

}
(4.11)

with the supremum taken over a suitable class of functions f with the
normalisation

∫ K
0
f 2(y)ΠB,K(y)dy = 1.

We assume henceforth that the supremum in (4.11) is taken over all
functions f which satisfy in addition the boundary condition

lim
y↓0

f(y)f ′(y)ΠB,K(y) = lim
y↑K

f(y)f ′(y)ΠB,K(y) = 0.(4.12)

Then an integration by parts shows that∫ K

0

{LB,Kf(y)} f(y) ΠB,K(y) dy = −1

2

∫ K

0

(f ′(y))2 ΠB,K(y) dy

(4.13)

Thus, with (4.13), the variational problem (4.11) can be written as

sup
f

{∫ K

0

{[LB,K + FB,K ′(1, y)]f(y)} f(y)ΠB,K(y) dy
}
.(4.14)

Now set h(y) = pK(y)e−µyf(y). Then h satisfies the normalisation∫ K
0
h(y)2 dy = 1 and h(0) = 0 = h(K). An elementary computation

shows that, instead of (4.14), we can consider the equivalent problem

sup
h

{∫ K

0

{1

2
h′′(y) +

(
(m− 1)β − µ2

2

)
h(y)}h(y) dy

}
.(4.15)

Equivalence means that the optimal solutions f ∗ and h∗ of (4.14)
and (4.15), respectively, satisfy h∗(y) = pK(y)e−µyf ∗(y). If we take
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the supremum in (4.15) over all functions h ∈ L2[0, K] with h(0) =

0 = h(K) and
∫ K
0
h(y)2 dy = 1 then (4.15) is a classical Sturm-

Liouville eigenvalue problem. For this case, the optimal solution is
h∗(y) ∝ sin(πy/K), y ∈ (0, K). Moreover, we get

f ∗(y) =
h∗(y)

pK(y)
eµy ∝ sin(πy/K)

pK(y)
eµy, y ∈ (0, K),(4.16)

up to a normalising constant. Further, f ∗ solves

[LB,K + FB,K ′(1, y)]f ∗(y) = λ(K)f ∗(y) in (0, K),(4.17)

where λ(K) = (m− 1)β − µ2/2− π2/2K2.
In conclusion, under the assumption that f ∗ satisfies (4.12), we get

from (4.17) and (4.13)

λ(K) =

∫ K

0

{[LB,K + FB,K ′(1, y)]f ∗(y)} f ∗(y)ΠB,K(y) dy

=

∫ K

0

{
FB,K ′(1, y)f ∗(y)2 − 1

2
(f ∗(y)′)2

}
ΠB,K(y) dy

= sup
f

{∫ K

0

{
FB,K ′(1, y)f(y)2 − 1

2
(f ′(y))2

}
ΠB,K(y) dy

}
.

(4.18)

Heuristically, this indicates that λ(K) is the expected growth rate of
the blue tree and this growth rate is attained by particles proportioning
their time according to the optimal occupation density (f ∗)2ΠB,K , as
opposed to the single particle occupation density ΠB,K .

Step (ii) (Lower bound on λ(K)) Since f ∗ maximizes the expression
in (4.18), we get a lower bound on λ(K) by taking f = 1, that is,∫ K

0

FB,K ′(1, y) ΠB,K(y) dy ≤ λ(K).

Step (iii) (Upper bound on λ(K)) Let us define the ‘optimal’ occu-
pation density as

ΠB,K
∗ (y) := (f ∗(y))2ΠB,K(y) =

2

K
sin2(πy/K), y ∈ (0, K).
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Omitting the non-positive term −1
2
(f ∗(y)′)2 in the second equality of

(4.18) gives the upper bound

λ(K) ≤
∫ K

0

FB,K ′(1, y) ΠB,K
∗ (y) dy.

Step (iv) (Asymptotics) By Theorem 4, pK(y) ∼ cK sin(πy/K0)e
µy,

as K ↓ K0, and we can easily deduce that

ΠB,K(y) ∼ ΠB,∗
K0

(y), as K ↓ K0.

We will make rigorous later that FB,K ′(1, y) ∼ (m−1)βcK sin(πy/K0)e
µy

as K ↓ K0. Our conjecture is therefore that

λ(K) ∼ cK
2(m− 1)β

K0

∫ K0

0

sin3(πy/K0)e
µy dy, as K ↓ K0.

Since we can calculate the integral explicitly this gives an exact asymp-
totic for cK which agrees with the one given in Proposition 18 and
Theorem 4. Intuitively, as we approach criticality, the single particle
invariant measure, ΠB,K , becomes the optimal way for particles to pro-
portion their time in order to maximise the growth of the blue tree,
that is, f ∗ → 1.

4.2.2. Proof of Proposition 18. We briefly recall some key quanti-
ties. Recall from equation (3.8) that the motion of the backbone par-
ticles is given by

LB,K =
1

2

d2

dy2
−
(
µ− p′K

pK

)
d

dy
on (0, K),

which has invariant density ΠB,K satisfiying

ΠB,K(y) =
pK(y)2e−2µy∫ K

0
pK(z)2e−2µzdz

, y ∈ (0, K).

Recall from (4.11), the mean growth rate at position y ∈ (0, K) is

FB,K ′(1, y) = (m− 1)β +
F (1− pK(y))

pK(y)
.
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Throughout this section, let f ∗ be such that

f ∗(y) ∝ sin(πy/K)

pK(y)
eµy, y ∈ (0, K),(4.19)

with the normalisation
∫ K
0
f ∗(y)2ΠB,K(y)dy = 1. Finally we set ΠB,K

∗ (y) :=
(f ∗(y))2ΠB,K(y), so that

ΠB,K
∗ (y) =

2

K
sin2(πy/K), y ∈ (0, K).

Let us now come to the proof of Proposition 18. First, we want
to confirm the conjecture that the expected number of particles of
(X,PB,K) grows at rate λ(K), which initiated the heuristic step (i).

Proposition 23. For x ∈ (0, K), we have

lim
t→∞

1

t
logEB,K

x (|Nt|) = λ(K).

Proof. Let x ∈ (0, K) and t ≥ 0. We apply the Many-to-one
Lemma (see e.g. [HHK06]), then the change of measure in (3.10) to-
gether with

FB,K ′(1, y)− F (1− pK(y))

pK(y)
= (m− 1)β,

and finally the change of measure using (2.2), to get

EB,K
x (|Nt|) = EB,Kx

(
e
∫ t
0 F

B,K ′(1,ξs) ds
)

= e(m−1)βtEx
(p(ξt)
p(x)

1{ξt<T(0,K)}

)
= eλ(K)tQK

x

( p(ξt)

sin(πξt/K)
e−µξt

)sin(πx/K)

p(x)
eµx.(4.20)

Since (ξ,QK
x ) is an ergodic diffusion, whose transition density is explic-

itly known (cf. p188 of [Law]), with invariant distribution 2
K

sin2(πx/K)dx,
it is easy to check that

QK
x

( pK(ξt)

sin(πξt/K)
e−µξt

)
→
∫ K

0

pK(y)e−µy
2

π
sin(

πy

K
) dy, as t→∞.

Thus, after taking logarithms in (4.20), dividing by t and taking t→∞,
the result follows.
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It is worth remarking at this point that, using ideas from [HR12],
the following stronger version of the above proposition can be proved.

Proposition 24. For x ∈ (0, K),

lim
t→∞

1

t
log |Nt| = λ(K), PB,K

x -a.s.

The details are left to the reader.

We now give a short proof of the inequality in step (ii) of the heuristic
by using a lower bound on the growth rate of the expected number of
blue particles.

Lemma 25. For x ∈ (0, K), we have

λ(K) ≥
∫ K

0

FB,K ′(1, y)ΠB,K(y) dy.

Proof. Using the Many-to-one Lemma (cf. e.g. [HH09]), and Jensen’s
inequality, we get for x ∈ (0, K), t ≥ 0,

EB,K
x (|Nt|) = EB,Kx (e

∫ t
0 F

B
K
′
(1,ξs) ds) ≥ exp

{
EB,Kx (

∫ t

0

FB
K

′
(1, ξs) ds)

}
.

Under PB,Kx , ξ has invariant distribution ΠB,K(y)dy. Therefore we can
apply an ergodic theorem for diffusions (see e.g. Rogers & Williams
[RW00], V.53 Theorem (53.1) and Exercise (53.6)) which gives

lim
t→∞

1

t

(∫ t

0

FB,K ′(1, ξs) ds
)

=

∫ K

0

FB
K

′
(1, y)ΠB,K(y) dy, PB,Kx − a.s.

Since FB,K ′(1, y) is bounded for y ∈ (0, K) (cf. the argument follow-
ing (4.26) in the proof of Proposition 18), the bounded convergence
theorem gives

lim
t→∞

EB,Kx

(1

t

∫ t

0

FB,K ′(1, ξs) ds
)

=

∫ K

0

FB
K

′
(1, y)ΠB,K(y) dy,

which, together with Proposition 23, gives the desired lower bound on
λ(K).
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Next we give the proof of the upper bound for λ(K), again based on
the discussion in the heuristic.

Lemma 26. For K > K0, we have

λ(K) ≤
∫ K

0

FB,K ′(1, y) ΠB,K
∗ (y) dy.

Proof. The upper bound is described in part (iii) of the heuristic.
The only part of the explanation there that is not rigorous is the need
to verify the condition (4.12), i.e.

lim
y↓0

(f ∗(y))′f ∗(y)ΠB,K(y) = lim
y↑K

(f ∗(y))′f ∗(y)ΠB,K(y) = 0,(4.21)

in order to justify the integration by parts that leads to the second
equality in (4.18).

To this end, we begin by showing that f ∗ is uniformly bounded in
(0, K). Recall from (4.19) that

f ∗(y) ∝ sin(πy/K)

pK(y)
eµy, y ∈ (0, K).

Since f ∗ is continuous in (0, K) it is sufficient to show that lim supx↓0 f
∗(x)

and lim supx↑K f
∗(x) are bounded.

An application of L’Hôpitals rule gives

lim
x↓0

sin(πx/K)eµx

π
2Kµ

(1− e−2µx)
= 1.(4.22)

To conclude that lim supx↓0 f
∗(x) < ∞, it therefore suffices to show

that there exists a constant c > 0 such that

c (1− e2µx) ≤ pK(x), for all x sufficiently close to zero.

By Remark 10, (
∏

u∈Nt(1 − pK(xu(t))), t ≥ 0) is a PK
x -martingale and

it follows then by a standard Feynman-Kac argument that 1 − pK(x)
satisfies

1− pK(x) = 1 + EKx
∫ T(0,K)

0

F (1− pK(ξs)) ds, x ∈ (0, K),
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where T(0,K) is the first time ξ exists the interval (0, K). To compute the
expectation above we use the potential density of ξ, see e.g. Theorem
8.7 in [Kyp06], and we get

−pK(x) = EKx
∫ T(0,K)

0

F (1− pK(ξs)) ds

=
1

µ
(1− e−2µx)

∫ K

0

F (1− pK(y))
(1− e−2µ(K−y))

(1− e−2µK)
dy

− 1

µ

∫ K

0

F (1− pK(y))(1− e−2µ(x−y)) dy.(4.23)

Since F (s) < 0 for 0 < s < 1, the first integral in the last equality on
the right-hand side of (4.23) is strictly negative and bounded. Hence
we can set

c := − 1

µ

∫ K

0

F (1− pK(y))
(1− e−2µ(K−y))

(1− e−2µK)
dy > 0.

The second integral on the right-hand side of (4.23) is non-negative,
for x close to 0, since the term 1− e−2µ(x−y) is non-positive for x ≤ y.
Therefore, we get

pK(x) ≥ c(1− e−2µx) for all x sufficiently close to zero.

which, together with (4.22), gives the desired result.
To establish boundedness as x approaches K, we observe that pK(x) =
p̄K(K − x), where p̄K denotes the survival probability for a branching
diffusion which evolves as under PK

x but with positive drift µ. Similarly
to the previous argument we can then show that there exists a constant
c > 0 such that cp̄K(K − x) ≥ sin(πx/K)eµx, for x sufficiently close to
K.

We can now show (4.21). Since f ∗ takes finite values at 0 and K,
it suffices to show that (f ∗(y))′ΠB,K(y) evaluated at 0 and K is zero.
Differentiating f ∗ and recalling that ΠB,K(y) ∝ pK(y)2e−2µy gives

(f ∗(y))′ΠB,K(y)

∝ e−µy
(

(µ sin(πy/K) +
π

K
cos(πy/K))pK(y)− sin(πy/K)p′K(y)

)
.

Differentiating both sides of equation (4.23) with respect to x, it is eas-
ily seen that p′K(x) is bounded for all x ∈ [0, K]. Therefore (f ∗(y))′ΠB,K(y)
is equal to 0 at 0 and K which completes the proof.
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We complete the proof of Proposition 18 by making step (iv) rigor-
ous.

Proof of Proposition 18. By Lemma 25 and 26, we get the fol-
lowing bounds on λ(K)∫ K

0

FB,K ′(1, y)ΠB,K(y) dy ≤ λ(K) ≤
∫ K

0

FB,K ′(1, y)ΠB,K
∗ (y) dy,

(4.24)

Recall that ΠB,K and ΠB,K
∗ were defined as

ΠB,K(y) =
pK(y)2e−2µy∫ K

0
pK(z)2e−2µz dz

and ΠB,K
∗ (y) =

2

K
sin2(πy/K),

for y ∈ (0, K). By Proposition 17, we have, as K ↓ K0,

ΠB,K(y) =
pK(y)2e−2µy∫ K

0
pK(z)2e−2µzdz

∼ 2

K0

sin2(πy/K) = ΠB,∗
K0

(y),

(4.25)

where we have used that the asymptotics in Proposition 17 hold uni-
formly to deal with the integral in the denominator. The uniformity
in Proposition 17 also ensures that (4.25) holds uniformly for all y ∈
(0, K0). Further, we have

lim
s↑1

F (s)

s(s− 1)
= lim

s↑1

F ′(s)

2s− 1
= (m− 1)β,

where we applied L’Hôpitals rule in the first equality above. We apply
this for s = 1−pK(y) and K ↓ K0. Then, together with the definition of
FB,K ′(1, y) in (4.11) and the asymptotics in Proposition 17, we obtain

FB,K ′(1, y) = (m− 1)β +
F (1− pK(y))

pK(y)

∼ (m− 1)β − (m− 1)β(1− pK(y))

∼ (m− 1)βcK sin(πy/K0)e
µy as K ↓ K0.(4.26)

Moreover, we note that for all y ∈ (0, K)∣∣∣F (1− pK(y))

pK(y)

∣∣∣ =
∣∣∣F (1)− F (1− pK(y))

1− (1− pK(y))

∣∣∣ ≤ max
s∈[0,1]

F ′(s).
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Convexity of F yields that the maximum above is attained at either
0 or 1 and we know that F ′(0) and F ′(1) are both finite. Hence, by
(4.26), |FB,K ′(1, y)| is bounded in (0, K) and we can therefore appeal
to bounded convergence as we take the limit in (4.24). With (4.25) and
(4.26) we get

λ(K) ∼ cK
2(m− 1)β

K0

∫ K0

0

sin3(πy/K0)e
µy dy, as K ↓ K0.

Evaluating the integral gives

λ(K) ∼ cK
12 (m− 1)β π3 (eµK0 + 1)

(K2
0µ

2 + π2)(K2
0µ

2 + 9π2)
, as K ↓ K0.

Finally, λ(K) ∼ π2(K − K0)K
−3
0 as K ↓ K0 which follows from the

linearisation

λ(K) = (m− 1)β − µ2

2
− π2

2K2

= (m− 1)β − µ2

2
− π2

2K2
0︸ ︷︷ ︸

=0

+
π2

2K2
0

− π2

2K2

=
π2K2

2K2
0K

2
− π2

2K2

=
π2[(K −K0)

2 + 2(K −K0)K0 +K2
0 ]

2K2
0K

2
− π2

2K2

=
π2(K −K0)

2

2K2
0K

2
+
π2(K −K0)

K0K2

and noting that the second term in the last line is the leading order
term as K ↓ K0. This completes the proof.

5. Proof of Theorem 6.

Proof of Theorem 6. Recall that (X,PD,K) was defined as the
process (X,PK) conditioned on the event of survival and characterised
via the change of measure in (3.7) and Theorem 12.
Fix a K ′ > K0 and further denote by Nt|(0,K) the set of particles whose
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ancestors (including themselves) have not exited (0, K) up to time t.
Then, for 0 ≤ K ≤ K ′, and for x ∈ (0, K0) and A ∈ Ft, we can write

lim
K↓K0

PD,K
x (A) = lim

K↓K0

EK′

x

(
1A

1−
∏

u∈Nt|(0,K)
(1− pK(xu(t)))

pK(x)

)
,

since Nt|(0,K) has the same law under PK and PK′ . Suppose the par-
ticles in Nt|(0,K) are ordered, for instance according to their spatial
positions, and we write u1, ..., uNt|(0,K)

. We can now expand the term
within the expectation on the right-hand side as

1−
∏

u∈Nt|(0,K)
(1− pK(xu(t)))

pK(x)

=

|Nt|(0,K)|∑
i=1

pK(xui(t))

pK(x)

∏
j<i

(1− p(xuj(t))).(5.1)

By Lemma 22, for each ui, we have

lim
K↓K0

pK(xui(t))

pK(x)
=

sin(πxui(t)/K0)

sin(πx/K0)
eµ(xui (t)−x)1{xui (t)∈(0,K0)}.

Further, | Nt|(0,K) | has finite expectation. Therefore, we can apply the
Dominated convergence theorem twice to get

lim
K↓K0

PD,K
x (A) = EK′

x

(
1A lim

K↓K0

|Nt|(0,K)|∑
i=1

pK(xui(t))

pK(x)

∏
j<i

(1− p(xuj(t)))
)

= EK0
x

(
1A

|Nt|(0,K0)
|∑

i=1

sin(πxui(t))/K0)e
µxui (t)

sin(πx/K0)eµx

)
= EK0

x

(
1A

ZK0(t)

ZK0(0)

)
,

where ZK0 is the martingale used in the change of measure in (2.3)
in Section 2. The evolution under this change of measure is described
in the paragraph following (2.3) and agrees with that of (X∗, Q∗x) as
defined in Definition 5.
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6. Super-Brownian motion in a strip. Recall from (1.1) that
the infinitesimal generator L is defined for all functions u ∈ C2(0, K)
with u(0+) = u(K−) = 0. Change the domain to u ∈ C2(0, K) with
u′′(0+) = u′′(K−) = 0, then L corresponds to Brownian motion with
absorption (instead of killing) at 0 and K. For technical reason, we con-
sider the absorption case from now on and denote by PK = {PKt , t ≥ 0}
the corresponding conservative diffusion semi-group. The results for
branching Brownian motion with killing at 0 and K also hold in the
absorption setting if we restrict the process with absorption to particles
within (0, K), in particular when defining Nt as the number of particles
alive at time t who have not been absorbed.
Suppose Y = (Yt, t ≥ 0) is a Super-Brownian motion with associated
semi-group PK and branching mechanism ψ of the form

ψ(λ) = −aλ+ bλ2 +

∫ ∞
0

(e−λy − 1 + λy) Π(dy), λ ≥ 0,

where a = −ψ′(0+) ∈ (0,∞), b > 0 and Π is a measure concentrated
on (0,∞) satisfying

∫
(0,∞)

(x∧x2) Π(dx) <∞. For an initial configura-

tion η ∈ Mf (0, K), the space of finite measures supported on (0, K),
we denote the law of Y by P̃K

η . The existence of this class of superpro-
cesses follows from [Dyn91].
Since a = −ψ′(0+) > 0, the function ψ is the branching mecha-
nism of a supercritical continuous-state branching process (CSBP), say
Z. We assume henceforth that ψ satisfies the non-explosion condition∫
0+
|ψ(s)|−1 ds = ∞ and further that ψ(∞) = ∞. The last condition,

together with ψ′(0+) < 0, ensures that ψ has a unique positive root λ∗.
The parameter λ∗ is the survival rate of Z in the sense that the proba-
bility of the event of becoming extinguished, namely {limt→∞ Zt = 0},
given Z0 = x is e−λ

∗x, which is strictly positive. We further assume
from now on that

∫ +∞
(ψ(s))−1 ds < ∞, which guarantees that the

event of becoming extinguished agrees with the event of extinction,
that is {∃t > 0 : Zt = 0} a.s. This implies in turn that, for the Super-
Brownian motion Y , the event of becoming extinguished and the event
of extinction agree P̃K-a.s. We denote the event of extinction of Y by
E = {∃t > 0 : Yt(0, K) = 0}, where Yt(0, K) is the total mass within
(0, K) at time t.
We define the survival rate wK of the P̃K-superdiffusion as the function
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satisfying

− log P̃K
η (E) = 〈wK , η〉, for η ∈Mf [0, K].

It can be shown, see e.g. [DK99], that wK is a solution to

Lu− ψ(u) = 0 with u(0) = u(K) = 0.(6.1)

Analogously to Proposition 1, and assuming henceforth in addition that
the condition

∫∞
1
x log xΠ(dx) < ∞ is satisfied, it is possible to give

a necessary and sufficient condition for a positive survival rate. This
follows from a spine change of measure argument in the spirit of Section
2 and of Kyprianou et al. [KMSLR], now using the PK

x -martingale

Z̃K(t) =

∫ K

0

sin(πx/K)eµx−λ(K)tYt(dx), t ≥ 0,(6.2)

where here λ(K) = −ψ′(0+)−µ2/2−π2/2K2. One can then show that
wK is positive if Z̃K is an L1(PK

x )-martingale and the latter holds if
and only if λ(K) > 0 and

∫∞
1
x log xΠ(dx) <∞ .

Let us now establish the connection between the P̃K-superdiffusion and
a PK-branching diffusion via the following relations. Set

F (s) =
1

λ∗
ψ(λ∗(1− s)), s ∈ (0, 1),(6.3)

w̄K(x) = λ∗pK(x), x ∈ (0, K),(6.4)

where pK is the survival probability of the PK-branching diffusion with
branching mechanism F of (6.3). Bertoin et al. [BFM08] show that
(6.3) is the branching mechanism of a Galton-Watson process which
they identify as the backbone of the CSBP with branching mechanism
ψ.

Theorem 27. (i) If µ <
√
−2ψ′(0+) and K > K0 where K0 :=

π(
√
−2ψ′(0+))−1, then wK(x) > 0 for all x ∈ (0, K); otherwise wK(x) =

0 for all x ∈ [0, K].
(ii) Uniformly for x ∈ (0, K0), as K ↓ K0,

wK(x) ∼ λ∗(K −K0)
(K2

0µ
2 + π2)(K2

0µ
2 + 9π2)

12ψ′(0+)πK3
0(eµK0 + 1)

sin(πx/K0)e
µx.
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Proof of Theorem 27. The relation in (6.3) gives (m − 1)β =
−ψ′(0+). Hence, the K0 and the λ(K) defined in this section are the
same as the ones in Proposition 1 and 8.
Suppose µ <

√
−2ψ′(0+) and K > K0. By Remark 16, pK is the

unique non-trivial solution to Lu−F (1−u) = 0 on (0, K) with u(0) =
u(K) = 0. Using (6.3) it follows then that w̄K given by (6.4) solves
(6.1). We can further deduce from this transformation that (6.1) has
a unique non-trivial solution. On the other hand, we know that wK
solves (6.1) and, by the spine argument we mentioned after (6.2), we
know that wK is positive within (0, K). By uniqueness, we thus have
w̄K = wK .
Suppose µ ≥

√
−2ψ′(0+) or K ≤ K0. Then pK is identically zero and

(2.5) does not have a non-trivial solution. By the transformation in
(6.3), the same holds true for (6.1). Since wK is always a solution to
(6.1) it must therefore be equal to zero.
The result is now a consequence of Proposition 1 and Theorem 4.

Let us outline the backbone decomposition for the P̃K
η -superdiffusion.

We begin by studying (Y, P̃K) conditioned on becoming extinct.

Proposition 28. For η ∈Mf [0, K] and t ≥ 0, we define

dP̃R,K
η

dP̃K
η

∣∣∣∣∣
F̃t

=
e−〈wK ,Yt〉

e−〈wK ,η〉
,(6.5)

where (F̃t, t ≥ 0) is the natural filtration generated by (Y, P̃K
η ). Then

(Y, P̃R,K
η ) is equal in law to (Y, P̃K

η (·|E)). Further (Y, P̃R,K
η ) has spa-

tially dependent branching mechanism

ψR,K(s, x) = ψ(s+ wK(x))− ψ(wK(x)), s ≥ 0 and x ∈ [0, K]

and diffusion semigroup PK.

The proof of Proposition 28 is just a straightforward adaptation of
the proof of Lemma 2 in [BKMS11] and thus omitted. We point out
that the motion of the P̃R,K- superdiffusion remains unchanged and it
therefore differs from the motion of the analogous object for the PK-
branching diffusion, i.e. the PR,K-branching diffusion in Proposition
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11.
Let us introduce some notation before we proceed with the backbone
decomposition. Associated to the laws {P̃R,K

δx
, x ∈ [0, K]} is the family

of the so-called excursion measures {NR,K
x , x ∈ [0, K]}, defined on the

same measurable space, which satisfy

NR,K
x (1− exp{−〈f, Yt〉}) = − log ẼR,K

δx
(exp{−〈f, Yt〉}),

for any f ∈ B+[0, K] and t ≥ 0. These measures are formally defined
and studied in Dynkin and Kuznetov [DK04]. Further, we define

ρn(dy, x) =
bwK(x)2δ0(dy)1{n=2} + wK(x)n y

n

n!
ewK(x)yΠ(dy)

qB,Kn (x)wK(x)βB,K(x)
,

for n ≥ 2, x ∈ (0, K).

Definition 29. Let K > K0 and ν ∈ Ma(0, K). Let XB =
(XB

t , t ≥ 0) be a PB,K
ν - branching diffusion (which is the backbone

of the PK-branching diffusion with branching mechanism F given by
(6.3)).
Dress the trajectories of XB in such a way that a particle at space-
time position (x, t) ∈ Rd× [0,∞) has an independent Mf (0, K)-valued
process grafted on with rate

2b dt× dNR
x +

∫ ∞
0

y exp{−wK(x)y} Π(dy)× dPR,K
yδx

.

Moreover, when an individual in XB gives birth to n ≥ 2 offspring,
then an additional independent copy of (Y, P̃R,K) with initial mass y ≥
0 is grafted on to the space-time branch point (x, t) with probability
ρn(dy, x).
For t ≥ 0, let Y D

t consists of the total dressed mass present at time t.
We define the process Y D := (Y D

t , t ≥ 0) and denote its law by P̃D,K
ν .

Theorem 30 (Backbone decomposition). Let K > K0 and η ∈
Mf [0, K]. Suppose that ν is a Poisson random measure on (0, K) with
intensity wK(x)η(dx). Let Y R = (Y R

t , t ≥ 0) be an independent copy of
(Y, P̃R,K

η ) and let (Y D, P̃D,K
ν ) be the process constructed in Definition

29. Define the process Ỹ = (Ỹt, t ≥ 0) by

Ỹt = Y R
t + Y D

t , t ≥ 0,
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and denote its law by P̃K
η . Then the process (Ỹ , P̃K

η ) is Markovian and

equal in law to (Y, P̃K
η ).

The proof of Theorem 30 is a simple adaptation of the proofs of
Theorem 1 and 2 in [BKMS11] and therefore omitted.
Conditioning (Y, P̃K

η ) on non-extinction is the same as conditioning the
Poisson random measure ν in Theorem 30 on having at least one atom
from which a copy of (Y D, P̃D,K) is then issued. In principle it should
be possible to give a proof analogous to the ones presented in Section 3,
using that (Y, P̃K

η ) conditioned on non-extinction arises from a change
of measure using the martingale

1− e−〈wK ,Yt〉, t ≥ 0,(6.6)

together with the martingale change of measure in (6.5) which condi-
tions (Y, P̃K

η ) on extinction.

The analogy between the PK-branching diffusion and the P̃K-super-
diffusion indicates that there is a quasi-stationary limit result equiva-
lent to Theorem 6.
We begin with constructing the limiting process. To this end, define the
family of excursion-measures {NK0

x , x ∈ [0, K0]}, now associated with
the laws (P̃K0

δx
, x ∈ [0, K0]), satisfying

NK0
x (1− exp 〈f, Yt〉) = − log ẼK0

δx
(e−〈f,Yt〉), for f ∈ B+(0, K), t ≥ 0.

Definition 31. Let η ∈ Mf (0, K). Suppose ξ∗ = (ξ∗t , t ≥ 0) is a
Brownian motion conditioned to stay in (0, K0) with initial position x
distributed according to

sin(πx/K0)e
µx∫

(0,K0)
sin(πz/K0)eµz η(dz)

η(dx), x ∈ (0, K0).

Along the the space-time trajectory {(ξ∗s , s) : s ≥ 0}, we immigrate
Mf (0, K)-valued processes at rate

2b ds× dNK0
ξ∗s

+

∫ ∞
0

yΠ(dy)× P̃K0
yδξ∗s

.

Then, let Y ∗ = (Y ∗t , t ≥ 0) be such that Y ∗t consists of the total immi-
grated mass present at time t together with the mass present at time t
of an independent copy of (Y, P̃K0

ν ) issued at time zero. We denote the
law of Y ∗ by P̃ ∗η
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The evolution of Y ∗ under P̃ ∗ can thus be seen as a path-wise de-
scription of Evans’ immortal particle picture in [Eva93] for the critical
width K0; for a similar construction of Evans’ immortal particle picture
see Kyprianou et al. [KMSLR].
Further, we note that (Y ∗, P̃K0

η ) has the same law as Y under the mea-

sure which has martingale density Z̃K0(t) of (6.2) with respect to P̃K0
η ;

for similar results see for instance Engländer and Kyprianou [EK04],
Kyprianou et al. [KMSLR] and Liu et al. [LRS09].

Theorem 32. Let K > K0 and η ∈ Mf [0, K0]. For a fixed time
t ≥ 0, the law of Yt under the measure limK↓K0 P̃

K
η (·| limt→∞ ||Yt|| > 0)

is equal to Y ∗t under P̃ ∗η .

To prove Theorem 32 it suffices to show that the P̃K
η -martingale in

(6.6) converges to the martingale Z̃K0 in (6.2). This is a straightforward
adaption of the proof of Theorem 6.
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[BBS11] Julien Berestycki, Nathanaël Berestycki, and Jason Schweinsberg. Sur-
vival of near-critical branching Brownian motion. J. Stat. Phys.,
143(5):833–854, 2011.

[BFM08] Jean Bertoin, Joaquin Fontbona, and Servet Mart́ınez. On prolific indi-
viduals in a supercritical continuous-state branching process. J. Appl.
Probab., 45(3):714–726, 2008.

[BK97] J. D. Biggins and A. E. Kyprianou. Seneta-Heyde norming in the
branching random walk. Ann. Probab., 25(1):337–360, 1997.



BRANCHING BROWNIAN MOTION IN A STRIP 49

[BKMS11] J. Berestycki, A. E. Kyprianou, and A. Murillo-Salas. The prolific
backbone for supercritical superprocesses. Stochastic Process. Appl.,
121(6):1315–1331, 2011.

[Cha91] Brigitte Chauvin. Product martingales and stopping lines for branching
Brownian motion. Ann. Probab., 19(3):1195–1205, 1991.

[CHT+95] Alan Champneys, Simon Harris, John Toland, Jonathan Warren, and
David Williams. Algebra, analysis and probability for a coupled system
of reaction-diffusion equations. Philos. Trans. Roy. Soc. London Ser.
A, 350(1692):69–112, 1995.

[CR88] Brigitte Chauvin and Alain Rouault. KPP equation and supercritical
branching Brownian motion in the subcritical speed area. Application
to spatial trees. Probab. Theory Related Fields, 80(2):299–314, 1988.

[DS89] Jean-Dominique Deuschel, Daniel W. Stroock. Large deviations. Pure
and Applied Mathematics (volume 137), 1989.

[DK04] E. B. Dynkin and S. E. Kuznetsov. N-measures for branching exit
Markov systems and their applications to differential equations. Probab.
Theory Related Fields, 130(1):135–150, 2004.

[DW07] Thomas Duquesne and Matthias Winkel. Growth of Lévy trees. Probab.
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42(1):125–145, 2006.

[HR12] S. C. Harris and M. I. Roberts. The unscaled paths of branching Brown-
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